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Eine überall stetige und nirgends differenzierbare Funktion

H. Scherer behandelte vor einigen Jahren ein bemerkenswertes Beispiel einer
überall stetigen und nirgends differenzierbaren Funktion einer Veränderlichen, das
anscheinend auf D. Hilbert (Vorlesung 1917) zurückgeht, von P. Finsler in seinen
Vorlesungen verschiedentlich gebracht wurde und leider viel zuwenig bekanntgeworden

ist1). Es handelt sich dabei vielleicht um das einfachste Beispiel dieser Art, das

gleichzeitig eine hübsche Anwendung nichtdekadischer Zahlensysteme bietet. Die
vorliegenden Zeilen haben daher einerseits den Zweck, die fragliche Funktion der
Vergessenheit zu entreissen, anderseits sollen bei dieser Gelegenheit einige nicht uninteressante

Ergänzungen hinzugefügt werden.
1. Definition. Unabhängige wie abhängige Veränderliche mögen auf das geschlossene

Intervall [0,1] beschränkt bleiben. Die Funktionsvorschrift kann dann folgender-
massen ausgesprochen werden:

«Das Argument x werde zunächst im Dreiersystem angeschrieben; der zugehörige
Funktionswert y f(x) ergibt sich dann im Zweiersystem, so zwar, dass man -
ausgehend von der Null vor dem Komma - jedem ZiffernWechsel bei x an gleicher Stelle
einen ZiffernWechsel bei y zuordnet, sonst jedoch keinen ZiffernWechsel vornimmt.»

Also:

x 0,a1a2a3 Ea{ 3~* mit a{ 0,1,2;

y 0,b1b2b3...=Z:bi2-i mit &< 0oderl, (1)

wobei b{ 5 o{_x, wenn at 5 0*-i (* 1, 2,

x 0,2110021...

y 0,1001101...

Beispiel:

2. Eindeutigkeit. Die Vorschrift weist jedem Dreierbruch genau einen Zweierbruch
zu, da im Zweiersystem nur die Ziffern 0 und 1 zur Auswahl stehen. Zweifel an der
Eindeutigkeit der Funktion sind nur insofern berechtigt, als gewisse Argumente zwei

Darstellungen besitzen; jeder endliche Dreierbruch kann nämlich auch als unendlicher

*) H. Scherer, Konstruktion einer überall stetigen, nirgends differenzierbaren Funktion, Semesterberichte
zur Pflege des Zusammenhangs von Universität und Schule (Münster) 12, 39-49 (1938).
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geschrieben werden:

x 0,ax #„_!#„00 0,ax an_xa'n22
(2)

wobei an 4= 0 und a'n an — 1 4= 2.

Die zu den beiden Darstellungen gehörigen Funktionswerte stimmen sicher in den
ersten n — 1 Stellen überein; da nach der w-ten Stelle auf jeden Fall ein ZiffernWechsel

vorliegt, so lautet das Ende entweder 011... oder 100..., was aber im Zweiersystem
gleichwertig ist. Die Funktion ist mithin durchwegs eindeutig.

3. Stetigkeit. Eine Funktion y f(x) heisst an einer Stelle x0 stetig, wenn aus x -> x0
(bei beliebiger Annäherung) auch y-^yQ folgt.

Dass diese Eigenschaft bei der vorliegenden Funktion für alle eindeutig darstellbaren

x0 erfüllt ist, liegt auf der Hand: Je mehr sich die Zahl x dem Wert x0 nähert,
um so mehr Stellen nach dem Komma muss sie mit x0 gemein haben, um so mehr
Stellen stimmen dann aber auch bei y und y0 überein, so dass der Grenzwert von y
mit y0 zusammenfällt.

Für gemäss (2) zweideutig darstellbare x0 kann man sich zunächst auf einseitige
Grenzübergänge beschränken. Wird bei rechtsseitiger Annäherung die Darstellung
mit der Nullserie am Ende gewählt, bei linksseitiger Annäherung die Darstellung mit
der Zweierserie, dann ist die obige Überlegung wieder anwendbar, und da sich in
beiden Fällen derselbe Grenzwert f(x0) einstellt, so wird er auch bei beliebiger
Annäherung erreicht.

Die Funktion ist demnach im ganzen Intervall stetig.
4. Nichtdifferenzierbarkeit. Eine Funktion y f(x) heisst an einer Stelle x0

differenzierbar, wenn mit x -> x0 (bei beliebiger Annäherung) der Differenzenquotient
(y ~ yo): (x ~ xo) &e&en einen endlichen Grenzwert strebt. Zum Nachweis des

Gegenteils genügt daher jeweils die Feststellung einer einzigen Folge #w-> x0, für
welche die Folge der Differenzenquotienten nicht konvergiert.

