
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 7 (1952)

Heft: 1

Artikel: Eine kombinatorische Systematik der Punktmengen

Autor: Aigner, Alexander

DOI: https://doi.org/10.5169/seals-16350

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-16350
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


A Aigner Eine kombinatorische Systematik der Punktmengen 11

Für das n-mal wiederholbare Experiment sind p, q, e vorgegebene, feste Zahlen Wie
klein e auch gewählt wird, so wird doch S(e) mit wachsendem n gegen 1 streben Die
Wahrscheinlichkeit S(e), daß die Trefferzahl r zwischen n(p —e) und n(p -f- e) hegt
oder daß die relative Trefferzahl r\n sich von p um weniger als e unterscheidet, daß
also

--p <€

ist, geht mit wachsender Versuchszahl n gegen 1

Beispiel Die Zahl 6 trete beim Wurfein mit der Wahrscheinlichkeit 1/6 auf Wie
groß muß die Zahl der Wurfe n gewählt werden, damit die Wahrscheinlichkeit 0,999
dafür betragt, daß die relative Trefferzahl r/n sich von 1/6 um weniger als e 1/60
unterscheidet

Nach (7) gilt
1 5

S(e) > 1 - 6 6
> 0,999

3600
oder

n > 500000.

Wird dieser Würfel 500000mal geworfen, so kann man 1 999 wetten, daß die
beobachtete relative Trefferzahl r/500000 sich von 1/6 um weniger als 1/60
unterscheidet, das heißt, daß

r 1 <^500000 6

ist, oder daß fur die wirklich beobachtete Trefferzahl gilt

75000 < r < 91667

Eine schärfere Abschätzung zeigt, daß nur n > 5 415 sein muß
P Buchner, Basel.

Eine kombinatorische Systematik der Punktmengen

In Ergänzung zum sonst üblichen Vorgehen bei den Grundbegriffen der Punkt
mengenlehre sei hier eine von kombinatorischen Gesichtspunkten getragene Systematik

gegeben
Wir nehmen einen gewohnlichen euklidischen Gesamtraum (Gerade, Ebene) an und

in ihm eine Punktmenge M, deren Komplement auf den Gesamtraum M heißen

möge. Wir klassifizieren nun einen beliebigen Punkt des Raumes nach folgenden drei
Fragen: 1. Ist er Punkt von M 2 Ist er Haufungspunkt von M 3. Ist er Haufungs-
punkt von Ml — Die rein kombinatorisch vorhandenen acht Möglichkeiten treten
nicht alle auf, weil em Punkt sicher mindestens Haufungspunkt von M oder von M
sein muß. Die gleichzeitige Verneinung der 2. und 3. Frage scheidet also aus.
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So kommen wir auf sechs Punktarten Wir bezeichnen sie (bezuglich der Menge M)
mit den angeführten Namen und ihre Mengen mit den nachstehenden Buchstaben

Punkt von M Haufungs
punkt von M

Haufungs
punkt von M

1 ja ja nein Innenpunkt /
2 ja ja ja innerer Randpunkt *.
3 ja nein ja isolierter Punkt J
4 nein ja nein Lücke L
5 nein ja ja äußerer Randpunkt K
6 nein nein ja Außenpunkt A

Diese Arten sind paarweise zueinander dual, das heißt, was die eine zu M ist, ist die
andere zu M, und zwar 1 und 6, 2 und 5, 3 und 4 So ist zum Beispiel eine Lücke von
M ein isolierter Punkt von M

Mit Hilfe dieser Bezeichnungen drucken sich leicht gewisse Eigenschaften der Menge
M aus So ist fur eine abgeschlossene Menge Ra= L 0, fur eine in sich dichte
Menge / 0, fur eine perfekte daher R, — L — J 0, fur eine offene Menge
Ri / 0 Wegen der angeführten Dualität sieht man daraus auch sofort, daß
offene und abgeschlossene Mengen zueinander Komplemente sind

Wir wenden uns nunmehr der Frage zu, welche Kombinationen dieser sechs Punktarten

es wirklich gibt Über jede Art ist die Entscheidung zu fallen, ob sie vorkom
men soll oder nicht Daß aber von diesen 64 rein denkbaren Kombinationen nicht
alle wirklich existieren, lehren bald folgende Regeln

I Mit I 0 ist auch L 0, analog mit A 0 auch / 0

II Mit Rt Ra 0 ist I 0 oder A 0

III Mit / — Rt / 0 ist auch Ra L 0, A 4= 0 der Gesamtraum Der Ansatz
bestimmt eindeutig die Nullmenge Dazu analog
Mit A Ra L — 0 ist auch Rt / 0, I 4= 0 der Gesamtraum Der Ansatz
bestimmt eindeutig die Gesamtmenge

