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C'est lä le sens quahtatif de la ceiebre decouverte de Schottky en 1904 Le carac-
tere nettement quantitatif de l'enonce pnmitif et des precisions modernes se tra-
duirait par des donnees numeriques exactes sur l'emplacement relatif du Capitaine,
du Guide, de leurs fils et des deux arbres plantes R C Young, Londres.

Kleine Mitteilungen

Zur Perspektive des Kreises

Wahrend die Parallelprojektion des Kreises sich ziemlich einfach behandeln laßt
(siehe zum Beispiel Flukiger, Darstellende Geometrie [Zürich 1943] S 43) erfordert
die allgemeine perspektivische Abbildung des Kreises beträchtlich mehr Aufwand an
Mitteln Sie laßt sich aber fur den Fall des elliptischen Bildes leicht auf die
Parallelprojektion des Kreises zurückfuhren, sobald man eine affine Raumtransformation
benutzt, die die Punkte einer Ebene fest laßt (Eine solche kann etwa durch die Fix
punktebene e, die Affinitatsrichtung und das Affinitatsverhaltnis oder auch durch e

und em Paar homologer Punkte P, P* bestimmt werden Ihre Haupteigenschaften

s°

A" r

c^
Q*

S'

(Geraden werden in Gerade, Ebenen in Ebenen transformiert, Invarianz des Teilver-
haltmsses) ergeben sich muhelos Man kann nun den den Kreis projizierenden Kegel so
transformieren, daß das durch die Affinität mittransformierte Bild em Kreis wird, von
dem das ursprüngliche eine Parallelprojektion darstellt

Der Leitkreis K hege m nx, die Bildebene a stehe senkrecht auf nt Der zu nz parallele
Durchmesser A B schneide die Spur et von or in C Die Schnittlinie der Ebenen SA B und
a schneide die Mantellmien SA, SB in P und Q Liegt C außerhalb der Strecke AB
(was wir voraussetzen dürfen), so hegt nach unserer Voraussetzung C auch außerhalb
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der Strecke PQ Zeichnet man nun durch C eine Gerade CP*Q* parallel n2 so, daß
CP*/CQ*=CP/CQ und CP* CQ*=CA CB, so liefert die Affinität mit nx als
Fixpunktebene und P->P* die gewünschte Transformation, da die Ebene S*AB parallel
n2 wird und a* einen Wechselschnitt zu K im Kegel (S*, K) liefert

C Bindschedler, Kusnacht

Fme Herleitung der Volumenformel der Kugelrinde
mit Hilfe des Prinzips von Cavalieri

Die Rinde mit der Hohe h und der Mantellmie 5 soll mit einer Kugel K vom Durchmesser

h verglichen werden, welche die Begrenzungsebenen der zur Rinde gehörenden
Kugelschicht berührt

R+r Rt

^s2

Eine Ebene E parallel zu den Randkreisen der Rinde teilt s in die Strecken sx, s2 und
h in hlt h2 und es ist

sx hx s2 h2 — s h

E schneidet die Rinde in einem Kreisrmg mit den Radien R, r und der Flache

FR=7i(R2-r2) n(R + r) (R - r) =ns1s2,

und die Kugel K in einem Kreis mit der Flache

Fk= 71 q*= n hth2

Die Umformungen beruhen auf dem Satz über die Sehnenabschnitte im Kreis Man
hat also

Fr Fk=(siS2) (Kh2)-s* h*

Da dies fur jede mögliche Ebene E gilt, so stehen auch die Volumina der Rinde und der
Kugel K in dem gleichen Verhältnis

VR VK=s* h\
und daraus folgt sofort das Volumen der Rinde

'A\8sa nhs*T_
4 /A\8s*

H Schwarz, St Gallen
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Circonscnre un carre ä un quadnlatere donni

Soit Mx(xx, yj, M2(x2, y2), Mz(xz yz), M4(#4, y4) les sommets du quadnlatere
Supposons que Elt E2, E3, £4 soient les cötes du carre circonscnt Considerons les equations
de ces lignes