Sei nun

ein beliebiger Argumentwert,

y0 0,b1... bn_xbnbn+1...

der zugehörige Funktionswert. Man bestimme dann für jeden Index n einen Wert

xn 0,a1...an_1a^an+1...

derart, dass die ersten n — 1 Stellen nach dem Komma mit x0 übereinstimmen, während

die folgenden so gewählt werden, dass der Funktionswert

yn 0,b1...bn_1b^bn+1...

nur an der w-ten Stelle von y0 abweicht; xn ist damit keineswegs eindeutig festgelegt,
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existiert aber in jedem Fall. Für die so konstruierte Folge xn -> x0 gilt dann

|*w-*0|^3-»+i, |yn-y0| 2-, (3)

und der Differenzenquotient wächst über alle Schranken:

yn-y<> *-r(4r-~- <«>

Die Funktion ist demnach nirgends differenzierbar.
So weit gehen im wesentlichen die (hier etwas vereinfachten) Ausführungen

H. Scherers. Ein vertieftes Studium der vorgelegten Funktion, von der man
vorläufig noch keinerlei anschauliche Vorstellung besitzt, stösst kaum auf Schwierigkeiten

und ist durchaus lohnend.
5. Umkehrung. Die Aufgabe, zu einem innerhalb des Wertebereiches [0,1] beliebig

vorgegebenen Funktionswert y das Argument x zu rekonstruieren, ist naturgemäss
nicht eindeutig. Jeder durch einen Ziffernwechsel bei y geforderte Ziffernwechsel bei x
kann - den Möglichkeiten im Dreiersystem entsprechend - stets auf zwei Arten erfüllt
werden. Jedes y mit unendlich vielen Ziffernwechseln, also jeder eindeutig darstellbare

Funktionswert, wird demnach unendlich oft angenommen, und zwar sogar in
jeder noch so kleinen Umgebung einer Existenzstelle.

Demgegenüber wird jeder zweideutig darstellbare Funktionswert, also jeder Wert,
der eine endliche Zweierbruchdarstellung gestattet (y g-2-n mit positiv-ganzem
g g 2n), nur endlich oft angenommen. So wird beispielsweise der Wert

1

y=-2 0,100.. 0,011..

erreicht für

x 0,100.. l 0,011..
1

* ~ "6 '

0,122..
2

m 0,022..
1

0,200..
2

' "~
3 '

0,211.. __
5

Die Anzahl der Argumentwerte x hängt offenbar von der Anzahl der ZiffernWechsel

bei y ab. Ist co0 die Anzahl der Ziffernwechsel in der «endlichen» Darstellung von y
- unter Berücksichtigung der Null vor dem Komma und der Nullserie, die an die
letzte Eins angeschlossen werden kann -, co1 hingegen die Anzahl der Ziffernwechsel
in der «unendlichen» Darstellung, dann gilt (ox co0 ± 1. Bezeichnet co die grössere
der beiden Zahlen, so ergeben sich für x rein formal

2«>o + 2W> 2" 4- 2tü~~1 3 • 20>"1 (5)

Möglichkeiten. Diese Werte sind aber nicht alle verschieden. Man macht sich nun
leicht klar, dass sie sich stets in Sechsergruppen ordnen lassen, die nach dem Muster
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des obigen Beispiels (y 1/2) auslaufen: Es gibt also gleich viel Null-, Einser- und
Zweierserien am Ende, und die auf Null- und Zweierserien endenden Werte sind
paarweise äquivalent. Die tatsächliche Anzahl der x-Werte schmilzt mithin auf zwei
Drittel zusammen, das ist 2to; die Hälfte dieser Werte gestattet eine endliche
Darstellung, die andere läuft auf eine Einserserie aus.

6. Geometrische Veranschaulichung. Es liegt nahe, ein approximatives Diagramm der
Funktion anzulegen, indem man beispielsweise die Argumente mit höchstens w-stelli-

ger endlicher Darstellung herausgreift, also die Werte x i • 3 _n, und die zugehörigen,
in ein Koordinatensystem eingetragenen Bildpunkte (x | y) in der natürlichen Reihenfolge

i 0,1, 3n durch einen Streckenzug verbindet. Das so gewonnene Polygon
strebt mit n-^oo gleichmässig gegen das Funktionsdiagramm und nähert es mit
beliebiger Genauigkeit an.

