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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematiklehrer

El. Math. Band VII Nr. 5 Seiten 97-120 Basel, 15. September 1952

Einlagerung kongruenter Kugeln in eine Kugel
Wir gehen von der folgenden sich auf den gewöhnlichen Raum beziehenden Frage

aus: Wie viele unter sich kongruente Kugeln fester Grösse können in einer vorgegebenen

grossen Kugel höchstens eingelagert1) werden
Es bedeutet keine Einschränkung, anzunehmen, dass die einzulagernden Kugeln

den Radius r 1 aufweisen, kurz Einheitskugeln sein sollen. Es bezeichne N(R) die
grösstmögliche Anzahl von Einheitskugeln, die sich in einer Kugel K(R) vom Radius
R ^ 1 einlagern lassen. Es ist offenbar N(R) eine ganzzahlige monoton zunehmende
Funktion von R.

Die oben gestellte Frage kann der Mathematiker mit den ihm heute zur Verfügung

stehenden Kenntnissen und Methoden nicht erschöpfend beantworten, das heisst,
es gelingt nicht, eine Vorschrift - etwa im günstigsten Falle eine Formel - anzugeben,
welche eine exakte Berechnung des Wertes N(R) für alle Radien R ermöglicht.
Selbstverständlich können leicht Abschätzungen gefunden werden, aber bereits die
Ermittlung feinerer Schätzungen bereitet grösste Mühe. Die hier zutage tretenden
typischen Schwierigkeiten teilt dieses Problem mit zahllosen andern, die ebenso
unlösbar sind, obwohl sie an die einfachsten elementargeometrischen Tatbestände an-
schliessen. In unserm Falle ist es offenkundig, dass die besondere Schwierigkeit der
Frage darin begründet ist, dass die eingelagerten Kugeln zunächst keinem Gesetz,
das ihre räumliche gegenseitige Anordnung beherrscht, unterliegen müssen.

Eine Einlagerung der grösstmöglichen Anzahl N(R) von Einheitskugeln in der
Kugel K(R) heisst dichteste Einlagerung. Unter der Dichte einer Einlagerung versteht
man das Verhältnis des total eingelagerten Kugelvolumens zum Volumen von K(R).

Die maximale Einlagerungsdichte D(R) wird also durch die dichteste Einlagerung
realisiert, und sie ist offenbar durch

D(R) -^p. (1)

gegeben. Nach einer bis heute unbewiesenen Vermutung2) gilt die asymptotische

*) Zur mengengeometrischen Prazisierung diene folgendes- Alle Kugeln sollen abgeschlossen sein Em
Aggregat von Kugeln nennen wir gelagert, wenn diese höchstens Randpunkte, aber keine inneren Punkte
gemeinsam haben Das Aggregat heisst m einer weiteren Kugel K eingelagert, wenn die Kugeln des Aggregates

gelagert und ausserdem alle m A' enthalten sind.
2) L. Ffcjts-TÖTH (Veszprem, Ungarn), der das Problem der dichtesten regellosen Kugellagerung

wesentlich gefordert hat, skizziert in seinem beim Springer-Verlag (Berlin) im Druck befindlichen Buch
Lagerungsprobleme tn der Ebene, auf der Kugelfläche und tm Raum einen Beweisplan, der darauf hinzielt,
die Losung des Problems auf die Diskussion verschiedener Funktionen mehrerer Veränderlichen zu
reduzieren. Die Schwierigkeiten einer wirklichen Durchfuhrung sind aber noch zu gross
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Beziehung
lim D(R) ~^— 0,74048.... (2)

/?_>oo 3 J/2

Die Sicherstellung von (2) wäre gleichbedeutend mit der Lösung des Problems der
dichtesten Kugellagerung im Raum schlechthin. Das erwähnte Problem ist unter der
zusätzlichen Bedingung gelöst, dass die Kugeln gitterförmig gelagert sind1), und die
verantwortliche Dichte ist die nämliche. Es fragt sich nun, ob eine regellose Anordnung

zu einer noch höheren Dichte führen kann als die regelmässige, kurz, ob hier die
Ordnung durch eine Unordnung überboten werden kann, ein Tatbestand, den wir
als unwahrscheinlich beurteilen.

