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Sur les conditions nécessaires pour I’équivalence
des polyedres euclidiens

Deux polyédres sont dits équivalents lorsque I'un peut se décomposer en tétraédres
avec lesquels on peut construire ’autre. On sait que deux polyédres quelconques ne
sont pas équivalents. Pour le démontrer, DEHN établit sa célébre condition nécessaire
sous forme d’une relation algébrique?).

Reprenant et approfondissant les conditions de DEHN dans le cas euclidien, HADwWI-
GER introduisit ’équivalence mod E (ce qui se note 4 &~ B): Deux polyédres sont
équivalents mod E lorsque 1'un augmenté d’un cube est équivalent a I’autre?). Cette
nouvelle équivalence permet entre autre la soustraction. Elle est basée sur une décom-
position des polyedres que nous utiliserons encore par la suite®) et d’aprés laquelle
on a en particulier, si P(4;) désigne un polyédre semblable a un polyédre P dans le
rapport linéaire A;,

2 P}) ~ P(24,).

Les classes des polyédres équivalents peuvent étre représentées par les points d’un
espace vectoriel §. HADWIGER trouve une condition nécessaire et suffisante pour
I'équivalence: Deux polyédres équivalents ont les mémes coordonnées et récipro-
quement,

Rappelons les conditions nécessaires de DEBN. Considérons un polyédre quelconque
et solent oy, ..., o, ses angles diédres, 4, ..., a, les longueurs des arétes correspondan-
tes. Il existe un certain nombre d’angles y¢ = 7, 9y, ..., Y _5 rationnellement indépen-

dants entre eux et pouvant servir de base rationnelle pour les angles «;. En d’autres
termes:

n—k
;=D sly,. (s, rationnel)
=0
Sisy=rilm, (i =1, ..., n),ri, m, entiers, posons

n-k
yll 5 . . ’
Vo=, etlona a;= Y iy,
»-0

14

1) M. Denn, Uber den Rauminhalt, Math. Ann. 55, 465-478 (1902).

%) H. HADWIGER, Zerleguhgsgleichheit und additive Polyederfunktionale, Comm. Math. Helv. 24, 204-218
(1950).

8) J.-DP.SvyDLER, Sur Péguivalence des polyédres, Comm. Math. Helv. 16, 266-273 (1943/44).
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Pour que le polyédre soit équivalent A un cube, il faut nécessairement que:

”
Za,_r;'———O. (t=1,...,n— k)
v=—1
Pour simplifier les constructions suivantes, définissons encore:

Y,=%, — 90,

8, étant rationnel en 7 et choisi de telle sorte que v, soit arbitrairement petit. Les
conditions de DEHN peuvent s’exprimer ainsi: Si

n—k
o = er y,+al ((=1,...,n), a? rationnel en 7,
yv=1
alors
" .
Zavr::O, (t=1,...,n—k) (1)
r=1

Soit, dans I’espace euclidien, un polyédre quelconque S remplissant les conditions
de DEHN. Soit S I'’ensemble des polyédres S. On vérifie que S est un sous-espace
linéaire de I’espace ). Supposons-le de dimension 4. Nous avons une classification des
polyédres en disant que A et B appartiennent 4 la méme classe si leur différence
vérifie les conditions (1). Les classes sont représentées par tous les espaces 4 £ dimen-
sions paralléles a .

Quelles sont les caractéristiques d’'un polyédre S? Pour I’établir, faisons d’abord
quelques considérations géométriques.

Désignons par T(a; «;7) un tétraédre ABCD ayant les propriétés suivantes:
AB =a; AC = AD = BC = BD; I'angle diédre le long de AB est égal A «; les
angles diédres le long de AC, AD, BC, BD sont rationnels en z. v désigne 1’angle
diédre le long de CD. Remarquons que la longueur de CD peut étre aussi petite que
I’on veut. Sil’on considére donc I’aréte b et I’angle correspondant § d’un polyédre quel-
conque, il est possible de trouver un tétraédre 7'(b; f; 7) ou n tétraédres T(b/n; B; 1)
appuyés sur 1’aréte b, la recouvrant, et entiérement compris dans le polyédre.

Dés lors, prenons un polyédre S. On a

n—k
—_ i 0
ai_’zrv yv+ai'
v=1

Le long de l'aréte a;, enlevons de S/ tétraédres T'(a;;y,;t,) [v=1,...,n — R].
Plus exactement: Si 7} est positif, nous enlevons les tétraédres; si 7} est négatif, nous
les ajoutons au polyédre. D’aprés nos conventions pour ¥, et le choix possible des 7,,
T(a;; y,y; 7,) est tel que les tétraédres sont ou tout entiers dans le polyédre ou sans
point intérieur commun avec lui. Il est clair que tous les T(a;;v,;7,) [t =1, ..., n]
sont semblables entre eux et choisis de telle sorte que les conditions soient vérifiées a
toutes les arétes.

