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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zetschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichis
Organ fiir den Verein Schweizerischer Mathematiklehrer

El. Math. Band VII Nr.5 Seiten 97-120 Basel, 15. September 1952

Einlagerung kongruenter Kugeln in eine Kugel

Wir gehen von der folgenden sich auf den gewdéhnlichen Raum beziehenden Frage
aus: Wie viele unter sich kongruente Kugeln fester Grésse konnen in einer vorgege-
benen grossen Kugel héchstens eingelagert!) werden?

Es bedeutet keine Einschrinkung, anzunehmen, dass die einzulagernden Kugeln
den Radius » = 1 aufweisen, kurz Einheitskugeln sein sollen. Es bezeichne N(R) die
grosstmogliche Anzahl von Einheitskugeln, die sich in einer Kugel K(R) vom Radius
R =1 einlagern lassen. Es ist offenbar N(R) eine ganzzahlige monoton zunehmende
Funktion von R.

Die oben gestellte Frage kann der Mathematiker mit den ihm heute zur Verfii-
gung stehenden Kenntnissen und Methoden nicht erschépfend beantworten, das heisst,
es gelingt nicht, eine Vorschrift — etwa im giinstigsten Falle eine Formel — anzugeben,
welche eine exakte Berechnung des Wertes N(R) fiir alle Radien R ermdglicht.
Selbstverstandlich kénnen leicht Abschédtzungen gefunden werden, aber bereits die
Ermittlung feinerer Schitzungen bereitet grosste Mithe. Die hier zutage tretenden
typischen Schwierigkeiten teilt dieses Problem mit zahllosen andern, die ebenso un-
16sbar sind, obwohl sie an die einfachsten elementargeometrischen Tatbestédnde an-
schliessen. In unserm Falle ist es offenkundig, dass die besondere Schwierigkeit der
Frage darin begriindet ist, dass die eingelagerten Kugeln zunichst keinem Gesetz,
das ihre rdumliche gegenseitige Anordnung beherrscht, unterliegen miissen.

Eine Einlagerung der grésstméglichen Anzahl N(R) von Einheitskugeln in der
Kugel K(R) heisst dichteste Einlagerung. Unter der Dichte einer Einlagerung versteht
man das Verhiltnis des total eingelagerten Kugelvolumens zum Volumen von K(R).

Die maximale Einlagerungsdichte D(R) wird also durch die dichteste Einlagerung rea-
lisiert, und sie ist offenbar durch

D(R) = X (1)

gegeben. Nach einer bis heute unbewiesenen Vermutung?) gilt die asymptotische

1) Zur mengengeometrischen Prizisierung diene folgendes: Alle Kugeln sollen abgeschlossen sein. Ein
Aggregat von Kugeln nennen wir gelagert, wenn diese hochstens Randpunkte, aber keine inneren Punktc
gemeinsam haben. Das Aggregat heisst in ciner weiteren Kugel K eingelagert, wenn die Kugeln des Aggre-
gates gelagert und ausserdem alle in K enthalten sind.

2) .. FEjus-T6tH (Veszprém, Ungarn), der das Problemt der dichtesten regellosen Kugellagerung
wesentlich gefordert hat, skizziert in seinem beim Springer-Verlag (Berlin) im Druck befindlichen Buch
Lagerungsprobleme in der Ebene, auf der Kugelfliche und im Raum einen Beweisplan, der darauf hinzielt,
die Losung des Problems auf die Diskussion verschiedener Funktionen mchrerer Veréinderlichen zu redu-
zieren. Die Schwierigkeiten einer wirklichen Durchfithrung sind aber noch zu gross.
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Beziehung
lim D(R) = = 0,74048.... 2
R 00 ( ) 32 ( )

Die Sicherstellung von (2) wire gleichbedeutend mit der Lésung des Problems der
dichtesten Kugellagerung im Raum schlechthin. Das erwihnte Problem ist unter der
zusitzlichen Bedingung gelost, dass die Kugeln gitterférmig gelagert sind?), und die
verantwortliche Dichte ist die niamliche. Es fragt sich nun, ob eine regellose Anord-
nung zu einer noch hoheren Dichte fithren kann als die regelmaissige, kurz, ob hier die
Ordnung durch eine Unordnung iiberboten werden kann, ein Tatbestand, den wir
als unwahrscheinlich beurteilen.

