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14 Aufgaben

Vom Typ 19 ist nur die Nullmenge, vom Typ 26 nur die Allmenge. Endliche
Mengen (außer 0) haben alle den Typ 18, von welchem es aber auch unendliche
Mengen gibt. Die Typen 1 bis 12, 20 bis 26 als Mengen mit Innenpunkten, ferner 17

als perfekt sind nicht abzählbar. 15 und 18 sind sicher abzählbar, während es von den
Typen 13, 14, 16, 27 sowohl abzählbare als auch nichtabzählbare Mengen gibt.

Alexander Aigner, Graz.

Aufgaben

Aufgabe 106. Gegeben sind ein Strahlenbüschel mit dem Mittelpunkt M und ein
von M verschiedener Punkt A in der Ebene des Strahlenbüschels. Man durchlaufe
von A aus eine völlig stetige, in A endende Kurve, die mit jedem Strahl des Büschels
genau einen Punkt gemeinsam hat. Wenn die Kurve keine Gerade ist, besitzt sie
entweder mindestens drei Wendepunkte oder mindestens einen Wendepunkt und mindestens

eine Spitze. (Eine Kurve heißt «völlig stetig», wenn sie sowohl bezüglich ihrer
Punkte als auch ihrer als existierend vorausgesetzten Tangenten stetig ist. Sie braucht
hingegen nicht algebraisch, auch nicht einmal analytisch zu sein.)

L. Locher-Ernst, Winterthur.
I.Lösung: Geht die Tangente eines Punktes P der Kurve durch M, so muß P ein

Wendepunkt oder eine Spitze sein, was leicht aus der Voraussetzung folgt, daß jede
Gerade des Büschels in M genau einen Punkt mit der Kurve gemeinsam hat.

Sei P0 ein gewöhnlicher Punkt der Kurve; seine Tangente geht also nicht durch M.
Wir betrachten die Variation des Schnittpunktes Q der Tangente in P mit der Geraden
P0M, wenn P die Kurve in einem bestimmten Sinne durchläuft. Lassen wir P eine
Umgebung von P0 durchlaufen, so erreicht Q den Punkt P0 und verläßt ihn wieder mit
umgekehrter Bewegungsrichtung (dabei benützen wir, daß P0M nicht Tangente in P0

ist). Lassen wir P die Kurve von P0 aus bis zurück nach P0 durchlaufen, so muß Q
seine Bewegungsrichtung in einem Punkte Qx ändern, da Q von P0 ausgeht und mit
umgekehrter Bewegungsrichtung nach P0 zurückkommt. Der dem Punkte Qx entsprechende

Punkt Px der Kurve ist ein Wendepunkt.
Es existiert also mindestens ein Wendepunkt Px.
Wir betrachten jetzt die Variation des Schnittpunktes X der Tangente in P mit der

Geraden PxM, wenn P die Kurve in einem bestimmten Sinne durchläuft. Lassen wir P
eine Umgebung von Px durchlaufen, so durchläuft X eine Umgebung von Px auf PXM,
ohne seine Bewegungsrichtung zu ändern (dies gilt auch im Falle, daß PXM Tangente
in Px ist). Lassen wir P die Kurve von Px aus bis zurück nach Px durchlaufen, so
bestehen genau zwei Möglichkeiten:

1. X durchläuft ein oder mehrere Male die ganze Gerade PXM, ohne seine Bewegungsrichtung

zu ändern. Dann durchläuft X mindestens einmal den Punkt M. Die M
entsprechenden Punkte der Kurve sind Spitzen, da X seine Bewegungsrichtung beim Durchlaufen

von M beibehält. Es existiert also in diesem Falle mindestens eine Spitze.
2. X ändert seine Bewegungsrichtung in einem Punkte X2. Dann ändert X seine

Bewegungsrichtung in mindestens einem weiteren Punkte X3, da, X beim Wiedereintreffen

von P in PX die ursprüngliche Bewegungsrichtung haben muß. Die den Punkten
X2 und Xz entsprechenden Punkte P2 und P3 der Kurve sind weitere Wendepunkte.

Damit haben wir gezeigt, daß die Kurve entweder mindestens einen Wendepunkt
und mindestens eine Spitze oder mindestens drei Wendepunkte besitzt.

Erste Bemerkung. Im obigen Falle 2 ist die Anzahl der Umkehrstellen von X immer
gerade, woraus folgt, daß die Anzahl der Wendepunkte der Kurve stets ungerade ist
(sofern sie endlich ist).

