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11 suffira d’effectuer la construction pour tous les angles «; et ’on aura établi la
proposition suivante:

Tout polyédre P est équivalent a un polyédre rationnel R.

Employons la terminologie de HADWIGER et disons que deux polyédres 4 et B
sont équivalents (mod R) lorsque I'un augmenté d’un polyédre rationnel R, est
équivalent a l'autre augmenté d’un polyédre rationnel R,. Nous pouvons alors
énoncer le théoréme suivant:

Pour que deux polyédres euclidiens sotent équivalents (mod R), il faut et il suffit
qu'ils vérifient les conditions de Dzhn.

Reste une derniére question: Un polyédre rationnel est-il équivalent & un cube ?
Si cette propriété était vraie (et nous penchons a le croire), nous pourrions alors
affirmer que les.conditions de DEHN sont nécessaires et suffisantes pour I’équivalence
des polyeédres. Nous n’avons pas encore pu éclaircir ce dernier point.

J.-P. SYDLER, Zurich.

Beispiel zum Grenzwertsatz

W. SAXER!) gab einen ausgezeichneten Uberblick iiber die Entwicklung des zen-
tralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung. Mit einem einfachen Bei-
spiel kann auch bei Schiilern Verstandnis fiir diesen wichtigen Satz erweckt werden.

In einer Urne U, befinden sich die Nummern x: —2, —1, 0, 1, 2 in gleicher Anzahl
vertreten, so dass die Wahrscheinlichkeit w,(x) = 0,2 ist, irgendeine bestimmte dieser
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fiinf Nummern zu ziehen. Wir sprechen von einem Kollektiv mit Gleichverteilung
(Figur 1). Infolge der symmetrischen Anordnung der Nummern ist der Mittelwert
¥ = 0, und fiir die Streuung ergibt sich

o%x) = = (12427 = 2.

Zur Urne U, trete die Urne U, mit gleicher Fiillung. Wir ziehen zugleich aus U,
die Nummer x mit der Wahrscheinlichkeit w,(x) und aus U, die Nummer y mit der

) w. SAXER, Uber die Entwicklung des zentralen Grenzwerisatzes der Wahrscheinlichkeitsrechnung, El.
Math. 5, 50 (1950).
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Wabhrscheinlichkeit w,(y). Wie gross ist die Wahrscheinlichkeit w,(2) die Summe
z2=x+Y,

wo z eine vorgegebene ganze Zahl mit |z| < 4 ist, zu ziehen?
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Das Zahlenpaar (x, y) bestimmt einen Gitterpunkt der Zahlebene. Gitterpunkte,
die derselben Summe z zugeordnet sind, liegen auf einer Diagonale des Quadrates
der Figur 2. Demnach ist

wy(F4) = wy(F2) 0(F2) = 55,

w0y(F3) = 03(F2) (T 1) + wy(F1) 0p(F2) = s,

w0(F2) = w,(F2) w0) + w3(T 1) wp(TF 1) + 3(0) w(F2) =

wy(F 1) = 0y(F2) wy( 1) + w,(F 1) wa(0) + w,(0) wo(F 1) + 0,(1) wo(F2) = oz,
4(0) = wy(T 2) wy(+2) + wy(F1) w0o(k 1) + 3(0) w(0) + w3 (1) wy(F 1)

+ 10y(£2) wy(F2) = e

Natiirlich ist
4 4
D, wy(z) =1 und 2= D] zwy(2) = 0,
I —4 2= —4
withrend sich fiir die Streuung
4
02(z) = 3 22wy(z) = 4 = 0*(x) + 0%(y)
=4

ergibt. Figur 3 zeigt die Wahrscheinlichkeitsverteilung in diesem Summenkollektiv.
Statt aus den Urnen U, und U, gleichzeitig je eine Nummer zu ziehen, kénnen wir
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eine Nummer 2 einer Urne U, entnehmen, in der die Nummern in der eben berech-
neten Haufigkeit enthalten sind.