Günstiger erscheint die Auswahl nach Funktionswerten mit höchstens w-stelliger
Darstellung, also der Werte y j • 2 ~ n; die zugehörigen Argumente sind nach
Abschnitt 5 die Werte x i-3~nj2 mit i 0, 1,..., 2-3n. Die so konstruierte, stetige
und abteilungsweise lineare Näherungsfunktion fn(x) stimmt mit f(x) in den benützten
2 • 3n -f 1 Punkten überein und weicht an keiner Stelle des Intervalls um mehr als
2 ~n ab; mit Benützung von Ergebnissen aus Abschnitt 8 Hesse sich sogar zeigen

!/(*)-/„(*) 1^2-"-*. (6)

Für n 0 erhält man die durch die Wertepaare (0 | 0), (1/2 | 1) und (111) festgelegte

Ausgangsfunktion

2 x für 0 ^ x ^ \,
/o(*)H i

2
(7)

1

1 für y ^ x <: 1.

Das Diagramm weist demgemäss einen «Abhang» und eine «Terrasse» auf (Figur 1).

Berücksichtigung der vier Stellen mit y 1/2 (x 1/6, 1/3, 2/3, 5/6; vgl. Abschnitt
5) führt auf die «1. Näherung» fi(x), deren Bildpolygon gemäss Figur 1 aus jenem
von /0 dadurch hervorgeht, dass in der Mitte des «Abhangs» eine neue Terrasse
eingeschaltet wird, während in die frühere «Terrasse» jetzt ein trapezförmiger «Graben»

eingeschnitten erscheint. Dieses Prinzip ist auch bei allen folgenden Schritten zu
beobachten: Jeder vorhandene Abhang wird durch eine neue Terrasse unterbrochen
(was zwei neue Abhänge erzeugt), während an die Stelle jeder alten Terrasse ein
«Graben» oder «Damm» tritt (was ebenfalls eine neue Terrasse und zwei neue
Abhänge mit sich bringt). Die Abhänge werden dabei ständig kürzer, gleichzeitig aber
auch immer steiler, was die Nichtdifferenzierbarkeit der Grenzfunktion durchaus
einleuchtend macht. Die hier herrschende geometrische Konstruktionsvorschrift - deren

Richtigkeit aus Abschnitt 8 mit aller Deutlichkeit hervorgehen wird - erinnert stark
an das einschlägige Konstruktionsprinzip von K. Knopp1).

Figur 2 zeigt im ersten Drittel die 5. Näherungsfunktion f5(x), die sich von f(x) um
höchstens 1/64 unterscheidet, was beim verwendeten Ordinatenmaßstab 1 mm
ausmacht.

x) K. Knopp, Eine einheitliche Erzeugungsart stetiger, nirgends differenzierbarer Funktionen, Sitz.-Ber.
Math. Ges. Berlin 16, 97-106 (1917).
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7. Variation. Bezeichne An die Anzahl der «Abhänge» von fn(x), Bn die Anzahl der
«Terrassen». Es gelten die Rekursionsformeln

An=2(An_1 + Bn_1), Bn An_1 + Bn_1 mit A0 B0=1. (8)

Hieraus folgt unmittelbar An 2 Bn und Bn 3 5W-1 für n > 0, und damit

^n 4-3w-1, Bw 2.3 — 1. (»^1) (9)

Jedem «Abhang» entspricht eine Änderung des Funktionswertes um 2_n; die
Summe aller Änderungsbeiträge für fn(x), die sogenannte Variation, beträgt mithin

An-2~n- dr m
Die Funktion f(x) ist daher von unendlicher Variation.

8. Funktionalgleichungen. Die Betrachtung von Figur 2 lässt folgende Funktionalgleichungen

erkennen:

I. M \f(3x) für 0 ^x^\,
II. /(*) i+/(*-l) fürl<^l,

III. f(x) f(l-x) für \^x^\,
IV. f(x) l-f(l-x) für -| ^ * ^ 1.

Beweis für I: Ist 3* 0,#1a2... und f(3 x) 0,bxb2..., dann gehört zu

x 0,0axa2... ein /(*) O,*)^... - 2~1-/(3*).
Beweis für II: Ist x — 0,1 0,0a2a3 mit a2 ^ 1 und /(# — 0,1) 0,0a263

dann ist x 0,l#2<z3 und /(#) 0,la2ö3 0,1 4- f(x ~ 0,1); die Gültigkeit
dieser Beziehung reicht sogar bis x 0,1122 0,12 5/9.

Beweis für III: Ist 1 — x 0,la2a3 dann ist x 0,lä2ä3 mit ä{ 2 — a,-.
Die Argumente unterscheiden sich nur dadurch, dass die Nullen und Zweien
vertauscht sind; die ZiffernWechsel stimmen also überein, mithin auch die Funktionswerte.