Zweite Bemerkung. Wir haben beim Beweis vorausgesetzt, daß die Kurve keine
Geradenstücke enthält. Läßt man diese Voraussetzung fallen, wobei aber die Kurve
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selbst keine Gerade sein darf (damit der oben betrachtete Punkt X überhaupt variiert),
so kann der Fall eintreten, daß Geradenstucke die Rolle von Wendepunkten spielen
und bei der Abzahlung der Wendepunkte hmzugenommen werden müssen

J Ebersold, Zürich
2. Losung Vorbemerkung Die Aufgabe impliziert, eine projektive duale und vom

Begriff der Differenzierbarkeit unabhängige Definition der Singularitäten zu geben
Der vorliegende Beweis stutzt sich auf eine Definition, die durch die Kurven der metrischen

Differentialgeometrie sicher erfüllt ist und in naheliegender Weise projektiv (und
dual) formuliert wird, wobei die bekannte projektive Invarianz der einfachen metrischen

Singularitäten zugrunde gelegt wird Er zeigt den Inhalt der Behauptung als
Folge aus den Eigenschaften der Bewegungen, welche von den Tangenten einer ein-
smnig durchlaufenen Kurve auf irgendeiner Geraden induziert werden Eine Ableitung
des benutzten Bewegungs- oder Kurvenbegriffs aus den Axiomen ist sowenig angestrebt
wie em Nachweis, daß völlig stetige Kurven, abgesehen von mehrfachen Punkten und
Geraden, nur Singularitäten der nachfolgend beschriebenen Art hatten — Aus den
Voraussetzungen (1) der völligen Stetigkeit, (2) der Geschlossenheit und (3) der
eindeutigen Projizierbarkeit aus M folgt unmittelbar 1 Die Kurve geht nicht durch M
[sonst konnte es wegen (3) keine andern Punkte auf den Strahlen durch M geben]
2 a) Die Kurve hat keine mehrfachen Punkte, b) gewöhnliche Tangenten dürfen nicht,
c) Wendetangenten können, und 3 Spitzentangenten müssen durch M gehen (Denn zu
mehrfachen Punkten und zu gewohnlichen Tangenten durch M gäbe es Nachbarstrahlen
aus M mit mindestens zwei Schnittpunkten und bei Spitzen desgleichen, wenn M
nicht auf der Spitzentangente hegt) 4 Schnabelspitzen kommen nicht vor

Projektive Charakterisierung von Wendepunkt und Spitze Metrisch ist die
Wendetangente (mit Wendepunkt im Endlichen) durch Umkehr der Drehrichtung charakterisiert,

also durch einen Umkehrpunkt der Bewegung des unendhchfernen Punktes der
Tangenten Projektiv kann aber jede Gerade unendlichfern sein Also die
Wendetangente trifft jede Gerade, die nicht durch den Wendepunkt geht, m einem Umkehrpunkt
der Bewegung des Tangentenschnittpunktes und bedingt auf den durch den Wendepunkt

gehenden Geraden, einschließlich Wendetangente, eine Bewegung ohne Umkehrpunkt

(I) Diese Bemerkung fuhrt von selbst zur Charakterisierung von gewöhnlichem
Punkt und Tangente sowie - dual zum Wendepunkt - der Spitze Fur einen gewöhnlichen

Punkt hat die Bewegung des Tangentenschnittpunktes auf einer beliebigen (zum
Beispiel der unendhchfernen) Geraden g keinen Umkehrpunkt, wenn die Gerade g nicht
durch den Kurvenpunkt P geht, oder die Tangente p von P ist Geht g durch P (ohne
mit p zusammenzufallen), so ist P Umkehrpunkt (II) Und dual die Bewegung des
projizierenden Buscheis aus einem beliebigen Punkt G hat keine Umkehrstelle, wenn
G nicht auf der Tangenten p hegt, oder der Beruhrpunkt P von p ist Liegt G auf p,
so ist p Umkehrstrahl Fur spater halten wir fest eine Tangente a und eine durch den
Beruhrpunkt A gehende Gerade q trennen - in genügend kleiner Umgebung von A -
die Kurvenpunkte «vor und nach» A (III)

Und Aus einem Wendepunkt werden seine Nachbarpunkte durch ein Strahlenbuschel
mit der Wendetangente als Umkehrstrahi projiziert - Die Spitze ist Umkehrstelle fur die
Bewegung in jedem projizierenden Büschel, dessen Scheitel nicht auf der Spitzentangente
hegt, und keine Umkehrstelle fur Büschel aus Punkten der Spitzentangente (IV)

