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130 Kleine Mitteilungen

Kleine Mitteilungen

Die Ableitung der trigonometrischen Formeln im Poincaréschen
Modell der hyperbolischen Geometrie

Einlettung

Die Beschiftigung mit der Axiomatik der Geometrie und den Elementen der nicht-
euklidischen Geometrie ist von hohem bildendem Wert. Es ist deshalb eine sehr dan-
kenswerte Leistung, dass zum erstenmal ein Schweizer Lehrbuch?!) den Versuch unter-
nommen hat, dieses Gebiet dem Schulunterricht zugédnglich zu machen. Es ist dabei die
Frage, wieweit es moglich ist, in die Probleme der nichteuklidischen Geometrie ein-
zudringen. Vielleicht konnte man mindestens in Arbeitsgemeinschaften mit interes-
sierten Schiilern auch noch iiber den in (1) aufgenommenen Stoff hinausgehen. Es
ergibt sich hier unter anderem das methodische Problem der Einfithrung in die Trigono-
metrie, das auch fiir die Vorlesungen an Hochschulen von Interesse sein diirfte.

In den &dlteren Biichern wird im allgemeinen der methodisch schwierige, abstrakte
Weg ohne Modell gegangen, das Buch von BaLpus?) benutzt das Kleinsche Modell, das
aber den entscheidenden Nachteil hat, dass die Winkel hier nicht euklidisch gemessen
werden. Die Ableitung der trigonometrischen Formeln aus dem Poincaréschen Modell
ist bisher unseres Wissens in der Literatur noch nicht dargestellt worden. Es soll im
folgenden gezeigt werden, wie bei dem in (1) benutzten Poincaréschen Modell die trigono-
metrischen Formeln auf einfache Weise gefunden werden kdnnen.

Das Prinzip der speziellen Lage

Die Kongruenztransformationen im Poincaréschen Modell sind die linearen Transfor-
mationen der oberen (komplexen) Halbebene auf sich. Es geniigt, die Formeln fiir eine
«spezielle Lage» des Dreiecks zu beweisen, in die man es durch eine Kongruenztrans-
formation bringen kann. :

Wir gehen aus von einem rechtwinkligen Dreieck, dessen Hypotenuse eine Strecke
AB der imagindren Achse mit einem Eckpunkt ¢ ist (Figur 1). Offenbar kann man jedes
beliebige rechtwinklige Dreieck durch eine Kongruenztransformation in diese Lage
bringen. Es seien die (zur reellen Achse orthogonalen) Kreisbogen BC=a und AC =5
die Katheten des rechtwinkligen Dreiecks, D und E bzw. 7, und 7, die Mittelpunkte und
Radien der entsprechenden Vollkreise. Ferner bezeichnen wir den Nullpunkt mit O,
die Strecken OFE, OA und OD mit &, n und {. Dann gilt:

24t =(0+ 82— ({2+1).
nt+1=2¢¢. (1)

Also:

Nun ist die (hyperbolische) Linge der Hypotenuse ¢ gegeben durch das Doppelver-
héltnis:

¢=1log(n, 1, 0, co) =logy.
Daraus folgt:

Cofe ot =3-('7’+1).

2 2 n

Da die der Hypotenuse anliegenden Winkel « und g gleich den Winkeln AEO bzw.

1) F. GonNseETH und P.MARTI, Planimetrie, 2. Teil (Orell Fiissli, Ziirich und Leipzig 1936).
%) R. BaLbus, Nichteuklidische Geometrie (de Gruyter, Berlin 1944, Sammlung Gdschen, Bd. 970).
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BDO sind, so haben wir:

_§&. _ &
ctgoc——n—. ctgf=—=¢,
und aus (1) wird:
Cojc =ctga ctgf. (2)

Das ist die erste der beiden abzuleitenden Formeln.