Betrachten wir die mit (1) gegebene Dichte D(R), so ist zunichst trivialerweise
D(1) =1, und offenbar gilt fiir R > 1 stets D(R) < 1. Ferner ist es durchaus plau-
sibel, dass D(R) fiir geniigend grosse R bestindig grossere Werte annimmt als in
einem anfinglichen fiir die Einlagerung besonders unwirtschaftlichen Bezirk. Der
Dichte D(R) wird demnach voraussichtlich im Bereich kleiner Radien ein Tiefstwert
als untere Schranke zukommen. Damit ist die kleine Fragestellung, die wir hier beant-
worten wollen, erklart:

Wie klein wird die Einlagerungsdichte D(R) im ungiinstigsten Fall?

Die exakte Antwort ist durch

inf D(R) = + = 0,125 (3)
gegeben, wobei D(R) fiir R > 2 dem angegebenen Tiefstwert beliebig nahe kommt,
ohne ihn selbst zu erreichen.

Der Weg, der zu dieser einfachen Feststellung fiihrt, bringt uns auch einige weitere

Nebenergebnisse. So werden wir die Abschdtzung
> 7 (1Y)
D(R) = e (1 R) (4)
kennenlernen, die an sich bekannt ist?), fiir die wir aber eine dem elementaren Cha-

rakter des vorliegenden Aufsatzes entsprechende Herleitung geben. Aus (4) folgt
iibrigens bereits

liminf D(R) = —= (5)

R-—>no 3‘/?,

womit in gewissem Sinne eine Hilfte der vermuteten Relation (2) nachgewiesen ist.
Es sei weiter R,, der Radius der kleinsten Kugel K(R), in welcher noch » Einheits-
kugeln eingelagert werden koénnen. Diese Grenzradien R, bilden eine monoton stei-

gende Folge, so dass
Rnan+1 (n=1, z’ 3’ "') (6)

1) Zu diesem Kklassischen und ganz wesentlich einfacheren Problem vergleiche man etwa die hiibsche
Darstellung bei D.HiLBERT und S.CoHN -VOSSEN, Anschauliche Geometrie (Springer Berlin, 1932) insbe-
sondere § 7, 39—46.

2) Es handelt sich um einen einfachen Spezialfall einer allgemeineren Formel fiir die Dichte der Kugel-
einlagerung in einen konvexen Kérper, die L. FEJEs-T6TH angegeben hat (vergleiche das in der Fussnote 2
auf Seite 97 erwihnte Buch).
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gilt. Wie wir weiter unten sehen werden, kann fiir gewisse # das Gleichheitszeichen
gelten.

Die mit (1) definierte Dichtefunktion D(R) ist unstetig, und die Spriinge befinden
sich an den durch die Werte der R, bezeichneten Stellen.

Eine weitere in dieser Note geloste einfache Nebenaufgabe ist die Bestimmung der
sechs ersten Grenzradien. Die Resultate sind in der untenstehenden Tabelle eingesetzt.

n R,
1 1 = 1,000
2 2 = 2,000

Mit Hilfe der Grenzradien R, ldsst sich die Dichtefunktion D(R) in der folgenden
Weise darstellen:
n
D(R) = &5 (R =R<R,,). (7

Die zugehdrige Funktionskurve (Figur 1) zerfillt in abzihlbar unendlich viele Parabel-
stiicke, die zwischen konsekutive Werte R, und R,, ,, eingeschoben sind. Man beachte

0 R
/,0 /Q) p!ﬁ# 95

oo \

~~
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B 15 20 25

Fig.1

0125

aber, dass die rechtsseitigen, tiefer liegenden Endpunkte der Parabelstiicke der
Kurve selbst nicht angehéren, da dort die von rechts stetige Funktion D(R) auf
den hoheren Wert springt, welcher durch den linksseitigen, héher liegenden End-
punkt des nichstfolgenden Parabelstiickes gegeben ist.
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Wir beschreiben kurz den Gang des unten folgenden Beweises. Wir haben zu

zeigen, dass )

D(R) > (R>1) (8)
ausfillt und dass der Koeffizient 1/8 hier nicht durch einen grésseren ersetzt werden
kann. Damit ist die Behauptung (3) nachgewiesen. Um die Ungleichung (8) zu be-
griinden, beweisen wir zunichst die Abschitzung (4). Aus dieser Relation folgt aber
bereits (8) fiir alle Radien, welche der Bedingung

R> 1 —2,235... 9)

3

1 — e

4 |/2 n

geniigen. Ungleichung (8) muss demnach nur noch fiir das Intervall 1 < R < 2,235...
sichergestellt werden. Es geniigt, die Richtigkeit der in der obenstehenden Tabelle
eingetragenen Werte fiir die ersten sechs Grenzradien nachzuweisen. Da 2,235... < Ry,
so reduziert sich die verbleibende Aufgabe noch auf eine elementare Diskussion der
durch (7) dargestellten Funktion im Intervall 1 < R < R,.