Die zu sich selbst duale Schnabelspitze bedingt Umkehrstellen sowohl bei der durch
Punkt- wie Tangentenbewegung in Strahlenbuschel bzw Punktreihe induzierten
Bewegung (sofern die Trager nicht mit der Schnabelspitze bzw ihrer Tangente inzidieren)

Sieht man von den me* rfachen Punkten und Tangenten und von eventuellen Hau-
fungsstellen der behandelten Singularitäten ab, so smd also die vier möglichen Arten
von Stellen charakterisiert durch die \ier Kombinationen des Auftretens (1) oder Nicht-
auftretens (0) von Umkehrstellen bei den Bewegungen, die induziert smd auf nicht mit
den singularen Elementen mzidenten Grundgebilden erster Stufe [nach dem Schema
P(0, 0), W(l, 0), Sp(0, 1), Sehn Sp(l, 1), wo die erste Ziffer sich auf die durch den
Tangentenschnittpunkt in Punktreihen induzierte Bewegung und die zweite sich auf
die dazu duale m Buschein bezieht!
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Beweis Es sei A der Anfangspunkt Lr darf ohne Beschränkung der Allgemeinheit
als gewohnlicher Punkt (mit der Tangente a) angenommen werden M sei der Scheitel
des eindeutig projizierenden Buscheis Wir betrachten die Bewegung des Schnittpunktes
S der Tangente mit der Geraden q^MA, die Bewegung hat eine Umkehrstelle in A
(II) Nun besitzt jede geschlossene Bewegung eine gerade Anzahl (einschließlich 0) von
Umkehrstellen Es sei U eine zweite außer A Wir unterscheiden die Falle, ob M von S
erreicht wird oder nicht a) Wenn ja, dann gehen Wende oder Spitzentangenten durch
M, und zwar, wenn M kein Umkehrpunkt ist, eine Spitzentangente (IV), und es hegt
der zweite Teil der Behauptung vor U entspricht (I) eine Wendetangente Oder, wenn
M Umkehrpunkt ist laßt sich der Fall mit dem folgenden b) zusammenfassen A ist
die erste, U (wobei allenfalls U M) die zweite Umkehrstelle, welcher der Wendepunkt
W entspricht Es gibt dann noch mindestens zwei weitere Umkehrstellen - woraus der
Rest der Behauptung folgt ihnen entsprechen noch zwei Wendepunkte - Angenom
men, es gibt außer W keinen weiteren Wendepunkt (*), also außer A und U keine wei
tere Umkehrstelle der Bewegung von 5 auf q Durch jeden Punkt S gehen mindestens
zwei Tangenten mit den Beruhrpunkten Tx und T2 «vor und nach» A denn A ist Um
kehrstelle Diese sind durch a und q getrennt (III) und werden aus A durch zwei gegen
sinnige Büschel projiziert Die Punkte Tx und T2 sind (mit Ausnahme von W) lauter
gewohnliche Punkte, weshalb die Bewegungen in den Strahlenbuschein AFX und AT2
keine Umkehrstellen haben können (und sich also «von a entfernen») Bewegt sich nun
S von A nach U, so durchlauft unter der Beweisannahme (*) das Paar lx, T2 die
ganze Kurve (Sonst wurden dem Punkt U mehrere Wendepunkte entsprechen Damit
ist der Widerspruch zur Annahme (*) erreicht Einerseits laufen Tx und T2 stets ge
trennt durch a und q in verschiedenen Wmkelgebieten, andererseits sollen sie die ganze
Kurve durchlaufen - Es gibt also außer A und U noch (eine gerade Anzahl von) Um
kehrstellen, womit alles bewiesen ist

Man veranschaulicht sich die Verhaltnisse zweckmäßig, wenn man q auf die unend
hchferne Gerade legt Dann ist a Asymptote mit dem unendlichfernen Punkt A Die
Tangenten aus S sind parallel und die gegensinnigen Büschel ATX und AT2 sind zwei
nach entgegengesetzten Seiten sich von der Asymptote ablosende Parallelenscharen

G Balaster und G Unger, Zürich
Eine weitere Losung unter wesentlicher Benutzung von analytischen Hilfsmitteln

sandte R Lauffer (Graz) Die von G Balaster und G Unger benutzten Sachverhalte

über die auftretenden Bewegungen werden auf Grundlage eines einfachen Axiomen
Systems bewiesen m dem soeben erschienenen Buche von L Locher Ernst Einfuhrung
%n die freie Geometrie ebener Kurven (Birkhauser, Basel 1952) Die Losung der in Rede
stehenden Aufgabe sowie ähnliche Satze ergeben sich fast unmittelbar aus allgemeinen,
den (reellen) Kurvenverlauf regelnden Gesetzen

