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Organ für den Verein Schweizerischer Mathematiklehrer

El. Math. Band VII Nr 3 Seiten 49-72 Basel, 15 Mai 1952

Sur les conditions necessaires pour l'equivalence
des polyedres euclidiens

Deux polyedres sont dits equivalents lorsque Tun peut se decomposer en tetraedres
avec lesquels on peut construire l'autre. On sait que deux polyedres quelconques ne
sont pas equivalents. Pour le demontrer, Dehn etablit sa celebre condition necessaire

sous forme d'une relation algebrique1).
Reprenant et approfondissant les conditions de Dehn dans le cas euclidien, Hadwiger

introduisit l'equivalence mod£ (ce qui se note A & B): Deux polyedres sont
equivalents modis lorsque Tun augmente d'un cube est equivalent ä l'autre2). Cette
nouvelle equivalence permet entre autre la soustraction. Elle est basee sur une
decomposition des polyedres que nous utiliserons encore par la suite3) et d'apres laquelle
on a en particulier, si P(At) designe un polyedre semblable ä un polyedre P dans le

rapport lineaire ht,
ZP(K)^P{Zh).

Les classes des polyedres equivalents peuvent etre representees par les points d'un
espace vectoriel <r>. Hadwiger trouve une condition necessaire et süffisante pour
l'equivalence: Deux polyedres equivalents ont les memes coordonnees et recipro-
quement.

Rappeions les conditions necessaires de Dehn. Considerons un polyedre quelconque
et soient ol1 <xw ses angles diedres, alt ...,an\es longueurs des aretes correspondan-
tes. II existe un certain nombre d'angles Vo n, y{,..., y"n _*, rationnellement indepen-
dants entre eux et pouvant servir de base rationnelle pour les angles at. En d'autres
termes:

n-k
*i Zs;y!> (si rationnel)

Si sl r\/mv (i 1, n), r\, mv entiers, posons

n-k

1) M. Dehn, Über den Rauminhalt, Math. Ann 55, 465-478 (1902)
2) H. Hadwiger, Zerlegungsgleichheit und additive Polyederfunktionale, Comm Math. Helv. 24, 204-218

(1950).
3) J.-P S\dler, SurMqutvalencedeipolytdres,Co~nm Math Helv 70,266-273(1943/44)
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Pour que le polyedre soit equivalent ä un cube, il faut necessairement que

n

V 1

Pour simphfier les constructions suivantes, defmissons encore

Y, ?',-&,.

dv etant rationnel en n et choisi de teile sorte que y„ soit arbitrairement petit Les
conditions de Dehn peuvent s'expnmer ainsi Si

at ^J rt Y, + at° (l ~= 1
> » n)» a*° rationnel en tt,

y«=i

alors

£*,< 0 (i l, ,*-*) (1)
V 1

Soit, dans l'espace euchdien, un polyedre quelconque S remphssant les conditions
de Dehn Soit S l'ensemble des polyedres 5 On venfie que S est un sous-espace
lineaire de l'espace § Supposons-le de dimension k Nous avons une Classification des

polyedres en disant que A et B appartiennent ä la meme classe si leur difference
venfie les conditions (1) Les classes sont representees par tous les espaces ä k dimen
sions paralleles a S

Quelles sont les caracteristiques d'un poly&dre 5 Pour l'etabhr, faisons d'abord
quelques considerations geometnques

Designons par T(a, <x,r) un tetraedre ABCD ayant les proprietes suivantes
AB a, AC AD BC BD, l'angle diedre le long de AB est egal ä a, les

angles diedres le long de AC, AD, BC, BD sont rationnels en n x designe l'angle
di&dre le long de CD Remarquons que la longueur de CD peut etre aussi petite que
l'on veut Si l'on considere donc l'arete b et l'angle correspondant ß d'un polyedre
quelconque, jl est possible de trouver un tetraedre T(b, ß,r) ou n tetraedres T(b/n, ß, r)
appuyes sur l'arete b, la recouvrant, et entierement compns dans le polyedre