Wir geben jetzt die beiden fehlenden Beweise.

1. Wir beziehen uns auf ein rechtwinkliges Koordinatensystem (x, y, z) und be-

trachten den (halbabgeschlossenen) Wiirfel W, der durch 0 < x, y, 2 < 2 V2 gegeben
ist. Der Ursprung ist eine ihm angehorende Ecke. Diese Ecke sowie die Mittelpunkte
der drei anschliessenden quadratischen Seitenflichen von W bilden vier ausgezeich-
nete Punkte, wir nennen sie Gitterpunkte (Figur 2). Wird der Raum mit translations-
gleichen Wiirfeln gitterformig ausgepflastert, so erzeugen die vier Punkte ein soge-
nanntes flichenkonzentriertes Wiirfelgitter G. N

Es sei # eine beliebige natiirliche Zahl. Der Wiirfel W, 0 < «x, y, 2 < 2 V2 n lasst
sich durch #® mit W translationsgleichen gitterférmig angeordneten Wiirfeln aus-
pflastern. W, enthilt dann 4 #3 Gitterpunkte. Es bezeichne nun K(r) eine Kugel
vom Radius 7, die wir im Raume verschieben wollen, aber immer nur so, dass sie den
Wiirfel W, noch trifft. In einer solchen Lage von K(r), die etwa durch die Koordi-
naten x, y, z ihres Mittelpunktes fixiert sei, soll g,(x, v, z) die Anzahl der Gitterpunkte
von W, bezeichnen, die durch sie bedeckt!) werden. Wir berechnen nun den iiber alle
oben zugelassenen Lagen von K(r) erstreckten Mittelwert g, von ¢,(x, y, 2), das
heisst, wir setzen

- U
qn = 'Vﬂ ) (10)
wobel
Un=f//qn(x, y,2)dx dy dz (11)
und

V,,=f//dx dy dz (12)
bedeuten soll.

Mit Hilfe einfacher Uberlegungen findet man leicht die beiden Resultate

16 t n? "

U,= —3

(13)

1y Ein Punkt heisst durch eine Kugel bedeckt, wenn diese ihn im Innern oder auf dem Rand enthilt.
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p Y 4
und Vn=16l/2n3+48n2r+6|/2nnr2+—3273. (14

Hierbei hat man zu bedenken, dass der Beitrag, welcher von einem ausgewihlten
Gitterpunkt von W, an das Integral (11) geliefert wird, durch das Volumen von K (r)
gegeben ist. Ferner stellt das Integral (12) das Volumen des dusseren Parallelkérpers
des Wiirfels W, im Abstand » dar, welcher aus denjenigen Punkten besteht, deren
Abstand von W, den Wert r nicht iiberschreitet.

Es bezeichne weiter p die grésste Zahl von Gitterpunkten im obenerwihnten, sich
liber den ganzen Raum erstreckenden Gitter G, die durch die Kugel K(r) iiberdeckt

i
%
X

Fig.2 Fig.3

werden kénnen. Auf Grund der Bemerkung, dass stets ¢,(x, v, 2) < p sein muss,
ergibt sich offenbar

P =4qn (15)

Setzt man in dieser Relation den sich nach (10), (13) und (14) ergebenden Quotienten
ein, so erzielt man durch den Grenziibergang #n - oo

b/ 4

p= Y 7. (16)
Wir denken uns nun weiter um jeden Gitterpunkt des gesamten Gitters G eine Ein-
heitskugel gelegt. Wie man leicht iiberpriift, entsteht auf diese Weise eine Kugel-
lagerung, da die Gitterpunkte alle eine den Wert 2 nicht unterschreitende Distanz
haben. In einer Kugel K(R) denken wir uns eine konzentrische Kugel K(R — 1) vom
Radius 7 = R — 1. Diese lidsst sich im Raume so verschieben, dass die Anzahl der
bedeckten Gitterpunkte den Héchstwert  annimmt. Ohne weiteres erkennt man
jetzt, dass die mitgeschobene Kugel K(R) nun p Einheitskugeln der oben beschrie-
benen Lagerung enthilt. Demnach gilt mit Riicksicht auf (16)

N(R) = —— (R—1)3, 17
(R) 2 7 (R—1) (17)
und hieraus ergibt sich die nachzuweisende Abschitzung (4).