Une fois la construction effectuée, 1’angle diédre restant le long de 1’aréte a; est
rationnel en 7, égal A a?. Par contre, nous avons introduit de nouvelles arétes le long
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desquelles les diedres sont ou égaux a 7, lorsque 7, était négatif ou égaux a 27 — 7,
lorsque 7,/ était positif; tous les autres di¢dres sont rationnels. Remarquons que les
arétes qui portent les diédres 7, et 27 — 7, ont des longueurs proportionnelles aux a;.
Le polyedre S est devenu un polyédre S” complété par —r} tétraédres T(a;; y,; 7,)
[=1,...,n;v=1,...,n — k]. Rappelons ici qu'un tétraédre négatif a un sens d’apres
HADWIGER, lorsque l'on considére que —7 ~ E — T. Le polyédre S vérifie les
relations:

i‘avr,?zo. (t=1,...,n—"k)
v=1
Or
2 Tasy,v) ~ Y Tlriasy, ) ~T( 3 riasy,;7,)

~ T(0;y,,7,) ~0.

Nous pouvons donc négliger tous les tétraédres 7'(a;; y,; 7,).

Par conséquent, un polyédre S est équivalent a un polyédre P ayant les propriétés
suivantes:

1° I1 a 7; arétes de longueur q4; et d’angle diédre 7,.

2° Il a r; arétes de longueur a; et d’angle diédre 2 x — 7;.

3° Tous ses autres diédres sont rationnels en z.

Nous nous proposons de montrer maintenant que tout polyédre P est de soi-méme
équivalent & un polyédre R dont tous les diédres sont rationnels. Nous dirons que R
est un polyédre rationnel.

Afin de simplifier la démonstration, nous ferons d’abord quelques remarques.

1° Les constructions que nous avons faites nous permettent de supposer que P
a les propriétés suivantes:

a) a;est aussi petit que 1’on veut, en particulier plus petit que les autres arétes de P.

b) a; est isolé des arétes a,, ..., a,, C’est-d-dire qu'’il est possible de. passer de a; a
a; sur la surface du polyédre en ne franchissant que des arétes dont les diedres sont
rationnels.

¢) On peut enlever du polyédre P un prisme droit d’aréte a, entiérement compris
dans le polyédre et on peut le rajouter le long de 4, ou inversement.

2° Supposons les deux arétes a, = AB et a; = A'B’ telles que ABA’B’ soit un
rectangle et que le diédre «; le long de A B et le diédre 2w — a, le long de A’B’ aient
leurs faces paralléles. Enlevons de P un prisme droit d’aréte AB ayant le long de
AB et A’B’ des angles a; et 2 — a;, tous les autres diédres étant rationnels. Le
polyedre restant est équivalent & P et les diédres «; ont disparu.

3° Nommons encore U(EF;y;y’) un tétraédre EFGH: GH est perpendiculaire a
EFG, HE = HF ; les diédres le long de HE et HF sont rationnels; y et ' désignent
les diédres le long de EF et GH.

4° Montrons encore qu'il existe un polyédre ¥ jouissant des propriétés suivantes:

a) Il est équivalent A un cube. L

b) Une de ses faces est un triangle isoctle RST, RS = ST.

c¢) Les diédres le long de RS et ST sont égaux A a et p — & [p = angle rationnel].

d) Tous les autres diédres sont rationnels.
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Considérons le polyédre RSTABCD: Les faces RST et ABCD sont paralléles; les
faces BCS et ADTR sont paralléles entre elles et perpendiculaires & RST ; les diédres
le long de RS et ST sont égaux a o et p — a. (Nous supposerons pour la construction
o et p — a > 72, ayant toujours la possibilité d’ajouter un prisme rationnel au
polyédre.) Soient fetw —f, y et w —y, m — a et « les diedres le long de AR et BS,
TD et SC, AB et CD.

Ce polyédre est équivalent a un cube, comme somme de deux prismes, de bases
SBC et RST.

Enlevons de ce polyedre le long de AR un tétraédre U(AR, B — o, B'), posé sur la
face ARSB. Ajoutons un tétraédre paralléle le long de BS (on pourra ajouter aussi
entre ce tétraédre et la face SBC un prisme rationnel afin de pouvoir effectuer les
constructions suivantes). Le polyédre ainsi obtenu a deux nouveaux angles 27 — f’
et B’ qui vérifient les conditions de 2; on pourra donc les supprimer. On pourra de
méme remplacer les diédres y et # — y par des diédres rationnels. Restent les di¢dres
nt — x et alelong de AB et CD. Procédons de méme:

Ajoutons sur la face A BCD un tétraedre U(AB; a — g; ). Soit EF 'aréte du diédre
0, aréte perpendiculaire & ABCD. Si M et N désignent les milieux de AD et BC,
enlevons du polyédre le tétraédre CDGH symétrique de ABEF par rapport a MN.