Zieht man jetzt gleichzeitig aus der Urne U, eine Nummer x mit der Wahrschein-
lichkeit w,(x) und eine Nummer z aus U; mit der Wahrscheinlichkeit w;(2), so konnen
wir wieder nach der Wahrscheinlichkeit w(#) fragen, eine vorgegebene Summe

#u=x+2
zu ziehen, wobel
—-6Zusb6

ist. Die Zerlegungen von # in die Summanden x und z kénnen der Figur 4 entnommen
werden. Es wird

w(ZF6):1—125-, w(F5) = 1;5’ w(:F4):T2~§,
w(F3) = 11205 ’ w(F2) = 11255 ’ w(F 1) = 11285 ’ w(0) = 1}295_

Der Mittelwert berechnet sich zu # = 0 und die Streuung zu
o®(u) = 6 = a%(x) + 0%(2) = 3 o%(x).
An Stelle der Variablen « fiihren wir die sogenannte «standardisierte Verdnderliche»

u "

= — = —

* Ve

ein und multiplizieren zugleich die Ordinate w mit ¢, damit der Flicheninhalt, den
die Kurve umschliesst, unverindert bleibt. Wir vergleichen alsdann unsere Wahr-
scheinlichkeitsverteilung mit der Normalverteilung

s = — o2,
V2=
u ¢ w VE s
0 0 0,372 0,399

41 iV =0,408 | 0,353 | 0,367

2| + =0,816 | 0,294 | 0,286

I

+3 + 1,225 | 0,196 | 0,188

+4 |42 1,633 | 0,118 | 0,105

Il

o3 o3 5T o3 o5

+£5 |£5
+6

2,041 | 0,0588 | 0,0497

/6 =2,449 | 0,0196 | 0,0199

H_
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Die Tabelle und die Figur 5 zeigen die gute Ubereinstimmung der beiden Vertei-
lungen.

Fiithren wir diese Summenoperationen nicht nur dreimal, sondern »#-mal durch,
dann wird nach dem Grenzwertsatz mit wachsendem # die Ubereinstimmung zwi-
schen der Wahrscheinlichkeitsverteilung, auf die die Summenoperation fiihrt, und der
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Normalverteilung immer besser. Geht man von einem Kollektiv mit Gleichverteilung
aus, so zeigt unser Beispiel, dass die Konvergenz sehr gut ist. Bei zehnmaliger Wieder-

holung ergibt sich fiir # = 0: w V20 = 0,392. Die Abweichung von s = 0,399 liegt
unter 29, . Natiirlich ldsst der Grenzwertsatz sehr viel allgemeinere Ausgangskollek-
tive zu, und erst darin liegt ja dann seine grosse Bedeutung. = P. BUCHNER, Basel.

Kleine Mittcilungcn

Ein Satz itbev Mengen von Punkten mit ganzzahliger Entfernung

Im Anschluss an eine Bemerkung zum Beweis des Satzes von CHOQUET und KRE-
WERAS, dass eine unendliche Punktmenge des p-dimensionalen euklidischen Raumes R?
mit nur ganzzahligen Entfernungen von Punkt zu Punkt notwendigerweise linear sein
muss, stellt E. TrosT!) die Frage nach der Bestimmung der maximalen Anzahl N, von
Punkten des R?, die nicht alle auf einer Geraden liegen und deren gegenseitige Entfer-
nungen ausschliesslich ganzzahlig sind. Eine solche Maximalzahl N, existiert nun nicht,
fiir kein p, denn es gilt der Satz:

Zu jedem n lassen sich im R* n Punkte P, B,, ..., P, so bestimmen, dass alle Entfer-
nungen P, P, ganzzahlig sind und dass je dvei dieser Punkte wicht auf einev Gevaden liegen.

Es lassen sich also wohl beliebig viele, niemals aber unendlich viele Punkte mit der
gewiinschten Eigenschaft finden; und in der Tat bedeutet ja «endlich» nicht notwen-
digerweise auch «beschranktn.

Der leitende Gedanke des Beweises ist folgender. Zunichst darf man als Masszahlen
der Entfernungen P, P, beliebige rationale Zahlen zulassen. Da die Anzahl der Punkte
in jedem Falle endlich ist, lassen sich die Distanzen durch eine anschliessende Streckung
stets ganzzahlig machen. Weiter méchten wir zeigen, dass man zu gewissen Punkt-
komplexen mit rationalen Entfernungen durch geeignete Spiegelungen unbeschrinkt
weitere Punkte so hinzunehmen kann, dass auch die in diesen Erweiterungen neu auftre-
tenden Entfernungen rational werden. Dies fiithrt uns auf die zusitzliche Forderung

1) E.TrosT, Bemerkung zu einem Salz ber Mengen von Punkten mit ganzzahliger Entfernung, El. Math. 6,
Nr.3, 59 (1951).
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