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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts
Organ fiir den Verein Schweizerischer Mathematiklehrer

El.Math. Band VI Nr.6 Seiten 121-144 Basel, 15.November 1951

Die Brennpunktseigenschaften der Kegelschnitte
im komplexen Gebiet

Ellipse und Hyperbel hdangen durch eine komplexe Affinitit zusammen. In ihren
Brennpunktseigenschaften (zum Beispiel konstante Leitstrahlsumme bzw. -differenz)
kommt aber nicht unmittelbar zum Ausdruck, daf sie im Komplexen eng verwandt®
sind. DaBl dennoch Zusammenhinge bestehen, zeigen die folgenden Betrachtungen.

Zunichst ergibt sich, daB die elementaren Definitionen der Kegelschnitte nur be-
schrinkte Giiltigkeit im komplexen Gebiet haben. Hierauf werden die Eigenschaften
der komplexen Brennpunkte aufgesucht. Auch die nullteiligen Kegelschnitte werden
betrachtet. SchlieBlich wird der Ort der Punkte konstanter Leitstrahlsumme bzw.
-differenz untersucht, wenn statt zweier Brennpunkte eine endliche Anzahl von
Brennpunkten vorliegt.

Diese Untersuchungen sind auch erforderlich, um gewisse scheinbare Wider-
spriiche zu klaren. Zum Beispiel ist fiir die komplexen Schnittpunkte einer Hyperbel
mit ihrer imagindren Achse die Leitstrahldifferenz nicht 24, sondern Null, da die
imagindre Achse die Streckensymmetrale der Brennpunkte ist. Und fiir die kom-
plexen Fernpunkte einer Ellipse ist die Leitstrahlsumme nicht 24, sondern unendlich
groB. Schon diese Beispiele zeigen, daB die iibliche Betrachtungsweise unzuldnglichist.

1. Konstante Leitstrahlsumme oder -differenz

x und y seien die kartesischen Koordinaten eines Punktes P, d; und d, seine Ab-
stinde von den reellen Brennpunkten Fj(e, 0) und F,(—e, 0). Wir suchen den Ort
der Punkte, fiir die

+ditdy=2a (1)

ist, wo a eine reelle Konstante bedeutet. Es ist also

1LV (x— o2+ v2+V(x+ €2+ y2=2a. 2)

Hieraus folgt — unabhingig von der in (1) gewahlten Vorzeichenkombination —
durch zweimaliges Quadrieren:

(a®— e?) %+ a?y?= a®(a®— ¢?). (3)
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Diese Gleichung zweiten Grades stellt eine notwendige Bedingung dar; das heiBt,
wenn P eine der vier Relationen (1) erfiillt, gentigen seine Koordinaten (3). Nun ist
zu untersuchen, ob (3) auch hinreichend ist, das heifit, ob ein Punkt, der (3) geniigt,
eine Relation (1) erfiillt.

Setzt man e¢/a = ¢ und eliminiert y mittels (3), so folgt

dy=-4 (a—¢e%x), dy=- (a+ex). 4)

Ist x komplex, dann sind d; und d, komplex, und beide Vorzeichen von d; bzw. 4,
sind gleichberechtigt. Man kann sie stets so wihlen, daB fiir einen bestimmten Kur-
venpunkt entweder d, + d, oder d; — d, oder —d,+ d, oder —d, — d, den Wert 24 hat.

di=3-€EX

A y j di,dz Fi

e a1
“ PN I o
Yo Y Y
di~d,=2a dy+d. =22 de-ds =28
Fig. 1

Ist dagegen x eine beliebige reelle Zahl, so sind d; und d, reell, und man kann die
Vorzeichen in (4) so normieren, da8 4, und d, positiv sind. Wir setzen fiir das folgende