Regel II ist auch umgekehrt positiv zu formulieren Mit / 4= 0 und A 4= 0 ist Rt 4= 0
oder ica4= 0, das heißt, gibt es einen Innen- und einen Außenpunkt, so gibt es auch
mindestens einen (inneren oder äußeren) Randpunkt

Dieser Satz ist leicht einzusehen Wir betrachten den Halbierungspunkt der gerad
linigen Verbindung zwischen dem Innen- und dem Außenpunkt Ist dieser schon em
Randpunkt, so ist nichts mehr zu beweisen Gehort er aber zu / oder L, so gibt es

m semer Umgebung Punkte von A bzw von I Wir kommen dann also auf jeden
Fall auf eine Strecke von höchstens halber Lange, deren Endpunkte ein Innen- und
em Außenpunkt sind Dieses Verfahren laßt sich fortsetzen und liefert (falls man
nicht schon bei endlich viel Schritten auf einen Randpunkt stoßt) durch Intervall-
schachtelung einen Punkt, der Haufungspunkt von Innen- wie von Außenpunkten
ist und somit nur ein Randpunkt sein kann

Das System dieser Regeln ist vollständig, das heißt, die nicht durch sie ausgeschiedenen

Kombinationen bleiben auch wirklich bestehen
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Regel I kürzt den Bestand zweimal auf 3/4, läßt also 36 Kombinationen übrig.

Davon streicht Regel II noch 4 und Regel III weitere 5, so daß schließlich 27
übrigbleiben. Diese 27 gibt es nun tatsächlich, wie an Hand einer systematischen Aufzählung

gezeigt sei. Jeder Mengentyp ist durch ein — meist unter reicher Auswahl
genommenes — Beispiel einer linearen Punktmenge belegt. Dabei sei 1 das Symbol des

Vorkommens, 0 das Symbol des Nichtvorkommens einer Punktart, wobei ersteres
natürlich nicht heißen soll, daß es nur einen Punkt der betreffenden Art gibt.

R, J L Ra 1

1 1 1 1 1 (0,1 ohne 1 '2 und 2

2 1 0 1 1 (0,r ohne 1'2
3 1 1 0 1 (0,1 ' und 2

4 1 ü 0 l (0 1

5 0 1 1 1 (0,1) ohne 1 2 und 2

6 0 0 l 1 (0,1) ohne 1 2

7 0 1 0 1 (0,1) und 2

8 0 0 0 1 (0,1)

9 1 1 1 0 [0,1] ohne 1/2 und 2

10 1 0 1 0 0,1 | ohne 1/2
11 1 1 0 0 f 0,1 ] und 2

12 1 0 0 0 1<U]

13 0 1 1 0 1 positiv rational und negativ ganz
14 0 1 0 0 1 positiv rational
15 0 0 1 0 1 {1, 1 2, 1/3,
16 0 1 1 0 ü {1, 1/2, 1/3, ...,()}
17 0 1 0 0 0 triadische Menge von Canto^
18 0 0 1 0 0 ganze Zahlen, — endliche M * 0

19 0 0 0 0 0 Nullmenge

20 1 1 0 1 1 0 Komplement zu 13

21 1 1 0 0 1 0 Komplement zu 14

22 1 1 0 1 0 0 Komplement zu 1 5

23 1 ü 0 1 1 0 Komplement zu 16

24 1 0 0 0 1 0 Komplement zu 17

25 1 0 0 1 0 0 nichtganze Zahlen
26 1 0 0 0 0 0 Allmenge

27 0 1 0 0 1 0 rationale Zahlen

Somit ersehen wir den Satz :

Es gibt 27 Mengentypen bezüglich der 6 Punktarten.
1 bis 4 ist im wesentlichen der Typ des halboffenen Intervalls, 5 bis 8 der des offenen,

9 bis 12 der des abgeschlossenen. Die Typen 13 bis 19 sind ohne innere Punkte
(Randmengen); 20 bis 26 dazu komplementär, ohne äußere Punkte. Allgemein ist die

Komplementärmenge vom Typus der umgekehrt gelesenen Reihenfolge. Daher
existiert mit einem solchen Typ auch immer der umgekehrte. 1, 4, 27 sind zu sich selbst
invers, symmetrisch.
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Vom Typ 19 ist nur die Nullmenge, vom Typ 26 nur die Allmenge. Endliche
Mengen (außer 0) haben alle den Typ 18, von welchem es aber auch unendliche
Mengen gibt. Die Typen 1 bis 12, 20 bis 26 als Mengen mit Innenpunkten, ferner 17

als perfekt sind nicht abzählbar. 15 und 18 sind sicher abzählbar, während es von den
Typen 13, 14, 16, 27 sowohl abzählbare als auch nichtabzählbare Mengen gibt.