Betrachten wir die mit (1) gegebene Dichte D(R), so ist zunächst trivialerweise
D(l) =1, und offenbar gilt für R> 1 stets D(R) < 1. Ferner ist es durchaus plausibel,

dass D(R) für genügend grosse R beständig grössere Werte annimmt als in
einem anfänglichen für die Einlagerung besonders unwirtschaftlichen Bezirk. Der
Dichte D(R) wird demnach voraussichtlich im Bereich kleiner Radien ein Tiefstwert
als untere Schranke zukommen. Damit ist die kleine Fragestellung, die wir hier
beantworten wollen, erklärt:

Wie klein wird die Einlagerungsdichte D(R) im ungünstigsten Fall
Die exakte Antwort ist durch

iniD(R)^~ 0,125 (3)

gegeben, wobei D(R) für R -> 2 dem angegebenen Tiefstwert beliebig nahe kommt,
ohne ihn selbst zu erreichen.

Der Weg, der zu dieser einfachen Feststellung führt, bringt uns auch einige weitere
Nebenergebnisse. So werden wir die Abschätzung

^^TFff1-^3 {4)

kennenlernen, die an sich bekannt ist2), für die wir aber eine dem elementaren
Charakter des vorliegenden Aufsatzes entsprechende Herleitung geben. Aus (4) folgt
übrigens bereits

HminfD(Ä) ^-^r, (5)
R-+OQ 3K2

womit in gewissem Sinne eine Hälfte der vermuteten Relation (2) nachgewiesen ist.
Es sei weiter Rn der Radius der kleinsten Kugel K(R), in welcher noch n Einheitskugeln

eingelagert werden können. Diese Grenzradien Rn bilden eine monoton
steigende Folge, so dass

i?„<SÄB+1 (« 1,2,3,...) (6)

1) Zu diesem klassischen und ganz wesentlich einfacheren Problem vergleiche man etwa die hübsche
Darstellung bei D.Hilbert und S.Cohn -Vossen, Anschauliche Geometrie (Springer Berlin, 1932)
insbesondere § 7, 39-46.

2) Es handelt sich um einen einfachen Spezialfall einer aligemeineren Formel fur die Dichte der Kugel-
emlagerung in einen konvexen Körper, die L. Fejes-Töth angegeben hat (vergleiche das in der Fussnote 2

auf Seite 97 erwähnte Buch).
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gilt. Wie wir weiter unten sehen werden, kann für gewisse n das Gleichheitszeichen
gelten.

Die mit (1) definierte Dichtefunktion D(R) ist unstetig, und die Sprünge befinden
sich an den durch die Werte der Rn bezeichneten Stellen.

Eine weitere in dieser Note gelöste einfache Nebenaufgabe ist die Bestimmung der
sechs ersten Grenzradien. Die Resultate sind in der untenstehenden Tabelle eingesetzt.

n Rn

1 1 1,000

2 2 2,000

3 1+w 2,154...

4 •+KI 2,224...

5 1-1-/2" 2,414...

6 1 V\ß 2,414...

Mit Hilfe der Grenzradien Rn lässt sich die Dichtefunktion D(R) in der folgenden
Weise darstellen:

D(R)^-^ (Rn^R<Rn+1). (7)

Die zugehörige Funktionskurve (Figur 1) zerfällt in abzählbar unendlich viele Parabelstücke,

die zwischen konsekutive Werte Rn und Rn+i eingeschoben sind. Man beachte

1,0

0,740

0,125

R3 ßjfy #s

\

v3 \
O 1 \ m.

*,S Z0 ZS
-R

Fig.l

aber, dass die rechtsseitigen, tiefer liegenden Endpunkte der Parabelstücke der

Kurve selbst nicht angehören, da dort die von rechts stetige Funktion D(R) auf
den höheren Wert springt, welcher durch den linksseitigen, höher liegenden
Endpunkt des nächstfolgenden Parabelstückes gegeben ist.
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Wir beschreiben kurz den Gang des unten folgenden Beweises. Wir haben zu
zeigen, dass

D(R)>\ (R>1) (8)

ausfällt und dass der Koeffizient 1/8 hier nicht durch einen grösseren ersetzt werden
kann. Damit ist die Behauptung (3) nachgewiesen. Um die Ungleichung (8) zu
begründen, beweisen wir zunächst die Abschätzung (4). Aus dieser Relation folgt aber
bereits (8) für alle Radien, welche der Bedingung

R > «

X

2,235... (9)

v-
A]/2ti

genügen. Ungleichung (8) muss demnach nur noch für das Intervall 1 ^ R ^ 2,235...
sichergestellt werden. Es genügt, die Richtigkeit der in der obenstehenden Tabelle
eingetragenen Werte für die ersten sechs Grenzradien nachzuweisen. Da 2,235 ...< Re,
so reduziert sich die verbleibende Aufgabe noch auf eine elementare Diskussion der
durch (7) dargestellten Funktion im Intervall 1 ^ R < Re.