D&s lors, prenons un polyedre 5 On a

n k

V 1

Le long de l'arete at, enlevons de S rv* tetraedres T(at, yv, rv) [v 1, n — k]
Plus exactement Si r„* est positif, nous enlevons les tetra&dres., si r} est negatif, nous
les ajoutons au poly&dre D'apr&s nos Conventions pour yv et le choix possible des r„,
T(at, yv, t„) est tel que les tetraedres sont ou tout entiers dans le polyedre ou sans

pomt Interieur commun avec lui II est clair que tous les T(at,yv; rv) [i 1,. n]
sont semblables entre eux et choisis de teile sorte que les conditions soient venfiees a

toutes les aretes.
Une fois la construction effectuee, l'angle diedre restant le long de Tarete at est

rationnel en tz, egal ä af. Par contre, nous avons introduit de nouvelles aretes le long
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desquelles les diedres sont ou egaux ä xv lorsque r} etait negatif ou egaux ä 2 tz — rv
lorsque r} etait positif; tous les autres diedres sont rationnels. Remarquons que les
aretes qui portent les diedres rv et 2 tz — rv ont des longueurs proportionnelles aux at.
Le polyedre 5 est devenu un polyedre S" complete par — rf tetraedres T(at;yv; rv)
[i 1, n; v 1, n — k]. Rappeions ici qu'un tetraedre negatif a un sens d'apres
Hadwiger, lorsque l'on considere que —T^E—T. Le polyedre S verifie les
relations:

Z*,r't=0. (i l,...,n-k)
v-l

Or

™ T(0;yv;rv)^0.

Nous pouvons donc negliger tous les tetraedres T(at; yv; rv).
Par consequent, un polyedre 5 est equivalent ä un polyedre P ayant les proprietes

suivantes:
1° II a r% aretes de longueur at et d'angle diedre rt.
2° II a rt aretes de longueur at et d'angle diedre 2 tz — xt.
3° Tous ses autres diedres sont rationnels en tz.
Nous nous proposons de montrer maintenant que tout polyedre P est de soi-meme

equivalent ä un polyedre R dont tous les diedres sont rationnels. Nous dirons que R
est un polyedre rationnel.

Afin de simplifier la demonstration, nous ferons d'abord quelques remarques.
1° Les constructions que nous avons faites nous permettent de supposer que P

a les proprietes suivantes:
a) at est aussi petit que l'on veut, en particulier plus petit que les autres aretes de P.
b) at est isole des aretes alt an, c'est-ä-dire qu'il est possible de passer de at ä

a't sur la surface du polyedre en ne franchissant que des aretes dont les diedres sont
rationnels.

c) On peut enlever du polyedre P un prisme droit d'arete at entierement compris
dans le polyedre et on peut le rajouter le long de a[ ou inversement.

2° Supposons les deux aretes at AB et a[ A'B' telles que ABA'B' soit un
rectangle et que le diedre <xt le long de AB et le diedre 2 tz — at le long de A'B' aient
leurs faces paralleles. Enlevons de P un prisme droit d'arete AB ayant le long de

AB et A'B' des angles at- et 2tz — at, tous les autres diedres etant rationnels. Le
polyedre restant est 6quivalent ä P et les diedres a, ont disparu.

3° Nommons encore U(EF;y;y') un tetraedre EFGH.GH est perpendiculaire ä

EFG, HE HF; les diedres le long de HE et HF sont rationnels; y et y' designent
les diedres le long de EF et GH.

4° Montrons encore qu'il existe un potyedre V jouissant des proprietes suivantes:
ol) II est equivalent ä un cube.
b) Une de ses faces est un triangle isocele RST, RS ST.
c) Les diedres le long de RS et ST sont egaux ä oc et q - a [q angle rationnel].
d) Tous les autres diedres sont rationnels.
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Considerons le polyedre RSTABCD: Les faces RST et ABCD sont paralleles; les
faces BCS et ADTR sont paralleles entre elles et perpendiculaires ä RST; les diedres
le long de RS et ST sont egaux ä a et o — a. (Nous supposerons pour la construction
a et q — a > tz/2, ayant toujours la possibilite d'ajouter un prisme rationnel au
polyedre.) Soient ß etn — ß,yetTz — y,n — a et a les diedres le long de AR et BS,
TD et SC, AB et CD.

Ce polyedre est equivalent ä un cube, comme somme de deux prismes, de bases

SBC et RST.
Enlevons de ce polyedre le long de AR un tetraedre U(AR, ß — q, ß'), pose sur la

face ARSB. Ajoutons un tetraedre parallele le long de BS (on pourra ajouter aussi
entre ce tetraedre et la face SBC un prisme rationnel afin de pouvoir effectuer les

constructions suivantes). Le polyedre ainsi obtenu a deux nouveaux angles 2 tz — ß'
et ß' qui verifient les conditions de 2; on pourra donc les supprimer. On pourra de

meme remplacer les diedres y et tz — y par des diedres rationnels. Restent les diedres
tz — ol et on le long de A B et CD. Procedons de meme:

Ajoutons sur la face ABCD un tetraedre U(AB; ol — q; d). Soit EF l'arete du diedre
d, arete perpendiculaire ä ABCD. Si M et N designent les milieux de AD et BC,
enlevons du polyedre le tetraedre CDGH symetrique de ABEF par rapport ä MN.