L 5)

x = [ stellt bekanntlich die zu F; gehorige Leitlinie f; des Kegelschnitts dar, das heif3t
die Polare von F,. Ebenso ist x = —f die zu F, gehorige Leitlinie f,. Wegen (4) ist
di=a—¢e¢x=20, wenn x < f,und d;=—a+ex =0, wenn x = f ist. Ebenso ist
dy=—a—ex=0, wenn x< —f, und dy=4a+ ex =0, wenn ¥ = —f. Dies zeigt,
daB ein Kurvenpunkt mit reellem x im allgemeinen nur eine einzige Relation (1)
erfiillt; es gilt (unabhidngig vom Wert, den y annimmt):

diy—dy=2a, wenn x=-—f,
di+dy=2a, wenn —f=x</, (6)

—dy+dy=2a, wenn [=ux.
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Fir die Punkte mit x =/ ist d;=0, dy=2a, daher 4, + dy= 2a und zugleich
—dy+ dy= 2a; analog fiir die Punkte mit x = —/.

In Figur 1 sind 4, und 4, fiir eine Ellipse (& > ¢) als Funktionen von aufgetragen?).
Die Figur zeigt, daB im Grenzfall auch fiir die komplexen Fernpunkte der Ellipse
|dy — dy| = 2a ist. Fiir eine Hyperbel ergibt sich eine analoge Figur. Fiir die kom-
plexen Scheitel der Hyperbel ist d; = d, = a, d, + d, = 2a.

Die Kurvenpunkte mit reellem x ergeben sich daher als (reelle oder komplexe)
Schnittpunkte je zweier reeller (das heiBt einteiliger) Kreise (Fy, dy) und (F,, d,) (das
heiit Mitte F,,, Radius d,,, m = 1, 2). Dabei entsprechen einem Kreis (£, dy) zwei
Kreise um F, nimlich (F, |24 —4,|) und (F,, 2a + d,), wie Figur 1 (gestrichelte

Fig. 2

Linien) zeigt. 4, nimmt hier jeden nichtnegativen reellen Wert an, insbesondere ent-
spricht dem Nullkreis (£, 0) der Leitkreis (F,, 2 4), die zugehdrigen konjugiert kom-
plexen Kurvenpunkte liegen auf f,. Ebenso liegen die Schnittpunkte von (F, 2 a)
und (£, 0) auf f,.

Zu den Punkten mit reellem x gehéren auch die reellen Kurvenpunkte. Aus (3) folgt

y2= (1 — &%) (a®— #?). (7)

Das ergibt die Unterscheidung in Ellipsen (¢ <1, |x| <a) und Hyperbeln
€>1,]%] = a). - .
Die Gleichungen (6) lassen sich auch an der Dandelinschen Beweisfigur synthetisch
herleiten (Figur 2). Ein Drehkegel mit der Spitze S, dessen Achse”s 1.1nd dessen Erzeu-
genden s; und s, in der Bildebene liegen, werde von der projizierenden Ebeng €
(Spur ¢”) zum Beispiel nach einer Ellipse % geschnitten (fiir eine Hyperl?el gelten die-
selben Uberlegungen). Die Dandelinschen Kugeln K; und K, beriihren ¢ in den Brenn-
punkten F, und F, von % und beriihren den Kegel lings der Parallelkreise %, und %,,

Y Die Bildgeraden dieser linearen Funktionen sind iibrigens Tangenten des Kegelschnitts (in den
Punkten mit x = 4 ¢).
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die in den Ebenen ¢, und ¢, liegen. Der Normalril von %, bzw. %, besteht bekanntlich,
wenn man die komplexen Punkte des Kreises mit einbezieht, nicht nur aus einer
Strecke, sondern aus allen reellen und komplexen Punkten der Geraden ¢ bzw. &3.
Fiir einen reellen Ellipsenpunkt P folgt in bekannter Weise PF, + PF,=2a. Ist
Q ein komplexer Ellipsenpunkt mit reellem x, so ist sein Normalri3 ein reeller
Punkt Q" auf ¢” = &". Q" liege zum Beispiel zwischen f; und s,. Die Kegelerzeugende
durch @ hat den reellen Ri8 [SQ”], ihr komplexer Schnittpunkt mit %, bzw. %,
hat den reellen RiB Q) auf & = &k bzw. Qy aufl & = k,. Da alle Tangenten
aus Q an K, gleich lang sind, ist 4, = QF = Q(Q,. Ebenso ist d,= QF,= QQ,, daher
d, + dy = 0,0, = 2a (denn g und ¢, schneiden aus jeder Erzeugenden die Strecke

