Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 7 (1952)

Heft: 3

Artikel: Sur les conditions nécessaires pour l'équivalence des polyèdres

euclidiens

Autor: Sydler, J.-P.

DOI: https://doi.org/10.5169/seals-16354

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires - Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik und zur Förderung des mathematisch-physikalischen Unterrichts Organ für den Verein Schweizerischer Mathematiklehrer

El. Math.

Band VII

Nr. 3

Seiten 49-72

Basel, 15. Mai 1952

Sur les conditions nécessaires pour l'équivalence des polyèdres euclidiens

Deux polyèdres sont dits équivalents lorsque l'un peut se décomposer en tétraèdres avec lesquels on peut construire l'autre. On sait que deux polyèdres quelconques ne sont pas équivalents. Pour le démontrer, Dehn établit sa célèbre condition nécessaire sous forme d'une relation algébrique¹).

Reprenant et approfondissant les conditions de Dehn dans le cas euclidien, Hadwiger introduisit l'équivalence mod E (ce qui se note $A \approx B$): Deux polyèdres sont équivalents mod E lorsque l'un augmenté d'un cube est équivalent à l'autre²). Cette nouvelle équivalence permet entre autre la soustraction. Elle est basée sur une décomposition des polyèdres que nous utiliserons encore par la suite³) et d'après laquelle on a en particulier, si $P(\lambda_i)$ désigne un polyèdre semblable à un polyèdre P dans le rapport linéaire λ_i ,

 $\Sigma P(\lambda_i) \approx P(\Sigma \lambda_i)$.

Les classes des polyèdres équivalents peuvent être représentées par les points d'un espace vectoriel 5. Hadwiger trouve une condition nécessaire et suffisante pour l'équivalence: Deux polyèdres équivalents ont les mêmes coordonnées et réciproquement.

Rappelons les conditions nécessaires de Dehn. Considérons un polyèdre quelconque et soient $\alpha_1, \ldots, \alpha_n$ ses angles dièdres, a_1, \ldots, a_n les longueurs des arêtes correspondantes. Il existe un certain nombre d'angles $\gamma_0'' = \pi$, $\gamma_1'', \ldots, \gamma_{n-k}''$ rationnellement indépendants entre eux et pouvant servir de base rationnelle pour les angles α_i . En d'autres termes:

$$\alpha_i = \sum_{\nu=0}^{n-k} s_{\nu}^i \gamma_{\nu}''. \qquad (s_{\nu}^i \text{ rationnel})$$

Si $s_{\nu}^{i} = r_{\nu}^{i}/m_{\nu}$ $(i = 1, ..., n), r_{\nu}^{i}, m_{\nu}$ entiers, posons

$$\gamma_{\nu}' = \frac{\gamma_{\nu}''}{m_{\nu}}$$
 et l'on a $\alpha_i = \sum_{\nu=0}^{n-k} r_{\nu}^i \gamma_{\nu}'$.

¹⁾ M. Dehn, Über den Rauminhalt, Math. Ann. 55, 465-478 (1902).

²⁾ H. HADWIGER, Zerlegungsgleichheit und additive Polyederfunktionale, Comm. Math. Helv. 24, 204-218 (1950).

³⁾ J.-P. Sydler, Sur l'équivalence des polyèdres, Comm. Math. Helv. 16, 266-273 (1943/44).

Pour que le polyèdre soit équivalent à un cube, il faut nécessairement que:

$$\sum_{\nu=1}^{n} a_{\nu} r_{i}^{\nu} = 0. \qquad (i = 1, ..., n-k)$$

Pour simplifier les constructions suivantes, définissons encore:

$$\gamma_{\nu} = \gamma_{\nu}' - \delta_{\nu}$$
,

 δ_{ν} étant rationnel en π et choisi de telle sorte que γ_{ν} soit arbitrairement petit. Les conditions de Dehn peuvent s'exprimer ainsi: Si

$$\alpha_i = \sum_{\nu=1}^{n-k} r_{\nu}^i \gamma_{\nu} + \alpha_i^0 \quad (i=1,\ldots,n), \, \alpha_i^0 \text{ rationnel en } \pi,$$

alors

$$\sum_{\nu=1}^{n} a_{\nu} r_{\nu}^{i} = 0. \qquad (i = 1, ..., n-k) \qquad (1)$$

Soit, dans l'espace euclidien, un polyèdre quelconque S remplissant les conditions de Dehn. Soit $\mathfrak S$ l'ensemble des polyèdres S. On vérifie que $\mathfrak S$ est un sous-espace linéaire de l'espace $\mathfrak S$. Supposons-le de dimension k. Nous avons une classification des polyèdres en disant que A et B appartiennent à la même classe si leur différence vérifie les conditions (1). Les classes sont représentées par tous les espaces à k dimensions parallèles à $\mathfrak S$.