Wir geben jetzt die beiden fehlenden Beweise.
1. Wir beziehen uns auf ein rechtwinkliges Koordinatensystem (x, y, z) und

betrachten den (halbabgeschlossenen) Würfel W, der durch 0 ^ x, y, z < 2 V2 gegeben
ist. Der Ursprung ist eine ihm angehörende Ecke. Diese Ecke sowie die Mittelpunkte
der drei anschliessenden quadratischen Seitenflächen von W bilden vier ausgezeichnete

Punkte, wir nennen sie Gitterpunkte (Figur 2). Wird der Raum mit translationsgleichen

Würfeln gitterförmig ausgepflastert, so erzeugen die vier Punkte ein
sogenanntes flächenkonzentriertes Würfelgitter G.

Es sei n eine beliebige natürliche Zahl. Der Würfel Wn 0 g x, y, z < 2 V2 n lässt
sich durch nz mit W translationsgleichen gitterförmig angeordneten Würfeln
auspflastern. Wn enthält dann 4 n3 Gitterpunkte. Es bezeichne nun K(r) eine Kugel
vom Radius r, die wir im Räume verschieben wollen, aber immer nur so, dass sie den
Würfel Wn noch trifft. In einer solchen Lage von K(r), die etwa durch die Koordinaten

x, y, z ihres Mittelpunktes fixiert sei, soll qn(x, y, z) die Anzahl der Gitterpunkte
von Wn bezeichnen, die durch sie bedeckt1) werden. Wir berechnen nun den über alle
oben zugelassenen Lagen von K(r) erstreckten Mittelwert qn von qn{x, y, z), das

heisst, wir setzen

vs. (10)
n

wobei r r r
Un=j j I qn{x,y,z)dxdydz (11)

Vn= f f fdxdydz (12)

bedeuten soll.
Mit Hilfe einfacher Überlegungen findet man leicht die beiden Resultate

Un
3

r3 (13)

*) Ein Punkt heisst durch eine Kugel bedeckt, wenn diese ihn im Innern oder auf dem Rand enthält.

und
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(14)

Hierbei hat man zu bedenken, dass der Beitrag, welcher von einem ausgewählten
Gitterpunkt von Wn an das Integral (11) geliefert wird, durch das Volumen von K(r)
gegeben ist Ferner stellt das Integral (12) das Volumen des äusseren Parallelkorpers
des Wurfeis Wn im Abstand r dar, welcher aus denjenigen Punkten besteht, deren
Abstand von Wn den Wert r nicht überschreitet

Es bezeichne weiter p die grosste Zahl von Gitterpunkten im obenerwähnten, sich
über den ganzen Raum erstreckenden Gitter G, die durch die Kugel K(r) überdeckt

Fig 2 Fig 3

werden können. Auf Grund der Bemerkung, dass stets qn(x, y, z) ^p sein muss,
ergibt sich offenbar

P^Vn (15)

Setzt man in dieser Relation den sich nach (10), (13) und (14) ergebenden Quotienten
ein, so erzielt man durch den Grenzübergang n -> oo

p> 3(/2
r3. (16)

Wir denken uns nun weiter um jeden Gitterpunkt des gesamten Gitters G eine Ein-
heitskugel gelegt. Wie man leicht überprüft, entsteht auf diese Weise eine
Kugellagerung, da die Gitterpunkte alle eine den Wert 2 nicht unterschreitende Distanz
haben. In einer Kugel K(R) denken wir uns eine konzentrische Kugel K(R — 1) vom
Radius r R — 1 Diese lasst sich im Räume so verschieben, dass die Anzahl der
bedeckten Gitterpunkte den Höchstwert p annimmt Ohne weiteres erkennt man
jetzt, dass die mitgeschobene Kugel K(R) nun p Einheitskugeln der oben beschriebenen