S -
W €=k
A €'y f

Fig.3

2a). Ist R ein komplexer Ellipsenpunkt mit reellem x, dessen reeller Ri3 R” ober-

halb ¢ auf ¢" liegt, so folgt ebenso d, — d, = R, R,= 2a. Die Ellipsenpunkte mit reel-
lem x und d; — d, = 2a haben ihren Normalri} unterhalb &,.

Ist fiir einen Kurvenpunkt jedoch x komplex, so ist sein NormalriB nicht reell,
und man kann nicht sagen, ob er oberhalb oder unterhalb ¢ bzw. g, liegt. Daher
gelten fiir einen solchen Punkt beide Vorzeichen von 4; und d,, und er erfiillt alle
vier Relationen (1).

2. Konstantes Verhdltnis der Abstinde von Brennpunkt und Leitlinie

Der Abstand eines Kurvenpunktes P(x,y) von der Leitlinie f,(x = /) bzw.
fo(x = —f) heiBe d; bzw. d;. Es ist bekanntlich

| dm| = &. (m=1,2) (8)
Da (8) zum Beispiel fiir m = 1, in Koordinaten ausgedriickt,
a [

Va—aityi=x (s 2) ©)

lautet und diese Gleichung quadriert wird, gehdren zu einem Wert d; zwei entgegen-
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gesetzt gleiche Werte d;, das heiBt, die vier Schnittpunkte eines Kreises (F;, d;) mit
dem Kegelschnitt liegen auf zwei zu f; symmetrischen Geraden. Dies gilt im Grenz-
fall ¢ =1 auch fiir die Parabel. Ist d; reell, so sind diese vier Punkte zugleich die
Schnittpunkte des Kreises (Fy,d;) mit den beiden Kreisen (F;, 2a + d,) und
(-F2» |2d - dl])

Dies 148t sich auch an der Dandelinschen Beweisfigur verfolgen (Figur 3). Eine zu
K, konzentrische Kugel K schneidet ¢ nach einem Kreis. Sie schneidet den Kegel nach
zwei Parallelkreisen. Deren Ebenen ¢, und ¢,, liegen symmetrisch zu ¢, denn &¢” und
s, (oder s,) sind Tangenten des Umrisses von K, und die zu K, konzentrische Kugel K
schneidet auf diesen Geraden dieselbe Streckenlinge 24, aus. Die in g, und &, lie-
genden Parallelkreise des Kegels schneiden daher ¢ in zwei zu f, symmetrischen und
parallelen Geraden f,; und f,,, deren Schnittpunkte mit dem zugehdrigen Parallelkreis
dem Kegelschnitt angehdren.

3. Konstantes Produkt der Brennpunkisabstinde der Tangenten

Der Kegelschnitt (3) 1aBt sich als Punktort durch die Forderung (1) oder auch
durch (8) charakterisieren. Bezeichnen #; und £, die Abstidnde einer Kegelschnittstan-
gente von F, bzw. F,, so 1aBt er sich als Tangentenort durch die Forderung

bity=a%t—e? (10)

festlegen, denn die Tangente im Punkt (x, y) des Kegelschnitts lautet in der Hesse-
schen Normalform wegen (3):

(@®—e) v &+ atyn—a (a®— e?) 0
V a?— e? Va]— 2 42

(laufende Koordinaten &, ). Daher ist

5 1/f—x ey VA2

Va2 2|/~ — — ITx
tl_l/a e R ts l/a e e (17)
und hieraus folgt (10). Sind ¢, und #, komplex, so kénnen die Wurzeln in (11) beiderlei
Vorzeichen erhalten. Zum Beispiel folgt, wenn x — oo, fiir die konjugiert komplexen