2. Wir ermitteln nun die ersten sechs Grenzradien R, bis Rg und bestitigen die in
der Tabelle eingetragenen Werte. Die Bestimmung der ersten vier Grenzradien R,
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bis R, ist teils trivial, teils sehr einfach. Die Mittelpunkte der in die kleinsten Kugeln
eingelagerten Einheitskugeln bilden 1. einen Punkt; 2. ein Punktepaar vom Abstand
2; 3. ein reguldres Dreieck der Seitenlinge 2; 4. ein regulires Tetraeder der Seiten-
linge 2. Die elementaren Betrachtungen, welche der Nachweis dafiir erfordert, dass
die angegebenen vier Kugelaggregate im Sinne unserer Fragestellung die giinstigsten
sind, wollen wir dem Leser iiberlassen und uns nunmehr der Bestimmung von R;
und R4 zuwenden.

Wir betrachten zunichst ein spezielles Aggregat von 5 Kugeln, deren Mittelpunkte
A, B, C, D, E eine regelmissige quadratische Pyramide mit 8 gleichen Kanten der

Linge 2 bilden (Figur 3). Dieses Aggregat ist einer Kugel K® vom Radius 1 + V2 ein-
gelagert, deren Mittelpunkt Z im Zentrum des Basisquadrates liegt. Hieraus folgt

offenbar
Ry<1+V2. (a)

Andererseits sollen jetzt 4, B, C, D, E die Mittelpunkte einer noch unbekannten
giinstigsten Lagerung der 5 Einheitskugeln bezeichnen, so dass das gesamte Aggregat
in der kleinstméglichen Kugel K vom Radius R; eingelagert ist.

1. Fall: E sei ein Punkt im Innern des von 4, B, C, D aufgespannten Tetraeders.
Die vier von E nach den Punkten A, B, C, D hinweisenden Einheitsvektoren a, b, ¢, d
liegen in keinem (abgeschlossenen) Halbraum. Fiir s = a + b + ¢ + 4 konnen dem-
nach nicht alle Skalarprodukte (s, a), (s, b), (s, ¢) und (s, d) positiv sein, und ohne
Einschrinkung der Allgemeinheit darf also (s, d) < 0 angenommen werden, wobei
der Fall s = 0 eingeschlossen ist. Es ist demnach 1 + (a, d) + (b, d) + (¢, d) =0, und
von den Skalarprodukten (a, 4), (b, 4), (c, d) kann nicht jedes grosser als —1/3 sein.
Es darf etwa (c, d) < —1/3 angenommen werden. Ist ¢ der Winkel im Dreieck CED
bei E, so ist cose < —1/3, und da ja |[EC| = 2 und |ED| = 2 sein muss, ergibt die
Anwendung des Kosinussatzes |CD| = V32/3. Die beiden zu C und D gehérenden
Einheitskugeln enthalten zwei auf der Zentralen liegende Punkte C’ und D', so dass

|C’'D'| = 2 +V32/3=5,265... ist. Insbesondere ist |C'D'| =2+ 2V2=4,828...
oder im Hinblick auf (a) also | C’D’| = 2 R, was natiirlich nicht angeht. Das nim-
liche gilt eo 7pso fiir jeden andern Fall, der sich durch Austausch der Bezeichnungen
aus diesem ergibt.