Lagerung enthalt Demnach gilt mit Rucksicht auf (16)

N(R)^-^=r(R-l)
3^2

(17)

und hieraus ergibt sich die nachzuweisende Abschätzung (4).
2. Wir ermitteln nun die ersten sechs Grenzradien Rx bis Rß und bestätigen die in

der Tabelle eingetragenen Werte Die Bestimmung der ersten vier Grenzradien Rx
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bis RA ist teils trivial, teils sehr einfach. Die Mittelpunkte der in die kleinsten Kugeln
eingelagerten Einheitskugeln bilden 1. einen Punkt; 2. ein Punktepaar vom Abstand
2; 3. ein reguläres Dreieck der Seitenlänge 2; 4. ein reguläres Tetraeder der Seitenlänge

2. Die elementaren Betrachtungen, welche der Nachweis dafür erfordert, dass
die angegebenen vier Kugelaggregate im Sinne unserer Fragestellung die günstigsten
sind, wollen wir dem Leser überlassen und uns nunmehr der Bestimmung von R5
und RB zuwenden.

Wir betrachten zunächst ein spezielles Aggregat von 5 Kugeln, deren Mittelpunkte
A, B,C, D, E eine regelmässige quadratische Pyramide mit 8 gleichen Kanten der

Länge 2 bilden (Figur 3). Dieses Aggregat ist einer Kugel K° vom Radius 1 + ^2
eingelagert, deren Mittelpunkt Z im Zentrum des Basisquadrates liegt. Hieraus folgt
offenbar /_

RB ^ 1 + J/2. (a)

Andererseits sollen jetzt A, B,C,D,E die Mittelpunkte einer noch unbekannten
günstigsten Lagerung der 5 Einheitskugeln bezeichnen, so dass das gesamte Aggregat
in der kleinstmöglichen Kugel K° vom Radius R5 eingelagert ist.

/. Fall: E sei ein Punkt im Innern des von A, B,C, D aufgespannten Tetraeders.
Die vier von E nach den Punkten A, B, C, D hinweisenden Einheitsvektoren a, b, c, d

liegen in keinem (abgeschlossenen) Halbraum. Für s a + b + c + d können demnach

nicht alle Skalarprodukte (s, a), (s, b), (s, c) und (s, d) positiv sein, und ohne

Einschränkung der Allgemeinheit darf also (s, d) ^ 0 angenommen werden, wobei
der Fall s 0 eingeschlossen ist. Es ist demnach 1 + (#, d) + (b, d) + (c, d) ^ 0, und
von den Skalarprodukten (a, d), (b, d), (c, d) kann nicht jedes grösser als — 1/3 sein.
Es darf etwa (c, d) fg —1/3 angenommen werden. Ist e der Winkel im Dreieck CED
bei E, so ist cos e ^ —1/3, und da ja | EC | ^ 2 und | ED \ ^ 2 sein muss, ergibt die

Anwendung des Kosinussatzes | CD | ^ K32/3. Die beiden zu C und D gehörenden
Einheitskugeln enthalten zwei auf der Zentralen liegende Punkte C und D', so dass

\C'D'\ ^ 2 + ^32/3 5,265... ist. Insbesondere ist |C'D'| ^ 2 + 2 l^ 4,828...
oder im Hinblick auf (a) also | C'D'\ ^2Rb, was natürlich nicht angeht. Das nämliche

gilt eo ipso für jeden andern Fall, der sich durch Austausch der Bezeichnungen
aus diesem ergibt.

2. Fall: Die 5 Punkte A, B,C, D,E bilden die Eckpunkte eines (eventuell entarteten)

konvexen Polyeders. Offenbar gehört das Zentrum Z der Kugel K° diesem

Polyeder an, da man andernfalls Z so verschieben könnte, dass sich alle Abstände
\ZA | bis \ZE\ simultan verkleinern; dann Hesse sich aber das ganze Kugelaggregat
in eine noch kleinere Kugel einlagern im Widerspruch zur Annahme. Die Abstände

\ZA | bis \ZE | sind weiter alle nicht grösser als R6—l. Wir dürfen sogar annehmen,
dass sie alle gleich R5 — 1 sind. In der Tat: Ist etwa | ZA | kleiner, so verschiebe man
A nach A' orthogonal zu einer durch die Ecke A hindurchgehenden Stützebene des