Asymptoten einer Ellipse #; = f, = 4 ¢ Va2 — e,

Ist die Tangente aber reell, so sind ¢ und % reell, und man wihlt die Vorzeichen
gleich oder ungleich, je nachdem F, und F, auf derselben oder auf verschiedenen
Seiten der Tangente liegen. Zur Abszisse # gehoren dann zwei reelle Tangenten. Sie
sind bei der Ellipse die duBeren und bei der Hyperbel die inneren gemeinsamen Tan-
genten der Kreise (F,, t,) und (£, #). Die Beriihrungspunkte dieser Tangenten mit
den beiden Kreisen liegen auf dem groBen Scheitelkreis des Kegelschnitts. [Die iibri-
gen gemeinsamen Tangenten beider Kreise umbhiillen den durch ¢, 4, = — .(az* e?)
bestimmten Kegelschnitt; dieser hat dieselben Brennpunkte F, und F, und die groBe

Halbachse V2 e2 — a?]. _ )
t, und ¢, konnen aber auch reell sein, ohne daB die zugehdrigen Tangenten reell sm.d.
Bei der Ellipse tritt dies fiir @ <|x| </, bei der Hyperbel fir <| x| <a ein.



126 F.HoHENBERG: Die Brennpunktseigenschaften der Kegelschnitte im komplexen Gebiet

Zur Abszisse x gehdren dann zwel konjugiert komplexe Tangenten, die sich im duBeren
bzw. inneren Ahnlichkeitspunkt der Kreise (£, ¢;) und (F, ¢,) schneiden.
Aus (4) und (11) folgt tiberdies

tlz l/az___ 62 —;{l‘ N tzz l'/;"z_::; |/ gf y tl: t2 = d]_: d2. (12)

2

4. Beziechungen zu den komplexen Brennpunkien

In der projektiven Geometrie betrachtet man neben den reellen Brennpunkten F;
und F, die konjugiert komplexen Brennpunkte F5(0, ¢¢) und F,(0, —e<) der Ellipse
oder Hyperbel. Es scheint nicht bekannt zu sein, daB F; und F, dhnliche metrische
Eigenschaften wie F; und F, haben.

1. Fiir die Abstidnde eines Kurvenpunktes von F; und F, ergibt sich wegen (3):

at*—et—eiy a—e+teiy

Daraus folgt als Seitenstiick zu (1) die Beziehung
+ds+dy=2)a%— 2. (14)

Berechnet man x aus (4) und y aus (13), so ergibt sich durch Einsetzen in (3) auch
eine Beziehung zwischen d; (oder 4,) und d; (oder d,),

@t a)?— (dptVa2—e®)2=e2 (m=1,2; n=3,4) (15)

2. F; hat als Polare f; die komplexe Leitlinie y = —¢(f — ¢), zu F, gehort als Polare
f, die konjugiert komplexe Leitlinie y = ¢(f — ¢). d3 bzw. d; seien die Abstdnde eines
Kurvenpunktes von f; bzw. f,. Es folgt wie in 2., daB auch die Verhiltnisse
d,:d, (n = 3,4) konstant sind,

AT A E—— (n=3,4) (16)

Dieses Verhiltnis ist bei einer Ellipse rein imaginidr, bei einer Hyperbel ist es reell,
und zwar > 1.
3. Die Hessesche Normalform der Tangente kann wegen (3) auch in der Form

(@®—e?) x E+atyn—a®(a®—e?)
a V(}“i:‘gzjz—fpé?;é

=0

geschrieben werden. Fiir die Abstdnde #; und £, der Brennpunkte F; und F; von der
Tangente des Punktes (x, y) folgt

at—et—eiy . at—elteiy
lg=a I/ a—etteiy’ ly= al/;“‘——ez-—ei y (17)
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Daraus ergibt sich als Seitenstiick zu (10) die Beziehung