Aufgabe 110. Es sei C eine gegebene Kurve außerhalb einer Ellipse E Von den
Punkten P von C werden die Tangenten an E gezogen Fur welche Punkte P hat das
von der Beruhrungssehne abgeschnittene Elhpsensegment maximale oder minimale
Flache Vicente Inglada, Madrid

Losung Mit einer flachentreuen Affinitat 0 transformiert man die Ellipse E in einen
Kreis K, die Kurve C in die Kurve C* Aus dem zum Punkte P auf C gehörenden Elhp
sensegment wird em Kreisabschnitt Der Ort aller Punkte X*, fur welche die Flache x
des Kreisabschnittes einen festen Wert hat, ist ein zu K konzentrischer Kreis Kx
Durch den Punkt P* der Kurve C* geht der Kreis K-

a) Die Flache x des dem Punkte P* zugeordneten Kreisabschnittes ist weder ein
Maximum noch ein Minimum, wenn K- die Kurve C* schneidet oder (2« + l)-punktig
berührt

b) Die Flache x ist em Minimum (Maximum), wenn K^ die Kurve C* in P* (2 n)-
punktig berührt und in einer genügend kleinen Umgebung von P* die Kurve C* außerhalb

(innerhalb) von K% hegt
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Die Affinität &"1 transformiert den Punkt P* auf C* in den Punkt P auf C, den Kreis
Kz m eine zu E konzentrische ahnliche Ellipse und die Kriterien a und b behalten
ihre Gültigkeit R Lauffer, Graz

Eine weitere Losung sandte H Debrunner (Lyß)

Aufgabe 111. Bei einem Dreieck mit den Seiten a b c ist die Potenz des Schwer
punktes in bezug auf den Umkreis gegeben durch — (a2 + ö2-f c2)/9 Man formuliere
und beweise den entsprechenden Satz fur n Punkte auf einer Kugelflache beliebiger
Dimensionszahl (in einem euklidischen Raum) A Stoll, Zürich

Losung Die n Punkte werden durch ihre Ortsvektoren Alt A2 An mit dem
Ursprung im Zentrum der (n — 1) dimensionalen Kugel gegeben Ist R der
Kugelradius, so gilt R2=A\ A\ Der Schwerpunktsvektor ist

n '

und die Potenz des Schwerpunktes

P= S2-R2 \(ZAr)2-R2
n2 l'

also
n2P ZA\+2ZAlAi-nZA\ 2ZAxA0~(n-\)ZA\

Die n Punkte bilden ein Polytop mit (2) Kanten, deren Quadratsumme

X £ (At- A3)2 (n - 1) £ A2 - 2 £ AtA3 -n2 P
ist, woraus

p=-\xn2
A Bager, Hjorrmg, Danemark

Weitere Losungen gingen em von C Bindschedler (Kusnacht) H Faehndrich
(Bern), R Lauffer (Graz), F Leuenberger (Bern)

Aufgabe 112. Ein Dreieck bei dem der Abstand des Schwerpunktes vom
Umkreismittelpunkt einem Drittel des Umkreisradius gleichkommt ist rechtwinklig Das Um
gekehrte ist evident A Stoll, Zürich

/ Losung In jedem Dreieck liegen der Umkreismittelpunkt U der Schwerpunkt 5
der Hohenschnittpunkt H und das Zentrum F des Feuerbachschen Kreises g auf der
Eulerschen Geraden Fur die gegenseitigen Abstände gilt US SF FH 213 Weil
F die Strecke UH halbiert und der Radius von 5 die Hälfte des Umkreisradius r ist
hegt H außerhalb bzw innerhalb bzw auf dem Umkreis U wenn dasselbe fur 5 zu
trifft Es ist klar, daß H m spitzwinkligen Dreiecken innerhalb U, in rechtwinkligen
auf U liegt In stumpfwinkligen Dreiecken hegt H ersichtlich außerhalb g, also auch
außerhalb U Davon gilt auch die Umkehrung Ist nun US r/3 so wird UH=r,
und das Dreieck ist rechtwinklig H Faehndrich, Bern

Aus dieser Losung ergibt sich sofort, daß die spitzwinkligen Dreiecke durch US < r/3
die stumpfwinkligen durch US > r/3 charakterisiert smd

2 Losung Wählt man den Umkreis als Einheitskreis in der Gaußschen Zahlenebene
so lautet die Bedingung

| ^«4-^+V

Die Zahl z et(X + e%ß-\- ety muß also einerseits auf dem Einheitskreis liegen, anderseits
aber auch auf dem Kreis um eta-\-etß mit Radius 1 Falls diese beiden Kreise nicht zu
sammenfallen, das heißt et<x-{-etß 0, schneiden sie sich m den Punkten et<x und etß
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Wenn also nicht eta + elP= 0, so gilt entweder etß+ely=0 oder et(x + ei) 0 In allen
drei Fallen ist das Dreieck rechtwinklig C Bindschedler, Kusnacht