Quelles sont les caractéristiques d'un polyèdre S? Pour l'établir, faisons d'abord quelques considérations géométriques.

Désignons par $T(a; \alpha; \tau)$ un tétraèdre ABCD ayant les propriétés suivantes: $\overline{AB} = a$; $\overline{AC} = \overline{AD} = \overline{BC} = \overline{BD}$; l'angle dièdre le long de AB est égal à α ; les angles dièdres le long de AC, AD, BC, BD sont rationnels en π . τ désigne l'angle dièdre le long de CD. Remarquons que la longueur de CD peut être aussi petite que l'on veut. Si l'on considère donc l'arête b et l'angle correspondant β d'un polyèdre quelconque, il est possible de trouver un tétraèdre $T(b; \beta; \tau)$ ou n tétraèdres $T(b/n; \beta; \tau)$ appuyés sur l'arête b, la recouvrant, et entièrement compris dans le polyèdre.

Dès lors, prenons un polyèdre S. On a

$$\alpha_i = \sum_{\nu=1}^{n-k} r_{\nu}^i \gamma_{\nu} + \alpha_i^0.$$

Le long de l'arête a_i , enlevons de $S r_v^i$ tétraèdres $T(a_i; \gamma_v; \tau_v)$ [v = 1, ..., n - k]. Plus exactement: Si r_v^i est positif, nous enlevons les tétraèdres; si r_v^i est négatif, nous les ajoutons au polyèdre. D'après nos conventions pour γ_v et le choix possible des τ_v , $T(a_i; \gamma_v; \tau_v)$ est tel que les tétraèdres sont ou tout entiers dans le polyèdre ou sans point intérieur commun avec lui. Il est clair que tous les $T(a_i; \gamma_v; \tau_v)$ [i = 1, ..., n] sont semblables entre eux et choisis de telle sorte que les conditions soient vérifiées à toutes les arêtes.

Une fois la construction effectuée, l'angle dièdre restant le long de l'arête a_i est rationnel en π , égal à α_i^0 . Par contre, nous avons introduit de nouvelles arêtes le long

desquelles les dièdres sont ou égaux à τ_{ν} lorsque r_{ν}^{i} était négatif ou égaux à $2\pi - \tau_{\nu}$ lorsque r_{ν}^{i} était positif; tous les autres dièdres sont rationnels. Remarquons que les arêtes qui portent les dièdres τ_{ν} et $2\pi - \tau_{\nu}$ ont des longueurs proportionnelles aux a_{i} . Le polyèdre S est devenu un polyèdre S'' complété par $-r_{\nu}^{i}$ tétraèdres $T(a_{i}; \gamma_{\nu}; \tau_{\nu})$ $[i=1,\ldots,n; \nu=1,\ldots,n-k]$. Rappelons ici qu'un tétraèdre négatif a un sens d'après Hadwiger, lorsque l'on considère que $-T \approx E - T$. Le polyèdre S vérifie les relations:

$$\sum_{v=1}^{n} a_{v} r_{i}^{v} = 0. \qquad (i = 1, ..., n-k)$$

Or

$$\begin{split} \sum_{i} r_{\nu}^{i} \ T(a_{i}; \gamma_{\nu}; \tau_{\nu}) &\approx \sum_{i} T(r_{\nu}^{i} \ a_{i}; \gamma_{\nu}; \tau_{\nu}) \approx T(\sum_{i} r_{\nu}^{i} \ a_{i}; \gamma_{\nu}; \tau_{\nu}) \\ &\approx T(0; \gamma_{\nu}; \tau_{\nu}) \approx 0. \end{split}$$

Nous pouvons donc négliger tous les tétraèdres $T(a_i; \gamma_i; \tau_i)$.

Par conséquent, un polyèdre S est équivalent à un polyèdre P ayant les propriétés suivantes:

- 1° Il a r_i arêtes de longueur a_i et d'angle dièdre τ_i .
- 2° Il a r_i arêtes de longueur a_i et d'angle dièdre $2\pi \tau_i$.
- 3° Tous ses autres dièdres sont rationnels en π .

Nous nous proposons de montrer maintenant que tout polyèdre P est de soi-même équivalent à un polyèdre R dont tous les dièdres sont rationnels. Nous dirons que R est un polyèdre rationnel.