Ex x — x± k (y — yj, pour y 0, x xx— k yx,

E2 x - x2= —~r-(y — y2) pour x 0, y y2 + k x2,

Ez x -x3 k(y-y3) pour y 0, x x3-ky3,
1

Mais

C'est-ä-dire

Donc

i ~ ¦ ~4 k(y~y*), pour x 0, y y^ + kx4

I (*8- * ^s) ~ (*i- * Vi)l I (r4+ * r4) - (y2 + ä *2)|

{(H-kyz) - (*i- k yj} ±{(y*+kxi) ~(y2+k x2)}

kl== (y*-y2) + (xz-*i) et ku= (n-ya) -(*a-*i)
(y3- ri) - (^- *a) - (y3 - y^ - (*4- *2)

On a pris E3 parallele ä Ex Mais on peut prendre aussi E2, ou £4, parallele ä Ex, ce qui
nous donne quatre autres Solutions On peut les trouver tout de suite en rearrangeant
les indices kl et k11'

hm_ (y*- y^) + (*2- *i) A1v_. (n-ya) -(*a-*i)
(v2- vj - (x±- xz) ' - (y2- yx) - (*4- x3) '

Äv _ (y3-y2) + (^4-^i) ÄVI
(ya- y2)> - (fi^i. _

(y4- ri) - (*3- *2) ' - (y4- ?i) - (*a- *a) '

G N Vlahavas, Londres

Üfor die Integrationskonstante

Der Anfanger, der einige Gewandtheit in der Integralrechnung erreicht hat, glaubt
häufig, dass man die Konstante der Integration einfach vernachlässigen darf Dieses
Verfahren ist nicht erlaubt Es kann Fehler verursachen, was wir an einem in die Augen
springenden Beispiele veranschaulichen wollen Wir betrachten die Funktion

y tg*,
ihre Differentialquotienten sind

1
h w 2 sm # „ 1 „y'= —, y"= (cos-2*)'- z—=2 tgx r—- 2 y y'7 COS2 AT

7 V ' COS3* ° COS2*

Die Tangensfunktion genügt daher der Differentialgleichung

v"=2yy' (1)

2 y y' ist aber zugleich die Ableitung der Funktion y2, folglich ist

y"=(yr (2)

Wir integrieren auf beiden Seiten, wobei wir die Konstante flott weglassen

y'=y\ (3)
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Die Einsetzung der Werte von y und y' ergibt die falsche Formel

1
2 sm2*

tg2*cos2* cos2* '

woraus wegen der Identität der im allgemeinen nicht verschwindenden Nenner 1 sin2 *
folgen wurde Ein offenbarer Unsinn, denn * ist doch veränderlich, sma* kann ja jeden
Wert zwischen 0 und 1 annehmen

Der begangene Fehler wird noch auffallender, wenn wir von der Differentialgleichung
(1) ausgehend alle Funktionen aufsuchen, die diese Gleichung erfüllen Die Gleichung (3)
lasst sich in die Form bringen

% dx
y2

Durch Integration ergibt sich

—- * + C,
y

wo C eine Konstante bedeutet Es ist also

1

y * + c

Nun haben wir den grotesken Widerspruch, dass tg * ihre eigene Differentialgleichung
nicht erfüllt' Die durch Differentiation von tg* erhaltene Differentialgleichung wird
also nur durch die jetzt erhaltene Funktion y l/(* + C) erfüllt, deren geometrisches
Bild eine gleichseitige Hyperbel ist

Das falsche Ergebnis ergab sich dadurch, dass bei der Integration der Gleichung (2)
die Integrationskonstante unterdruckt wurde In der Tat, wenn wir diesen Fehler
vermeiden, lautet die Gleichung (3) richtig wie folgt

wenn nun y tg*, y' 1/cos2* eingesetzt wird, gelangt man zur Gleichung

1 sin2* ntg2* + l =— + C,
COS2*

die fur C — \ zur Identität wird.
Ebenso leicht ist die Bestimmung sämtlicher die Bedingung (1) erfüllender Funktionen.

Die Integration von

ergibt:
dy

J y* + c

Der Wert dieses Integrals hangt vom Vorzeichen der Konstanten C ab Fur positives
C(=62) wird-

/dy 1 y
„ -=- are tg ^-, das heisst y b tgb *.ya + oz ob

Also fur b l ist y tg *, fur C 0 erhalt man

fdy 1
a*= / -^-= + A

J y2 y
Falls C negativ — 62) ist, wird

y — bf dy 1 JL^ y_
- J r2_&a 2fe g a y + b
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loga ist die Konstante dieser Integration, das heisst

P2bxz y — b

y + b
oder y b

1 +ae2bx

39

(4)

Nun ist

tg*
-ix

cos* eix+e~i9 e2ix+l *

Bei entsprechender Wahl der Konstanten (a 1, b i) geht also die Formel (4) über in

y -tg*.
Die zu Beginn gefundenen Ergebnisse sind also falsch. Wir konnten uns überzeugen,

dass der Fehler durch Weglassung der Integrationskonstanten begangen wurde.
Richard Obläth, Budapest.