Die Bevechnung von Iga

Zur Ableitung einer zweiten Beziehung zwischen den Seiten und den Winkeln des
rechtwinkligen Dreiecks formen wir zunichst die Formel fiir die hyperbolische Lange

Fig.1

einer Strecke etwas um. Bekanntlich ist die hyperbolische Linge einer durch die
Zentriwinkel ¢ und § auf einer hyperbolischen Geraden ausgeschnittene Strecke a:

&€

5
tg7

a=log

Daraus folgt:
0
20 _ 2 € 2
ett=tg 2 ctg 7"

" £ 1 —cose
€5 = 14 cose

els__1 _ cosd — cose (3)
e 4+1  1—cosdcose

Unter Benutzung der Formel

kann man jetzt Tg a berechnen:

Tga =

Fiir ¢ = #/2 kann man aus (3) die bekannten Beziehungen zwischen Parallelwinkel und
Paralleldistanz gewinnen. Wir wollen indessen (3) benutzen, um eine weitere Beziehung
fiir das rechtwinklige Dreieck abzuleiten.

Es ist nach (1)

_er—1 412  EL-1
igc—en_i_l— PO R ¥ A (4)
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Benutzung von (3) ergibt aber:

Tga - cos (n — @) — cos(m —B) _ cosf — cosg

1 —cos(n — @) cos(m — B) 1—cosfcosp °

Nun ist, wie man Figur 1 entnimmt:

__ L _ Vi
cosﬁ*l/TJr_:?, cosgp = FTT
Also wird:
Tga = $¢ -1
gyr+ce’
Daraus folgt schliesslich:
Tga=TgccosP. (3)

Aus den Formeln (2) und (5) kann man leicht alle weiteren Beziehungen fiir das recht-
winklige Dreieck und daraus wieder in der iiblichen Weise den Sinus- und Cofinus-Satz
fiir beliebige Dreiecke ableiten. HerBERT MEscHKOWSKI, Berlin.

Anmerkung der Redaktion: Wir erwdhnen an dieser Stelle die Abhandlung von H. Eves
und V.E.Hovcatt, Hyperbolic Trigonometrv derived from the Poincaré model, Amer.
Math. Monthly 58, 469-474 (1951).

Der Kreidekreis

Beim Zeichnen eines Kreises an der Tafel mit Hilfe des iiblichen Kretdezirkels nimmt
man stillschweigend an, dass sich die Kreide nicht merklich abniitzt, so dass ihre Spitze
nach einem Umlauf wieder im Ausgangspunkt ankommt. In Wirklichkeit ist dies nun
nicht der Fall, vielmehr wird sich das Kreidestiick stindig verkiirzen, wenn auch nicht
sehr stark. Unter der naheliegenden Annahme, dass diese Verkiirzung proportional zum
beschriebenen Bogen ist, erhebt sich die Frage, was fiir eine Kurve der so erhaltene
«Kreidekveis» nun eigentlich sei.

Sei O der Einsatzpunkt des Zirkels (der in Figur 1 in die Zeichenebene umgelegt ge-
zeichnet wurde), P die Schreibspitze, OQ = a das Lot auf die Kreidenachse; denkt man
sich das ganze Stiick PQ aus Kreide und macht man den Kurvenpunkt 4, der bei voll-
kommen abgeschriebener Kreide erreicht wird, zum Anfangspunkt der (riickldufigen)
Messung des Bogens s, dann gilt PQ=yus, wobei u die (positive und normalerweise
sehr kleine) «Abniitzungskonstante» bezeichnet. Fiir den Radiusvektor OP =17 ergibt
sich dann aus dem rechtwinkligen Dreieck OPQ die Beziehung

72=a2+/,¢"‘ s2. (1)

Da in diesem Ausdruck die Bogenlinge unmittelbar als Parameter erscheint, liegt
es nahe, sich der Methoden der natiirlichen Geometrie zu bedienen. Zu diesem Zweck
werde die Ebene auf ein mit der Kurve beweglich verbundenes kartesisches Koordina-
tensystem bezogen, dessen u- und v-Achse die Kurventangente bzw. -normale ist. Die
Koordinaten «, v des festen Punktes O geniigen dann neben der zu (1) dquivalenten
Beziehung