Enfin, si a et r designent les angles FBM et FAN, enlevons de ABEF les deux
tetraedres U(EF;a;a') et U(EF;r;r'), les aretes des diedres a'et r' etant paralleles
ä MN. En rajoutant au polyedre les symetriques de ces deux tetraedres par rapport
ä MN, on obtient un polyedre equivalent au premier dont les diedres tz — <x et a le

long de AB et CD sont remplaces par diedres a' et 2 tz — a', r' et 2 tz — r', de faces et
d'aretes paralleles. On peut donc egalement les supprimer en vertu de 2, prouvant
ainsi l'existence du polyedre cherche. II est probable qu'il existe des polyedres plus
simples et qui jouissent des proprietes voulues, mais l'existence seule importe pour
la suite.

Nous pouvons maintenant passer au cas general.
Soit A0B0 l'arete at qui porte le diedre oct. Soit AnBn l'arete a[ qui porte le diedre

Qt — at. Imaginons le segment A0B0 mobile. On pourra le deplacer sur la surface du
polyedre P et l'amener en AnBn en ne franchissant que des aretes dont les diedres
sont rationnels. Soient AxBlt A2B2, la position du segment sur ces aretes inter-
mediaires (cf. remarque 1).

Dans la face qui porte les aretes A%B% et At+1Bt+1, considerons les rectangles
BtAtRS et Bt+1At+1RT. Construisons sur BtAtRS un prisme triangulaire droit
BtAtRSWX ayant le long de B%A% un diedre <x,, le long de RS un diedre q — cnt.

De m^me construisons le prisme TRAt+1 Bt+1 YZ de diedres at et q — oct le long de

RT et Al+1Bt+1. Enfin construisons sur le triangle SRTnn polyedre V equivalent ä

un cube et de diedres <xt et q — <xt le long de RS et RT (cf. numero 4). (Remarque:
Pour que toute la construction reste ä l'interieur du polyedre, on peut eventuellement
remplacer les deux prismes et le polyedre V par une suite de prismes et de polyedres V).

Si nous enlevons du polyedre P les deux prismes et le polyedre V, nous obtenons
un polyedre equivalent dont les diedres le long deAtBt et At+1Bt+1 ont diminue de

ol% et q — oit. Tous les nouveaux diedres introduits sont rationnels. En repetant la
construction de A0B0 ä AnBn, on obtiendra donc un polyedre equivalent dont les
diedres at et Qt — ol% auront ete remplaces par des diedres rationnels.
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II suffira d'effectuer la construction pour tous les angles olz et l'on aura etabli la
proposition suivante

Tout polyedre P est equivalent ä un polyedre rationnel R
Employons la termmologie de Hadwiger et disons que deux polyedres A et B

sont equivalents (mod R) lorsque l'un augmente d'un polyedre rationnel Rx est
equivalent ä l'autre augmente d'un polyedre rationnel R2 Nous pouvons alors
enoncer le theoreme suivant

Pour que deux polyedres euclidiens soient equivalents (mod R), il faut et il suffit
qu'ils verifient les conditions de Dehn

Reste une derniere question Un polyedre rationnel est-il equivalent ä un cube
Si cette propriete etait vraie (et nous penchons ä le croire), nous pournons alors
affirmer que les conditions de Dehn sont necessaires et süffisantes pour l'equivalence
des polyedres Nous n'avons pas encore pu eclaircir ce dernier pomt

J -P Sydler, Zürich

Beispiel zum Grenzwertsatz

W Saxer1) gab einen ausgezeichneten Überblick über die Entwicklung des
zentralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung Mit einem einfachen
Beispiel kann auch bei Schulern Verständnis fur diesen wichtigen Satz erweckt werden

In einer Urne Ux befinden sich die Nummern x — 2, — 1, 0, 1, 2 in gleicher Anzahl
vertreten, so dass die Wahrscheinlichkeit wx(x) 0,2 ist, irgendeine bestimmte dieser

ot-

-2-1012 X

Fig 1 Fig 2

fünf Nummern zu ziehen Wir sprechen von einem Kollektiv mit Gleichverteilung
(Figur 1) Infolge der symmetrischen Anordnung der Nummern ist der Mittelwert
x 0, und fur die Streuung ergibt sich

r2(*) y (l2+22)

Zur Urne Ux trete die Urne U2 mit gleicher Füllung Wir ziehen zugleich aus U1
die Nummer x mit der Wahrscheinlichkeit wx(x) und aus U2 die Nummer y mit der

*) W Saxer, Über die Entwicklung des zentralen Grenzwertsatzes der Wahrscheinlichkeitsrechnung, El
Math 5, 50 (1950)
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