2. Fall: Die 5 Punkte A, B, C, D, E bilden die Eckpunkte eines (eventuell entar-
teten) konvexen Polyeders. Offenbar gehért das Zentrum Z der Kugel K° diesem
Polyeder an, da man andernfalls Z so verschieben konnte, dass sich alle Abstinde
| ZA | bis | ZE | simultan verkleinern; dann liesse sich aber das ganze Kugelaggregat
in eine noch kleinere Kugel einlagern im Widerspruch zur Annahme. Die Abstidnde
|ZA | bis | ZE | sind weiter alle nicht grésser als R;— 1. Wir diirfen sogar annehmen,
dass sie alle gleich R;— 1 sind. In der Tat: Ist etwa | ZA | kleiner, so verschiebe man
A nach A’ orthogonal zu einer durch die Ecke A hindurchgehenden Stiitzebene des
Polyeders ABCDE in den dusseren Halbraum so lange, bis | Z4'| = R;—1 ist. Da
sich hierbei alle Abstinde |AB| bis |AE| vergrossern, wird die Bedingung fiir die
Lagerung nicht gestért, und weiter muss das entstehende Polyeder A’BCDE immer
noch konvex sein. Auf diese Weise konnen der Reihe nach alle Punkte, soweit erfor-
derlich, korrigiert werden. Die 5 Punkte A4 bis E liegen jetzt alle auf einer Kugelflache
vom Radius » = R;—1 und weisen paarweise Abstinde auf, welche den Wert 2
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nicht unterschreiten. Wir zeigen jetzt, dass hieraus » = V2 folgt!). Sind 4, b, ¢, d, e
die 5 Einheitsvektoren, die von Z ausgehend nach den 5 Punkten A, B, C, D, E hin-
weisen, so gelten die Zerlegungen a = (@, ¢) e+ a’; b= (b,e) e+ b'; c= (c,e) + ¢’;
d=(d,e)e+ e, woa, b, c, d Vektoren bezeichnen, welche in Z angreifen und in
der auf e orthogonal stehenden Ebene liegen. Da die vier konsekutiven Zwischen-
winkel dieser koplanaren Vektoren nicht alle /2 tiberschreiten kénnen, darf man
ohne Einschrinkung der Allgemeinheit etwa (a’, ') = 0 annehmen. Es ergibt sich
jetzt (a, b) = (a, €) (b, ¢). Hieraus folgt aber, dass die drei hier beteiligten Skalar-
produkte nicht alle negativ sein konnen. Also ist etwa (a, b) = 0. Ist ¢ der Winkel
im Dreieck AZB bei Z, so ist cose =0 und da ja |ZA|=|ZB|=r und |AB| =2

sein muss, ergibt die Anwendung des Kosinussatzes r = V2. So folgt nun
Ry=1+V2. (b)

Mit (a) schliessen wir daraus auf Ry;=1 + V2, was zu beweisen war.

Endlich wollen wir noch zeigen, dass R, = Rg ausfillt. Damit ist ein Fall aufge-
wiesen, wo in der Folge der Grenzradien R, zwei konsekutive iibereinstimmen. Ob
sich dieses Vorkommnis im weiteren Verlauf der Folge wiederholt, ist unseres Wis-
sens nicht bekannt. Wir gehen vom giinstigen Aggregat fiir 5 Kugeln (Figur 3) aus.
Die Kugel K° vom Radius R; mit dem Mittelpunkt Z im Zentrum des Basisquadrates
ABCD enthilt mit den 5 Einheitskugeln um die Punkte 4, B, C, D, E noch eine
weitere, nimlich die Einheitskugel um E’, wo E’ den beziiglich der Quadratebene zu
E spiegelbildlichen Punkt bedeutet. Somit ist (a): Ry;= Rg; weiter hat man mit
Riickblick auf (6) noch (b): R; < R4. Hieraus ergibt sich die Behauptung R;= R,.

H.HADWIGER, Bern.

Elementare Bestimmung der Summe
der reziproken Quadratzahlen

Die Geschichte der Reihe

nl

1 1 1 1
< 1+—2—2+?+F+"'+ﬁ+"' (1)

findet der Leser in einer Abhandlung von O. Spitss?). Berithmt geworden ist der
Beweis von EULER, der sich auf das unendliche Produkt fiir sin x stiitzt und auf das-
selbe die Vietaschen Wurzelsitze anwendet. SPIESs bemerkt, dass dieser Beweis nur
mit funktionentheoretischen Mitteln streng erbracht werden kénne.

Ich teile daher hier eine elementare Gestaltung der Eulerschen Beweisidee mit,
die ich vor mehreren Jahren gefunden habe.

1) Dijes folgt aus den wenigen bekannten Aussagen iiber den sphéirischen Minimalabstand bei # auf der
Kugeloberfliche verstreut liegenden Punkten bzw. iiber den grosstmoglichen Wert, den dieser noch an-
nehmen kann. Zahlreiche neue Ergebnisse wurden hier kiirzlich von B. L. VAN DER WAERDEN (Ziirich) und
K. ScutTTE (Marburg an der Lahn) erzielt: Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand
Eins Platz?, Math. Ann. 123, 96-124 (1951). Vgl. die Besprechung von E. Trost, El. Math. 7, 23 (1952).

8) Speiser-Festschrift (Orell Fiissli, Ziirich 1945).
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