Afin de simplifier la démonstration, nous ferons d'abord quelques remarques.

- 1° Les constructions que nous avons faites nous permettent de supposer que P a les propriétés suivantes:
 - a) a_i est aussi petit que l'on veut, en particulier plus petit que les autres arêtes de P.
- b) a_i est isolé des arêtes a_1, \ldots, a_n , c'est-à-dire qu'il est possible de passer de a_i à a_i' sur la surface du polyèdre en ne franchissant que des arêtes dont les dièdres sont rationnels.
- c) On peut enlever du polyèdre P un prisme droit d'arête a_i entièrement compris dans le polyèdre et on peut le rajouter le long de a'_i ou inversement.
- 2° Supposons les deux arêtes $a_i = AB$ et $a_i' = A'B'$ telles que ABA'B' soit un rectangle et que le dièdre α_i le long de AB et le dièdre $2\pi \alpha_i$ le long de A'B' aient leurs faces parallèles. Enlevons de P un prisme droit d'arête AB ayant le long de AB et A'B' des angles α_i et $2\pi \alpha_i$, tous les autres dièdres étant rationnels. Le polyèdre restant est équivalent à P et les dièdres α_i ont disparu.
- 3° Nommons encore $U(EF; \gamma; \gamma')$ un tétraèdre EFGH: GH est perpendiculaire à EFG, $\overline{HE} = \overline{HF}$; les dièdres le long de HE et HF sont rationnels; γ et γ' désignent les dièdres le long de EF et GH.
 - 4° Montrons encore qu'il existe un polyèdre V jouissant des propriétés suivantes:
 - a) Il est équivalent à un cube.
 - b) Une de ses faces est un triangle isocèle RST, $\overline{RS} = \overline{ST}$.
 - c) Les dièdres le long de RS et ST sont égaux à α et $\varrho \alpha$ [ϱ = angle rationnel].
 - d) Tous les autres dièdres sont rationnels.

Considérons le polyèdre RSTABCD: Les faces RST et ABCD sont parallèles; les faces BCS et ADTR sont parallèles entre elles et perpendiculaires à RST; les dièdres le long de RS et ST sont égaux à α et $\varrho - \alpha$. (Nous supposerons pour la construction α et $\varrho - \alpha > \pi/2$, ayant toujours la possibilité d'ajouter un prisme rationnel au polyèdre.) Soient β et $\pi - \beta$, γ et $\pi - \gamma$, $\pi - \alpha$ et α les dièdres le long de AR et BS, TD et SC, AB et CD.

Ce polyèdre est équivalent à un cube, comme somme de deux prismes, de bases SBC et RST.

Enlevons de ce polyèdre le long de AR un tétraèdre $U(AR, \beta - \varrho, \beta')$, posé sur la face ARSB. Ajoutons un tétraèdre parallèle le long de BS (on pourra ajouter aussi entre ce tétraèdre et la face SBC un prisme rationnel afin de pouvoir effectuer les constructions suivantes). Le polyèdre ainsi obtenu a deux nouveaux angles $2\pi - \beta'$ et β' qui vérifient les conditions de 2; on pourra donc les supprimer. On pourra de même remplacer les dièdres γ et γ par des dièdres rationnels. Restent les dièdres γ et γ le long de γ et γ le long de γ et γ et γ et γ le long de γ et γ et γ et γ le long de γ et γ et

Ajoutons sur la face ABCD un tétraèdre $U(AB; \alpha - \varrho; \delta)$. Soit EF l'arête du dièdre δ , arête perpendiculaire à ABCD. Si M et N désignent les milieux de AD et BC, enlevons du polyèdre le tétraèdre CDGH symétrique de ABEF par rapport à MN.

Enfin, si σ et τ désignent les angles FBM et FAN, enlevons de ABEF les deux tétraèdres $U(EF;\sigma;\sigma')$ et $U(EF;\tau;\tau')$, les arêtes des dièdres σ' et τ' étant parallèles à MN. En rajoutant au polyèdre les symétriques de ces deux tétraèdres par rapport à MN, on obtient un polyèdre équivalent au premier dont les dièdres $\pi - \alpha$ et α le long de AB et CD sont remplacés par dièdres σ' et $2\pi - \sigma', \tau'$ et $2\pi - \tau'$, de faces et d'arêtes parallèles. On peut donc également les supprimer en vertu de 2, prouvant ainsi l'existence du polyèdre cherché. Il est probable qu'il existe des polyèdres plus simples et qui jouissent des propriétés voulues, mais l'existence seule importe pour la suite.

Nous pouvons maintenant passer au cas général.