Auch zwischen #, (oder £,) und #; (oder 7,) ergibt sich eine Beziehung, wenn man x
aus (11) und y aus (17) ausdriickt und in (3) einsetzt. Sie lautet

at— e?— 12, \2 24212
a? (ZE“;:E?;;) — (a2—e?) (—“w:) — et (m=1,2; n=34) (19)
5. Nullteilige Kegelschnitte

Bisher waren ¢ und 4 reell vorausgesetzt. Ist ¢ reell, aber a rein imagindr, so ist der
durch (1) bestimmte Kegelschnitt nullteilig. Setzt man

a=1ta, e:~2—= —%izus’z',

(a’, ¢, positiv reell) (20)

2 a’? ;

f= =y,

so lauten die Gleichungen (1), (3) und (4) nunmehr

tdi+dy=214, (1)
(a’2_|_ 32) x2 + a’2 y2+ a’2 (a'2+ 62) — O’ (3’)
dy=21(a+ &%), dy=H47(a,—¢2). (4)

Fiir komplexes x sind in (4’) beide Vorzeichen gleichberechtigt. Fiir reelles x sind d,
und d, rein imaginir, und man kann die Vorzeichen in (4') so normieren, daf 4, und 4,
positiv imaginir sind. (Man darf hier von «positiv imagindren» Zahlen sprechen, weil
diese Zahlen im folgenden nur addiert oder subtrahiert werden.) Es ist dann

—dy+dy=21a', wenn 2x=—f
di+dy=217a’, wenn —f=sx =, (6")
dy—dy=21a’, wenn [=x.

Durch eine geeignete Abinderung der Dandelinschen Beweisfigur 148t sich dies
auch synthetisch herleiten. In Figur 4 stehen dieselben Bezeichnungen wie in Figt.lr 2.
Die Kugeln K, und K, schneiden sich hier reell, ihr innerer Ahnlichkeitsgunkt sei di.e
Kegelspitze S, eine duBere gemeinsame Tangentialebene (projizierend) sei die schnei-
dende Ebene e. Dann ist der Drehkegel nullteilig, und die Beriihrungskreise &, und
k, mit den Kugeln K, und K, sind auch nullteilig. Ihre Ebenen ¢ und.s2 sind die I.’qlar-
ebenen von S beziiglich K, und K,. ¢ schneidet den Kegel nach einem nullteiligen
Kegelschnitt k.

Hat ein Punkt R von % ein reelles #, so ist sein NormalriB R” ein reeller Punkt auf

"= k". R" liege zum Beispiel oberhalb &;. RF, ist die Tangentenlénge aus R an K;;;



128 F.HoHENBERG: Die Brennpunktseigenschaften der Kegelschnitte im komplexen Gebiet

sie kann auch lings der durch R gehenden Kegelerzeugenden von R bis zum Schnitt-
punkt R, mit dem nullteiligen Beriihrungskreis %, in ¢, gemessen werden. Dabei ist

die Streckenlinge SR, gleich der Wurzel aus der (negativen) Potenz von S beziiglich
K, . Da die Kegelerzeugende durch R einen reellen NormalriB3 hat und die Ebenen K;
und ¢, auf jeder Kegelerzeugenden eine Strecke konstanter Linge ausschneiden, ist
d, — dy = RF, — RF, = RR, — RR, = R\R, = const. Diese konstante, rein imagi-
nire Streckendifferenz 2 ¢ a’ ist in der Figur durch die reelle Strecke 2 a’ gekennzeich-
net, die von den Kugelumrissen auf einer horizontalen Geraden durch S ausgeschnit-
ten wird.