Weitere Losungen sandten A Bager (Hj0rnng, Danemark), J P Boss (La Chaux-
de-Fonds), H Debrunner (Lyß), H Kaufl (Landshut, Bayern) L Kiefper (Luxemburg),

R Lauffer (Graz), A Moor (Debrecen, Ungarn)

Aufgabe 113. Kann die Summe der ersten n Kubikzahlen fur n>l wieder eine
Kubikzahl sein "> (Vgl Aufgabe 71 E Trost, Zürich

Losung Die Summe der ersten n Kubikzahlen ist das Quadrat der Dreieckszahl
n (n + l)/2 Schon Legendre hat bewiesen, daß außer 1 keine Dreieckszahl em Kubus
ist [Essai sur la thSorie des nombres, 2 Aufl (Paris 1808), S 348] Der Beweis stutzt
sich auf die Unlosbarkeit der diophantischen Gleichung x3^ yz= 2 zz fur x*y,
welche durch eine «descente mfinie» bewiesen wird Somit ist auch das Quadrat einer
Dreieckszahl 4= 1 kein Kubus

Neue Aufgaben

145 Es sei nx< n2< eine unendliche Folge ganzer Zahlen es sei hm«fc/logÄ oo.
OO

Dann ist E 2~n* transzendent P Erdos, London
A l

146 Em geometrisches Kriterium fur reelle algebraische und transzendente Zahlen Es sei
ein quadratisches Punktgitter gegeben Die beiden Hauptrichtungen des Gitters
nennen wir die horizontale und vertikale Richtung g sei eine gegebene Gerade
durch den Gitterpunkt O, s ihre Steigung Nun denke man sich einen in O

beginnenden rechtwinkligen Streckenzug OP1P2P3 dessen Ecken Plt P3, P5,
auf vertikalen Gittergeraden liegen, wahrend P2, P4 P6, horizontalen
Gittergeraden angehören Die erste Strecke OP1 hege auf der gegebenen Geraden g
Die Zahl s ist algebraisch von w-tem Grade, wenn man durch einen w-ghedngen
Streckenzug, aber nicht durch einen solchen mit weniger als n Gliedern, einen
Gitterpunkt erreichen kann L Locher Ernst, Winterthur

147 Zwei konzentrische Kugeln drehen sich mit konstanten Winkelgeschwindigkeiten
um zwei Durchmesser, welche einen gegebenen Winkel bilden Zwischen beiden
Kugelflachen rollt ohne zu gleiten eine dritte Kugel, indem sie die beiden ersten
berührt Wie groß ist die Geschwindigkeit des Zentrums der dritten Kugel und welche
Kurve beschreibt die Spitze seines Ortsvektors "> G Tordion, Zürich

148 U sei der Mittelpunkt des Umkreises eines Dreiecks AXA2AS oder kurz (At), x ein
beliebiger Strahl Gerade mit Durchlaufungssmn) und xt sein Spiegelbild in
bezug auf eine Normale zur Gegenseite von At (i 1, 2, 3) Ferner seien F der
Mittelpunkt des Feuerbach-Kreises von (At) und Gt seine ein gleichseitiges Dreieck

bildenden «Grundpunkte», welche die äußeren Feuerbach-Kreisbogen von der
Mitte bis zum Hohenfußpunkt der fc-ten Seite im Verhältnis 1 2 teilen Dann gilt

1. Die drei Strahlenpaare xt, UAt haben parallele Winkelhalbierende
2 Dank 1 gehört zu jedem Strahl x bis auf Translationen eindeutig eine

Gerade g(x), und zu jeder Geraden x gehört bis auf Translationen eindeutig ein
rechtwinkliges Achsenkreuz k(x)

3 # und g(x) sind dann und nur dann parallel, wenn # gegenläufig parallel ist
zu einem der Strahlen FG%

4 Es gibt, abgesehen von Translationen, ein einziges rechtwinkliges Achsenkreuz

k(e), m bezug auf welches die Richtungskosinus at, bt der Seiten von (A{),
unabhängig von deren Durchlaufungssmn, der Bedingung E at bt 0 genügen
Es entspricht der Euler-Geraden e von (At) und wird nur dann unbestimmt, wenn
(At) gleichseitig ist A Stoll, Zürich.
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