Polyeders ABCDE in den äusseren Halbraum so lange, bis \ZA'\ =R5 — 1 ist. Da
sich hierbei alle Abstände \AB\ bis \AE\ vergrössern, wird die Bedingung für die

Lagerung nicht gestört, und weiter muss das entstehende Polyeder A'BCDE immer
noch konvex sein. Auf diese Weise können der Reihe nach alle Punkte, soweit
erforderlich, korrigiert werden. Die 5 Punkte A bis E liegen jetzt alle auf einer Kugelfläche
vom Radius r Rh — 1 und weisen paarweise Abstände auf, welche den Wert 2
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nicht unterschreiten. Wir zeigen jetzt, dass hieraus r ^ Vi folgt1). Sind a, b, c, d, e

die 5 Einheitsvektoren, die von Z ausgehend nach den 5 Punkten A,B,C,D,E
hinweisen, so gelten die Zerlegungen a (a, e) e + a' \ b (b, e) e + &'; c (c, e) + c';
d (d, e) e + e'f wo a'', b', c', d' Vektoren bezeichnen, welche in Z angreifen und in
der auf e orthogonal stehenden Ebene liegen. Da die vier konsekutiven Zwischenwinkel

dieser koplanaren Vektoren nicht alle tz/2 überschreiten können, darf man
ohne Einschränkung der Allgemeinheit etwa (a!, b') ;> 0 annehmen. Es ergibt sich
jetzt (a, b) ^ (a, e) (b, e). Hieraus folgt aber, dass die drei hier beteiligten Skalar-
produkte nicht alle negativ sein können. Also ist etwa (a, b) ^> 0. Ist e der Winkel
im Dreieck AZB bei Z, so ist cose ^ 0 und da ja |ZA \ |ZB| r und \AB\ ^ 2

sein muss, ergibt die Anwendung des Kosinussatzes r ^ Vi. So folgt nun

R5^l + Vl. (b)

Mit (a) schliessen wir daraus auf R5 1 + Vi, was zu beweisen war.
Endlich wollen wir noch zeigen, dass Rb Rß ausfällt. Damit ist ein Fall

aufgewiesen, wo in der Folge der Grenzradien Rn zwei konsekutive übereinstimmen. Ob
sich dieses Vorkommnis im weiteren Verlauf der Folge wiederholt, ist unseres Wissens

nicht bekannt. Wir gehen vom günstigen Aggregat für 5 Kugeln (Figur 3) aus.
Die Kugel K° vom Radius R5 mit dem Mittelpunkt Z im Zentrum des Basisquadrates
ABCD enthält mit den 5 Einheitskugeln um die Punkte A, B, C, D, E noch eine
weitere, nämlich die Einheitskugel um E', wo E' den bezüglich der Quadratebene zu
E spiegelbildlichen Punkt bedeutet. Somit ist (a): J?5=:jR6; weiter hat man mit
Rückblick auf (6) noch (b): R5^Rß. Hieraus ergibt sich die Behauptung R5=R6.

H. Hadwiger, Bern.

Elementare Bestimmung der Summe

der reziproken Quadratzahlen

Die Geschichte der Reihe

j£ i + Jr + 1L + -L + + _L + --- (i)

findet der Leser in einer Abhandlung von O. Spiess2). Berühmt geworden ist der
Beweis von Euler, der sich auf das unendliche Produkt für sin x stützt und auf
dasselbe die Vietaschen Wurzelsätze anwendet. Spiess bemerkt, dass dieser Beweis nur
mit funktionentheoretischen Mitteln streng erbracht werden könne.

Ich teile daher hier eine elementare Gestaltung der Eulerschen Beweisidee mit,
die ich vor mehreren Jahren gefunden habe.

2) Dies folgt aus den wenigen bekannten Aussagen über den sphärischen Minimalabstand bei n auf der
Kugeloberfläche verstreut liegenden Punkten bzw. über den grösstmöglichen Wert, den dieser noch
annehmen kann. Zahlreiche neue Ergebnisse wurden hier kürzlich von B. L. van der Waerden (Zürich) und
K. Schütte (Marburg an der Lahn) erzielt: Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand
Eins Platz?, Math. Ann. 123, 96-124 (1951). Vgl. die Besprechung von E.Trost, El. Math. 7, 23 (1952).

*) Speiser-Festschrift (Orell Füssli, Zürich 1945).
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