Der Gültigkeitsbereich der Beziehung beginnt übrigens schon bei x 1/3.
Beweis für IV: Ist 1 — x 0,0^^ und /(l — x) 0,0 b2b3 dann ist

x 0,2ä2ä3 mit äi 2 — a{ und f(x) 0,1 b2b3 mit b{; 1 — ^; mithin gilt
/(l-*)+/(*) 0,11... 1.

Durch die vier Funktionalgleichungen, die das ganze Definitionsintervall erfassen,
ist die Funktion f(x) eindeutig gekennzeichnet, wenn man /(0) 0 festsetzt und Stetigkeit

fordert. IV liefert /(l) 1, anschliessend I:/(l/3) 1/2, III oder IV:/(2/3) 1/2;
neuerdings IV: /(1/9) =/(2/9) 1/4 usf. Man erhält auf diese Weise die Funktionswerte

für alle x mit endlicher Dreierbruchdarstellung, und da diese im Intervall
überall dicht liegen, ist die stetige Funktion f(x) überall definiert.

Ausgehend von einer beliebigen Ausgangsfunktion f0(x), die im Intervall [0,1] stetig
vorausgesetzt sei und die Punkte (0 10) und (111) verbindet, lässt sich mittels der

Funktionalgleichungen I bis IV eine Funktionenfolge fn(x) konstruieren, die gleich-
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massig gegen f(x) konvergiert. Ist /n_x(^) bereits bekannt, dann liefert die Anwendung
von I die nächste Funktion fn(x) /n_i(3 x)\2 im Intervall [0,1/3], während II, III
und IV anschliessend die Erweiterung auf die restlichen Abschnitte [1/3,1/2], [1/2,2/3]
und [2/3, 1] ermöglichen. Wird beispielsweise für f0(x) die Funktion (7) gewählt, so
erhält man auf diese Weise genau die Näherungsfunktionen fn(x) aus Abschnitt 6.

Die Funktionalgleichung I bedeutet geometrisch, dass das erste Drittel des

Diagramms von f(x) zum ganzen Diagramm affin ist; dasselbe gilt wegen IV auch für
das letzte Drittel. Iteration der Funktionalgleichungen lehrt, dass die Bildkurve in
jeder Umgebung beliebig kleine Abschnitte enthält, die ihren Gesamtverlauf affin
verkleinert wiedergeben, was zweifellos recht merkwürdig ist.

9. Extreme. Sei
x 0, ax... an _2 02 0, ax an _2 0122

ferner
y 0,b{... bn_2bnbnbnbn mit bn 1 - bn

der zugehörige Funktionswert, der für beide Darstellungen von x auch formal gleich
ausfällt. Jede Änderung von x um weniger als h 3~n/2 bewirkt eine Änderung von
y erst nach der w-ten Stelle, und zwar - wegen der Endserie gleicher Ziffern bn -
stets im gleichen Sinn. Die Funktionswerte im offenen Intervall (x — h, x + h) sind
daher durchwegs grösser bzw. durchwegs kleiner als y. Der Wert y stellt somit ein
(relatives) Extrem dar, und zwar ein Minimum oder Maximum, je nachdem bn 0
oder 1; dies hängt wiederum davon ab, ob die Anzahl der Ziffernwechsel in x gerade
oder ungerade ist.

Ähnliche Überlegungen sind für die Endgruppe 21 sowie für eine unendliche Einserserie

durchführbar, während sie für die übrigen Endgruppen 01, 11, 12 und 22 schon

wegen der Verschiedenheit der beiden Darstellungen von y versagen; da schliesslich
ein Funktionswert mit nur unendlicher Darstellung in jeder noch so kleinen Umgebung

einer Existenzstelle unendlich oft angenommen wird (Abschnitt 5) kann auch
er kein Extrem abgeben. Es gilt daher:

An allen Stellen, deren Argument in der Dreierbruchdarstellung auf 02, 21 oder eine

unendliche Einserserie ausläuft - und nur an diesen - liegt ein Extrem der Funktion
f(x) vor.

10. Integral. Das über das Definitionsintervall erstreckte bestimmte Integral J der
Funktion f(x) kann natürlich mit Hilfe der Näherungsfunktionen fn(x) aus Abschnitt 6

berechnet werden. Dieser etwas umständliche Weg lässt sich wesentlich abkürzen,
wenn man die Funktionalgleichungen I bis IV heranzieht. Bezeichnet nämlich /' das

nur über die erste Intervallhälfte erstreckte Integral, so bestehen - aus Figur 2 leicht
zu ersehen - die folgenden Beziehungen:

J 6^6^ 12 ' J 3^2 V;
Aus diesem Gleichungspaar ergibt sich aber unmittelbar /' 3/14 und

i
J ff(x)dx ±. (12)

0

W. Wunderlich, Wien.
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