Enfin, si o et v désignent les angles ¥BM et FAN, enlevons de ABEF les deux
tétraédres U(EF;0;0’) et U(EF;7;7’), les arétes des diédres ¢’ et 7’ étant paralléles
a MN. En rajoutant au polyédre les symétriques de ces deux tétraédres par rapport
a MN, on obtient un polyédre équivalent au premier dont les diédres &7 — « et « le
long de AB et CD sont remplacés par diédres ¢’ et 2z — o', 7" et 2t — t’, de faces et
d’arétes paralléles. On peut donc également les supprimer en vertu de 2, prouvant
ainsi 'existence du polyédre cherché. Il est probable qu’il existe des polyédres plus
simples et qui jouissent des propriétés voulues, mais l’existence seule importe pour
la suite.

Nous pouvons maintenant passer au cas général.

Soit 4,B, I'aréte a; qui porte le diédre «;. Soit A, B, 'aréte a; qui porte le di¢dre
@: — ;. Imaginons le segment 4,B, mobile. On pourra le déplacer sur la surface du
polyédre P et I’amener en A, B, en ne franchissant que des arétes dont les diédres
sont rationnels. Soient 4,B,, A,B,, ... la position du segment sur ces arétes inter-
médiaires (cf. remarque 1).

Dans la face qui porte les arétes 4;B; et A, B;,,, considérons les rectangles
B;A;RS et B;,,A; ., RT. Construisons sur B;4;RS un prisme triangulaire droit
B;A; RSWX ayant le long de B; A4, un diédre «;, le long de RS un diédre g — «;.
De méme construisons le prisme TRA;,, B;,, YZ de diédres a; et ¢ — ; le long de
RT et A;,,B;.,. Enfin construisons sur le triangle SRT un polyédre V équivalent a
un cube et de diédres «, et ¢ — «; le long de RS et RT (cf. numéro 4). (Remarque:
Pour que toute la construction reste a I'intérieur du polyédre, on peut éventuellement
remplacer les deux prismes et le polyédre V par une suite de prismes et de polyedres V).

Si nous enlevons du polyédre P les deux prismes et le polyédre V, nous obtenons
un polyédre équivalent dont les diédres le long de A, B; et 4;,,B;,, ont diminué de
«; et o — a;. Tous les nouveaux diédres introduits sont rationnels. En répétant la
construction de 4,B, & A,B,, on obtiendra donc un polyédre équivalent dont les
diédres a; et p; — a; auront été remplacés par des diédres rationnels.
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11 suffira d’effectuer la construction pour tous les angles «; et ’on aura établi la
proposition suivante:

Tout polyédre P est équivalent a un polyédre rationnel R.

Employons la terminologie de HADWIGER et disons que deux polyédres 4 et B
sont équivalents (mod R) lorsque I'un augmenté d’un polyédre rationnel R, est
équivalent a l'autre augmenté d’un polyédre rationnel R,. Nous pouvons alors
énoncer le théoréme suivant:

Pour que deux polyédres euclidiens sotent équivalents (mod R), il faut et il suffit
qu'ils vérifient les conditions de Dzhn.

Reste une derniére question: Un polyédre rationnel est-il équivalent & un cube ?
Si cette propriété était vraie (et nous penchons a le croire), nous pourrions alors
affirmer que les.conditions de DEHN sont nécessaires et suffisantes pour I’équivalence
des polyeédres. Nous n’avons pas encore pu éclaircir ce dernier point.

J.-P. SYDLER, Zurich.

Beispiel zum Grenzwertsatz

W. SAXER!) gab einen ausgezeichneten Uberblick iiber die Entwicklung des zen-
tralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung. Mit einem einfachen Bei-
spiel kann auch bei Schiilern Verstandnis fiir diesen wichtigen Satz erweckt werden.

In einer Urne U, befinden sich die Nummern x: —2, —1, 0, 1, 2 in gleicher Anzahl
vertreten, so dass die Wahrscheinlichkeit w,(x) = 0,2 ist, irgendeine bestimmte dieser

Y
wqel)
a9 2
e
7 K3
A
91 2NN TN NS x
&
-7 Y
e‘
-2 -1 0 1 2 X NN
AR
Fig.1 Fig. 2

fiinf Nummern zu ziehen. Wir sprechen von einem Kollektiv mit Gleichverteilung
(Figur 1). Infolge der symmetrischen Anordnung der Nummern ist der Mittelwert
¥ = 0, und fiir die Streuung ergibt sich

o%x) = = (12427 = 2.

Zur Urne U, trete die Urne U, mit gleicher Fiillung. Wir ziehen zugleich aus U,
die Nummer x mit der Wahrscheinlichkeit w,(x) und aus U, die Nummer y mit der

) w. SAXER, Uber die Entwicklung des zentralen Grenzwerisatzes der Wahrscheinlichkeitsrechnung, El.
Math. 5, 50 (1950).
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