' u?+v2=aqa?4 u?s? (2)

nach den Cesaroschen «Unbeweglichkeitsbedingungen»

du dv
—_—=xv—1,

s e 3
ds ds ®u, (3]

worin x = 1/g die Kriimmung der Kurve im Punkte P bedeutet!). Zweimalige Anwen-

1) H.WIELEITNER, Spezielle ebene Kurven (Goschensche Verlagsbuchhandlung, Leipzig 1908), S.174.
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dung von (3) auf (2) liefert die Gleichungen
u=—uts, v=(1-pu?oe. (4)
Nach Elimination der Grossen #, v aus (2) und (4) ergibt die Beziehung

52 92 a2 a2 _
BT A*= W (pE—1)° B= aqye (3)

die Abhingigkeit des Krimmungsradius ¢ von der Bogenlinge s, also die natiirliche

Fig.1

Gleichung der gesuchten Kurve. Bekanntlich!) kennzeichnet eine Beziehung von der
Gestalt (5) die Zykloiden, also diejenigen Kurven, welche von einem Umfangspunkt
eines Kreises mit dem Radius

AB
m=gare

beschrieben werden, wenn derselbe auf einem festen Kreis vom Radius

AB?

Ry = A?_RB*

abrollt.
I. u<1. In diesem Falle rollt ein komplexer Kreis vom Radius

Rlz——;—(l-i—il), A=p:)1—u?

auf dem nullteiligen (rein imagindren) vom Radius
Rz =aQ A 1: .

Diese Kurven werden als Hyperzykloiden bezeichnet. Figur 1 zeigt den zur Abniitzungs-
konstanten u = 0,25 gehorigen Kreidekreis.

1) H. WIELEITNER, a.a, 0., S.195ff,
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II. u>1. In diesem unwahrscheinlichen Fall treten Hypozykloiden auf, wie man
den verschiedenen Vorzeichen der Kreisradien

Ry=ali, R= --‘21 (A—1), A=p:Ypi—-1

entnimmt. Setzt man u = 1/cosa, so wird R;=a/sina, womit eine einfache geome-
trische Deutung der Konstanten u gefunden ist (Figur 2, u=1,2). Da die Tangenten-
strecke QP=u s =s/cosa an den Scheitelkreis der Hypozykloide proportional der
Bogenlinge der Hypozykloide ist, lisst sich die Bogenlinge AP=s=P( cosa in
einfachster Weise rektifizieren. (Figur 2, der Nullkreis iiber Q ist mit 4 zu bezeichnen.)

Anmerkung: Epizykloiden wiirden sich fiir rein imaginires u ergeben. In diesem
Falle ist die angefiihrte Konstruktion zur Rektifikation
eines Bogens einer einfachen Modifikation fahig.

III. u=1. Dieser Grenzfall vermittelt zwischen den
nach innen hohlen Hyperzykloiden und den nach aussen
hohlen Hypozykloiden. Aus (5) folgt fiir die Kriimmung
x =0, so dass sich hier eine nicht alltigliche Methode
ergibt, eine Gerade zu zeichnen, die aber trotzdem un-
mittelbar geometrisch einleuchtet.

IV. u = 0. Dieser Fall liefert nach (1) dre echten Kreise,
da keinerlei Abniitzung des Schreibstiftes eintritt.

V. a=0, u<1 liefert aus (2) fu?+v2=us, woraus
mittels der Unbeweglichkeitsbedingungen (3) #/v=A4
= const folgt, das heisst die Strahlen des Biischels O
werden von der Kurve unter dem konstanten Winkel
o = arcctg A geschnitten. Durch diese Eigenschaft sind
aber die logarithmischen Spirvalen gekennzeichnet.