Soit A_0B_0 l'arête a_i qui porte le dièdre α_i . Soit A_nB_n l'arête a_i' qui porte le dièdre $\varrho_i - \alpha_i$. Imaginons le segment A_0B_0 mobile. On pourra le déplacer sur la surface du polyèdre P et l'amener en A_nB_n en ne franchissant que des arêtes dont les dièdres sont rationnels. Soient A_1B_1 , A_2B_2 , ... la position du segment sur ces arêtes intermédiaires (cf. remarque 1).

Dans la face qui porte les arêtes A_iB_i et $A_{i+1}B_{i+1}$, considérons les rectangles B_iA_iRS et $B_{i+1}A_{i+1}RT$. Construisons sur B_iA_iRS un prisme triangulaire droit B_iA_iRSWX ayant le long de B_iA_i un dièdre α_i , le long de RS un dièdre $\varrho - \alpha_i$. De même construisons le prisme $TRA_{i+1}B_{i+1}YZ$ de dièdres α_i et $\varrho - \alpha_i$ le long de RT et $A_{i+1}B_{i+1}$. Enfin construisons sur le triangle SRT un polyèdre V équivalent à un cube et de dièdres α_i et $\varrho - \alpha_i$ le long de RS et RT (cf. numéro 4). (Remarque: Pour que toute la construction reste à l'intérieur du polyèdre, on peut éventuellement remplacer les deux prismes et le polyèdre V par une suite de prismes et de polyèdres V).

Si nous enlevons du polyèdre P les deux prismes et le polyèdre V, nous obtenons un polyèdre équivalent dont les dièdres le long de A_iB_i et $A_{i+1}B_{i+1}$ ont diminué de α_i et $\varrho-\alpha_i$. Tous les nouveaux dièdres introduits sont rationnels. En répétant la construction de A_0B_0 à A_nB_n , on obtiendra donc un polyèdre équivalent dont les dièdres α_i et $\varrho_i-\alpha_i$ auront été remplacés par des dièdres rationnels.

Il suffira d'effectuer la construction pour tous les angles α_i et l'on aura établi la proposition suivante:

Tout polyèdre P est équivalent à un polyèdre rationnel R.

Employons la terminologie de Hadwiger et disons que deux polyèdres A et B sont équivalents (mod R) lorsque l'un augmenté d'un polyèdre rationnel R_1 est équivalent à l'autre augmenté d'un polyèdre rationnel R_2 . Nous pouvons alors énoncer le théorème suivant:

Pour que deux polyèdres euclidiens soient équivalents (mod R), il faut et il suffit qu'ils vérifient les conditions de Dzhn.

Reste une dernière question: Un polyèdre rationnel est-il équivalent à un cube? Si cette propriété était vraie (et nous penchons à le croire), nous pourrions alors affirmer que les conditions de Dehn sont nécessaires et suffisantes pour l'équivalence des polyèdres. Nous n'avons pas encore pu éclaircir ce dernier point.

J.-P. SYDLER, Zurich.

Beispiel zum Grenzwertsatz

W. SAXER¹) gab einen ausgezeichneten Überblick über die Entwicklung des zentralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung. Mit einem einfachen Beispiel kann auch bei Schülern Verständnis für diesen wichtigen Satz erweckt werden.

In einer Urne U_1 befinden sich die Nummern x: -2, -1, 0, 1, 2 in gleicher Anzahl vertreten, so dass die Wahrscheinlichkeit $w_1(x) = 0,2$ ist, irgendeine bestimmte dieser

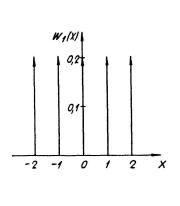


Fig. 1

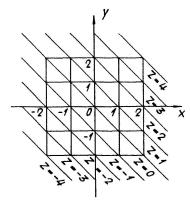


Fig. 2

fünf Nummern zu ziehen. Wir sprechen von einem Kollektiv mit Gleichverteilung (Figur 1). Infolge der symmetrischen Anordnung der Nummern ist der Mittelwert $\bar{x} = 0$, und für die Streuung ergibt sich

$$\sigma^2(x) = \frac{2}{5} (1^2 + 2^2) = 2.$$

Zur Urne U_1 trete die Urne U_2 mit gleicher Füllung. Wir ziehen zugleich aus U_1 die Nummer x mit der Wahrscheinlichkeit $w_1(x)$ und aus U_2 die Nummer y mit der

¹⁾ W. SAXER, Über die Entwicklung des zentralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung, El. Math. 5, 50 (1950).