Alexander Aigner, Graz.

Aufgaben

Aufgabe 106. Gegeben sind ein Strahlenbüschel mit dem Mittelpunkt M und ein
von M verschiedener Punkt A in der Ebene des Strahlenbüschels. Man durchlaufe
von A aus eine völlig stetige, in A endende Kurve, die mit jedem Strahl des Büschels
genau einen Punkt gemeinsam hat. Wenn die Kurve keine Gerade ist, besitzt sie
entweder mindestens drei Wendepunkte oder mindestens einen Wendepunkt und mindestens

eine Spitze. (Eine Kurve heißt «völlig stetig», wenn sie sowohl bezüglich ihrer
Punkte als auch ihrer als existierend vorausgesetzten Tangenten stetig ist. Sie braucht
hingegen nicht algebraisch, auch nicht einmal analytisch zu sein.)

L. Locher-Ernst, Winterthur.
I.Lösung: Geht die Tangente eines Punktes P der Kurve durch M, so muß P ein

Wendepunkt oder eine Spitze sein, was leicht aus der Voraussetzung folgt, daß jede
Gerade des Büschels in M genau einen Punkt mit der Kurve gemeinsam hat.

Sei P0 ein gewöhnlicher Punkt der Kurve; seine Tangente geht also nicht durch M.
Wir betrachten die Variation des Schnittpunktes Q der Tangente in P mit der Geraden
P0M, wenn P die Kurve in einem bestimmten Sinne durchläuft. Lassen wir P eine
Umgebung von P0 durchlaufen, so erreicht Q den Punkt P0 und verläßt ihn wieder mit
umgekehrter Bewegungsrichtung (dabei benützen wir, daß P0M nicht Tangente in P0

ist). Lassen wir P die Kurve von P0 aus bis zurück nach P0 durchlaufen, so muß Q
seine Bewegungsrichtung in einem Punkte Qx ändern, da Q von P0 ausgeht und mit
umgekehrter Bewegungsrichtung nach P0 zurückkommt. Der dem Punkte Qx entsprechende

Punkt Px der Kurve ist ein Wendepunkt.
Es existiert also mindestens ein Wendepunkt Px.
Wir betrachten jetzt die Variation des Schnittpunktes X der Tangente in P mit der

Geraden PxM, wenn P die Kurve in einem bestimmten Sinne durchläuft. Lassen wir P
eine Umgebung von Px durchlaufen, so durchläuft X eine Umgebung von Px auf PXM,
ohne seine Bewegungsrichtung zu ändern (dies gilt auch im Falle, daß PXM Tangente
in Px ist). Lassen wir P die Kurve von Px aus bis zurück nach Px durchlaufen, so
bestehen genau zwei Möglichkeiten:

1. X durchläuft ein oder mehrere Male die ganze Gerade PXM, ohne seine Bewegungsrichtung

zu ändern. Dann durchläuft X mindestens einmal den Punkt M. Die M
entsprechenden Punkte der Kurve sind Spitzen, da X seine Bewegungsrichtung beim Durchlaufen

von M beibehält. Es existiert also in diesem Falle mindestens eine Spitze.
2. X ändert seine Bewegungsrichtung in einem Punkte X2. Dann ändert X seine

Bewegungsrichtung in mindestens einem weiteren Punkte X3, da, X beim Wiedereintreffen

von P in PX die ursprüngliche Bewegungsrichtung haben muß. Die den Punkten
X2 und Xz entsprechenden Punkte P2 und P3 der Kurve sind weitere Wendepunkte.

Damit haben wir gezeigt, daß die Kurve entweder mindestens einen Wendepunkt
und mindestens eine Spitze oder mindestens drei Wendepunkte besitzt.

Erste Bemerkung. Im obigen Falle 2 ist die Anzahl der Umkehrstellen von X immer
gerade, woraus folgt, daß die Anzahl der Wendepunkte der Kurve stets ungerade ist
(sofern sie endlich ist).

Zweite Bemerkung. Wir haben beim Beweis vorausgesetzt, daß die Kurve keine
Geradenstücke enthält. Läßt man diese Voraussetzung fallen, wobei aber die Kurve
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