Aus der Figur ergibt sich auch, daB
A Ay = € (m=1,2) (8)

ist. Dabei sind die reellen Strecken d,, in wahrer Gr6Be gegeben, d,, = R"f) .
Ferner ergeben sich die Beziehungen

+dytdy=2iVa?t e, (14)

, & g . g ’

dn- d‘n = V;:;— 1 - V£/2+ 1 ’ (reell) < 1 y = 3’ 4) (16 )
bLhity,=—a'2—e% tit,=—a'2 (10°, 18)

6. Der volle geometrische Ort +-d, 4 dy = 2 a

Ellipsen, Hyperbeln und nullteilige Kegelschnitte lassen sich durch jede der gefun-
denen Eigenschaften definieren. Die Definition (8) hat den Vorteil, daB sie fiire = 1
auch den Fall der Parabel umfa8t. Es soll zum SchluB gezeigt werden, daB die Defi-
nitionen (1) und (14) den Nachteil haben, daB die durch sie bestimmten geometrischen
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Orter nicht nur aus einem Kegelschnitt, sondern noch aus der doppelt gezihlten Fern-
geraden bestehen. Fiithrt man in (2) homogene kartesische Koordinaten
x=, gy (21)
ein, so lautet (2)
+V(x —ex)?+ B+ V(0 +ex)?+ B=2ax,

Hieraus folgt durch zweimaliges Quadrieren

x3 [a2 (e — a%) 23 + (a® — €?) 43 + a2 xf] = O. (22)

Der volle geometrische Ort (1) besteht daher aus dem Kegelschnitt (3) und aus der
doppelt gezdhlten Ferngeraden x,= 0. Fiir die Punkte der Ferngeraden ist die Rela-
tion |d; — dy| = 2 a in der Weise erfiillt, daB 4, und d, unendlich groB sind und ihre
Differenz unbestimmt wird?).

Dies ist von Bedeutung, wenn man den Ansatz (1) auf » Brennpunkte F,, F,, ..., F,
in der Ebene oder im Raum erweitert und nach dem Ort der Punkte fragt, fiir die

+d,+dy4 - -+ d,=na (akonstant, natiirliche Zahl n) (23)

ist. » = 1 ergibt den Kreis bzw. die Kugel um F, mit dem Radius @, #» = 2 ergibt
einen Kegelschnitt bzw. eine Drehfliche zweiten Grades, dazu die doppelt gezihlte
Ferngerade bzw. Fernebene. Fiir » = 3 ergibt sich eine Kurve bzw. Fliache achter
Ordnung?). Fiir # =4 erhilt man eine Kurve bzw. Fliche 10. Ordnung?), dazu die
sechsfach gezihlte Ferngerade bzw. Fernebene. Allgemein bedeutet (23) fiir ungerades
n eine Kurve bzw. Fliche von der Ordnung 2". Fiir gerades » spaltet sich die Fern-
gerade bzw. Fernebene ab, und es bleibt eine Kurve bzw. Fliche von der Ordnung

o (n’;z) :

Fritz HOHENBERG, Graz.

Kleine Mitteilungen

I. Bemerkung zur elementaven Konvergenziehre

In vielen Darstellungen der Theorie der konvergenten Zahlfolgen st6Bt man auf eine
gewisse Unklarheit, die ihren Grund darin hat, daB der Begriff des Hiufungspunktes
in nicht ganz angemessener Weise gebraucht wird. Bei ndherem Zusehen kann man fest-
stellen, daB dieser unangemessene Gebrauch verursacht wird durch .dle Gepﬂogenhgit,
eine Zahlfolge als Spezialfall einer Punktmenge zu interpretier.en. Dlesg Interpret?,tlon
ist aber nicht genau zutreffend und erzeugt eine leichte Verwirrung, die gerade einem
kritischen Anfinger Unbehagen bereiten kann.

1 Analog besteht der geometrische Ort (1) in der nichteuklidischen Geometrie aus einem Kegelschnitt
und dem absoluten Kegelschnitt. o

%) Siehe F. HOHENBERG, Eine einfache Fliche 8.0rdnung, Mh. Math. 54, 140-156 (1950). Es zeigt sich
unter anderem, daB diese Fliche durch die sogenannte Darbouxsche Verwandtschaft mit der bekannten
Steinerschen Fliche vierter Ordnung zusammenhéngt. .

3) Eine Untersuchung dieser Fliche soll demnéchst erscheinen.
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