Es erscheint noch wiinschenswert, von den erhal-
tenen Kurven Parameterdarstellungen zu gewinnen. Zu
diesem Ende ist es zweckmdssig, polare Speerkoordinaten )
heranzuziehen. Bei dieser Darstellungsart wird die Fig.2
orientierte Kurventangente durch ihren (vorzeichen-
begabten) Abstand v =0T von O und dessen Polarwinkel ¢ = X AO0T festgelegt.

Aus (4) und (5) findet man

: 1=a™" nyur—1
und damit
ds ds dv Yur-1 dv

e dv I Var—v? ~
Schliesslich findet man fiir den Sonderfall u <1

v
B dv
1/1__”2 o ]/v”——a”
a
Die Gleichung der Hyperzykloide in polaren Speerkoordinaten lautet mithin

v=acoshi g, A=p: Y1 —put

Bedenkt man, dass die Kurventangente im kartesischen Koordinatensystem O(x, y)
die als «Hessesche Normalform» bekannte Gleichung

v
= arcosh —.
a

% cosp + ¥y sing = v = q coshid ¢
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hat, so ergibt sich als Hiillgebilde dieser vom Parameter ¢ abhingigen Geradenschar

die Kurve
x = a (coshl ¢ cosp — A sinh i ¢ sing),

y = a (coshl ¢ sing + A sinhA ¢ cosg),

womit die gewiinschte Parameterdarstellung der Hyperzykloide gewonnen ist.
Analog findet man im Fall u>1

v=acosiep, A=p:fut—-1>1

als Gleichung der Hypozykloide in polaren Speerkoordinaten.

Die Sonderfille I und II liefern eine bemerkenswerte gemeinsame reelle Erzeugungs-
weise der Hyper- und Hypozykloiden. Es ldsst sich ohne weiteres denken, dass sich
nach dieser Methode Instrumente anfertigen lassen, welche eine mechanische Erzeugung
dieser Kurven gestatten. WOLFGANG STROHER, Wien.

Aufgaben

Aufgabe 136. Es ist der Kreis zu bestimmen, dessen Polaritit die Neilsche Parabel
a y?= x3 in sich transformiert. R.LAUFFER, Graz.

Losung: Die Neilsche Parabel a y?%= x® gehort zu den binomischen Kurven
A"=ay™. (1)

Diese Kurven haben dieselbe Ordnungs- und Klassenzahl und besitzen, wenn n/m > 0
und rational ist, im Ursprung O des zugrunde gelegten kartesischen Normalkoordinaten-
systems und im Fernpunkt der y-Achse zueinander reziproke Singularititen. Diese
hoheven Pavabeln entsprechen sich stets selbst in dem Polarsystem eines bestimmten
Kreises um O.

Einer Tangente ¢ von (1) in einem Punkt (#,|y,) entspricht im Polarsystem des Kreises

x24 y2=p2

Tty o)

Soll dieser Pol T von ¢t wieder ein Punkt der Kurve (1) sein, so muss die Bedingungs-
gleichung

ein Punkt

m™ (n — m)n—m

p2mm  (_1)m a? (2)

bestehen, die man durch Einsetzen der Koordinaten von T in (1) erhilt. Aus (2) ergibt
die Spezialisierung m = 2, n =3 fiir den Radius des gesuchten Kreises den Wert:

2a

33 °

Yy =

R.BEREIS, Wien.
Weitere Losungen gingen ein von A. BAGER (Hjerring), F. GoLDNER (London),
L. KierFER (Luxemburg), A. UNTERBERGER (Bludenz).

Aufgabe 137. Evaluez l'intégrale

o0

f (% — arctgxﬁ) ax.

0 H.BremeEkaMP, Delft.

1) Man iiberzeugt sich sofort, dass P(xI[ y,) auf der Polaren von T liegt und diese die Steigung n y;/m x;
der Tangenten besitzt. Die Redaktion.
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