Sur le probUme 63 proposi par M.C. Bindschedler

Le probleme 63 propose dans cette Revue (4, fasc. 3, 69 [1949]) peut etre generalise
de la facon suivante: Trouver le volume et l'aire totale des solides convexes limites par
les cönes de revolution circonscrits aux angles solides d'un polyedre regulier.

Les cönes sont definis par Taxe et le demi-angle au sommet <p. L'axe du cöne passe
par le centre du polyedre; l'angle g? est forme par Taxe et l'arete du polyedre. Deux
cönes de sommets A et B (fig. 1) ont comme generatrice commune Tarnte AB. La
courbe d'intersection des deux cönes se decompose donc en la generatrice AB et une

+' D

S^r-^—-;j -JL

Fig.l Fig. 2

conique situee dans le plan de symetrie de AB. On voit facilement que pour 2 q> ^ n/2,
la conique est une ellipse resp. parabole resp. hyperbole.

I. - Calcul du volume

De m^me que les polyedres reguliers, les solides convexes peuvent etre tetranguies
en 2 n portions egales ou symetriques (n nombre des ar£tes du polyedre). Ces portions,
de forme mi-pyramide mi-cöne, ont pour base B la portion utile OLMJ des coniques
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et pour hauteur la moitie de 1'arete c. OL et OJ sont les normales abaissees du centre O
sur les faces du polyedre (fig. 1).

Volume du solide convexe:
nB c

(i)

Le probleme revient donc ä determiner pour chacun des 5 polyedres reguliers
1° l'angle y, le genre et l'equation reduite de la conique;
2° l'aire B de la portion de conique OLMJ.
Dans le triangle rectangle AMO (fig. 1)

tg«P
OM distance centre - arete
AM moitie arete

Cette distance s'obtient aisement pour le tetraedre, l'octaedre et le cube, tandis que
pour l'icosaedre et le dodecaedre, construits ä l'aide du cube circonscrit, ce sont les
deux rapports de la section d'or qui interviennent.

L'axe focal 2 a est donne par AM • tg2 tp, resp. par AM • tg (n — 2 <p), si 2 <p est obtus.
L'axe non focal 2 b resp. le parametre p se determinent comme suit:
Si la conique passe par un sommet du polyedre (tetraedre, octaedre, icosaedre), on

substitue les coordonnees de ce sommet dans l'equation reduite.
Quant au dodecaedre, la deuxieme bränche (virtuelle) de l'hyperbole (fig. 2) passe

par le sommet H du pentagone etoiie obtenu en prolongeant les aretes de la face ABD.
Quant au cube, le plan limite mene par le sommet A determine les directions asymptotiques

AC et AD qui sont perpendiculaires (aretes du cube!). L'hyperbole est donc equi-
latere.

On trouve les resultats suivants:

Polyedre tg<p 2 <p genre Equation reduite

tetraedre Y2
2

n E *2-f 2y2 -^-

octaedre 1 n
~~~2 P y2 c x

cube ]/2 n tf.equil.
r2

icosaedre
2

n H 2 c
1 + ^5 4

dodecaedre 3+J/T
2

n H
2 *

c%

5 + 3yTJ 20

L'aire B de la portion utile OLMJ, symetrique par rapport ä l'axe focal, est evaluee
comme suit pour les differents genres de conique:
B secteur elliptique SLMJ — 2 • triangle SOL

avec secteur elliptique : a b are cos xtja
B segment parabolique LMJ 4- triangle LOJ

avec segment parabolique : 4/3 xt yx
B 2 • triangle SOL — secteur hyperbolique LST

avec secteur hyperbolique : a b are ch xja.
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Le point L (de m6me que son symetrique /) est l'intersection avec la conique de la
normale abaissee du centre O (d'abscisse *0) sur la face du polyedre. Vu l'orientation
du Systeme d'axes, on trouve, pour le genre ellipse, l'equation de la normale

y tga> (*-*0).
Pour le genre parabole et hyperbole on remplace co par (ji — co). Les equations des
normales et les coordonnees (x1; yx) du point L sont les suivantes:

tetraedre y )/2 (x - ±L
c), ^~c' TÖ C;

octaedre y - — lx - -~j > ~~2 c> ~2 c;

cube y=-(x-c\2), —|— c, —i—_ C;

}fi [ 3 + /5~ \ 13 + 5/5 15-1/5"
icosaedre y ^— (* ^— c), 44 c, 44 c;

15 + 7J/5" \
dodecaedre y-- £^(, - IL^XLc). ^^c, -15^ + 21c.

En substituant les valeurs de xx et yx dans les formules precedentes, on trouve la
base B, puis en remplacant dans (1) le volume total.

Solide circonscrit

tetraedre n — 6 V — ~— (arccos — -—) c3;

octaedre n 12 V \ (8 - 5 /2) c3;
3

cube w= 12 F (3-2arcch^-) c3;

icosaedre n 30 V ~r-2

dodecaedre n 30 F== —

10 +^ - ]/*+/* «cch 13+25^

2 /210 + 93/5 1/5 + 3/5 _^ 43 + 91/5"
arcch-

19 r 2 38

II. - Calcul de l'aire totale

L'aire du solide convexe se compose des surfaces courbes des 2 n parties obtenues
par tetrangulation. On peut evaluer l'aire laterale d'un cöne de revolution ä partir de
sa projection sur un plan perpendiculaire ä l'axe1). Si y n/2 — <p est l'angle de pente de
la generatrice, on a

Aire projection Aire projection
Aire laterale cöne

cosy sm^

x) Cf. A. Reuschel: Eine einfache Berechnung der Mantelfläche eines Drehkegelhufes, El.Math. 4, fasc. 4,
73 (1949).
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Dans notre probleme, l'aire ä calculer est detachee par un plan secant incline sous
un angle oc sur le plan de projection normal ä Taxe. Ce plan secant determine une
conique c qui se projette en c'. II vient

Aire c' Aire c • cos oc.

Et en remplacant:

Aire laterale detachee —: Aire c —
sin <p sin cp

Or oc cp, puisque le plan secant est normal ä la generatrice. D'oü

Aire laterale detachee : Aire conique • ctg cp.

II va sans dire que cette formule reste valable, si la conique c se reduit ä la portion B
symetrique par rapport ä l'axe focal. Finalement on trouve donc

Aire totale solide convexe : 2nB ctg cp. (2)

En substituant la valeur de B trouvee plus haut, on a les aires totales suivantes

Solide circonscrit

tetraedre A 6 (arccos— —-) c2;

octaedre A 4 (8 - 5 ]ß) c2;

cube A= 3/1^3- 2arcch^) c2\

H+1V1 -}[±±^ are ch ^±p£A 15(/5*-l)icosaedre A l
2

3(3-/5)dodecaedre A
210 + 93/5"

__
1/5+3/5- 43 + 9/5"

19 V 2
afCCn

38 c\19 r 2 38

L. Kieffer, Luxembourg.

Aufgaben

Aufgabe 107. Ein völlig stetiger Bogen (siehe Aufgabe 106) ohne Singularitäten
(Wendepunkte, Spitzen, Doppelpunkte, Doppeltangenten, Ecken, Strecken) werde
unter Vermeidung jeder Singularität über seine beiden Enden hinaus unbegrenzt
fortgesetzt; dann existieren eine konvexe Hülle und ein konvexer Kern, denen sich der
Bogen anschmiegt. Hierbei kann der Kern wie auch die Hülle ein konvexes Vieleck sein;
ersterer kann insbesondere in einen Punkt, letztere in eine Gerade ausarten.

L. Locher-Ernst, Winterthur.
Lösung: Der einfache Bogen ist durch zwei zueinander duale Eigenschaften

charakterisiert: Seine Punkte werden aus jedem fest gewählten umkehrbar eindeutig durch
ein stetiges Strahlenbüschel projiziert, seine Tangenten von jeder festen umkehrbar
eindeutig in einer stetigen Punktreihe geschnitten. Beim Durchlaufen des Bogens werden
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