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Zerlegungsgleichheit ebener Polygone

I Zwei Polygone der euklidischen Ebene heißen nach einer bekannten klassischen
Definition zerlegungsgleich, wenn sie sich m paarweise kongruente Teüpolygone
zerlegen lassen1) Offenbar weisen zerlegungsgleiche Polygone gleichen Flächeninhalt
auf Andererseits gilt der geläufige fur die Elementargeometrie der Ebene
fundamentale Satz, daß inhaltsgleiche Polygone stets zerlegungsgleich smd Diese
Tatsache wurde erstmals vor mehr als hundert Jahren durch W Bolyai und P Gerwien
nachgewiesen2) Mit Figur 1 smd Zerlegungen eines Quadrates und eines mhalts-
gleichen gleichseitigen Dreiecks gegeben, welche die Zerlegungsgleichheit der beiden
Figuren realisieren

Nach dem obenerwähnten Sachverhalt ist die Inhaltsgleichheit zweier Polygone
eine notwendige und hinreichende Bedingung fur deren Zerlegungsgleichheit

Man kann sich nun fragen, ob sich dieser Zerlegungssatz insofern verscharfen laßt,
als man fur die Teüpolygone mehr fordert als eine bestehende Kongruenz Die
nächstliegende wesentlich stärkere Bedingung wäre etwa Translationsgleichheit zu
verlangen Hier zeigt sich indessen bald, daß die Bedingung der Inhaltsgleichheit keineswegs

mehr ausreicht, um eine solche translative Zerlegungsgleichheit zu garantieren
So smd beispielsweise Quadrat und mhaltsgleiches gleichseitiges Dreieck gewiß nicht
translativ zerlegungsgleich

Die Abklärung der Frage nach der translativen Zerlegungsgleichheit zweier Polygone

ist eines der Hauptziele der vorliegenden Arbeit Im Abschnitt V wird die Forderung

der Inhaltsgleichheit durch Adjunktion weiterer Bedingungen, welche sich auf
Langen und Richtungen der Randstrecken beziehen, zu einem notwendigen und
hinreichenden System ergänzt

Um zu einer eventuell doch bestehenden Verschärfung des klassischen Zerlegungssatzes

zu gelangen, muß demnach die Bedingung der Translationsgleichheit der
Teüpolygone wieder abgeschwächt werden Es ist nun immerhin etwas erstaunlich, daß
der gewünschte Erfolg bereits bei einer geringfügigen Modifikation eintritt

Wahrend sich die translative Zerlegungsgleichheit dadurch definieren laßt, daß
sich beide Polygone aus Teilpolygonen zusammensetzen lassen, welche nur durch

x) Für eine genaue Formulierung der Begriffe des Pol>gons und der Zerlegung vgl den Schluß von
Abschnitt I

2) Selbstverständlich steht der Begriff dei Zerlegungsgleichheit in enger Beziehung zu demjenigen der
Inhaltsgleichheit Die sich hier ergebenden Fragen welche langst allseitig abgeklärt sind brauchen in
dieser Arbeit nicht weiter erörtert zu werden da wir den Standpunkt einzunehmen haben daß die Lehre
vom Flacheninhalt polygonaler Bereiche zur Verfugung stehe Über die Problematik vgl den Enzyklopädie
artikel von M Zacharias (III, AB 9, Nr 8, S 917)
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eine Translation in der Ebene auseinander hervorgehen, definieren wir neu die
spiegelergänzte translative Zerlegungsgleichheit dadurch, daß wir außer den
Translationen noch eine Spiegelung an einem festen Punkt der Ebene zulassen. Im
Abschnitt III werden wir beweisen, daß die Inhaltsgleichheit eine notwendige und
hinreichende Bedingung für die spiegelergänzte translative Zerlegungsgleichheit zweier
Polygone darstellt. Damit haben wir ein weiteres Hauptziel, eine wesentliche
Verschärfung des klassischen Zerlegungssatzes für Polygone, erreicht.

Unsere Betrachtungen beziehen sich ausnahmslos auf die euklidische Ebene E.
Hier verstehen wir unter einem Polygon die Vereinigungsmenge endlich vieler
abgeschlossener Dreiecke. Dabei unterscheiden wir gelegentlich zwischen eigentlichen
Dreiecken mit inneren Punkten und demnach positivem Flächeninhalt und uneigentlichen

oder entarteten Dreiecken (Strecken und Punkte) mit dem Flächeninhalt Null.
Sinngemäß sprechen wir von einem eigentlichen Polygon, wenn sich dieses als

Vereinigungsmenge endlich vieler eigentlicher Dreiecke darstellen läßt.
Unter einer endlichen Zerlegung eines Polygons A in die Teilpolygone Av,

geschrieben n

1

verstehen wir eine Darstellung von A als Vereinigungsmenge der endlich vielen Polygone

Alt A2, An, wobei die verschiedenen Av paarweise keine inneren Punkte,
demnach also keine eigentlichen Bestandteile gemeinsam haben sollen1).

Der Durchschnitt AB zweier Polygone A und B bedeute dasjenige Polygon,
welches aus den durch A und B gemeinsam überdeckten Punkten von E besteht.
Falls A und B keine Punkte gemeinsam haben, ist das Durchschnittspolygon AB
leer, geschrieben AB=A. Das leere Polygon A wird in gewissen Ausführungen
wesentlich zur formalen Vereinfachung der Schreibweise beitragen.

II. Es bezeichne / eine Translation der Ebene E. Dann bedeute t(A) dasjenige
Polygon, welches aus dem Polygon A nach Ausführung der Translation t hervorgeht.

Zwei Polygone A und B, für welche eine Translation t der Eigenschaft B t(A)
existiert, heißen T-gleich (translationsgleich), geschrieben A^lB.

Definition 7. Zwei Polygone A und B heißen T-zerlegungsgleich (translativ
zerlegungsgleich), geschrieben A & B, falls simultan zwei endliche Zerlegungen

A=£a, und B=JTB,
1 1

existieren, so daß gilt AV^BV für alle v 1, 2, n.
Insbesondere gilt also mit A^B auch A & B.
Die T-Zerlegungsgleichheit besitzt — wie übrigens auch die T-Gleichheit — die

Grundeigenschaften einer Äquivalenz. Es gelten die folgenden Gesetze:

Es ist A^A (Reflexivität), (1)

aus A?vB folgt B&A (Symmetrie), (2)

aus A&B und B&C folgt A^C (Transitivität). (3)

x) In der vorliegenden Arbeit wird die Schreibweise A + B ausschließlich im Sinne einer Zerlegung
verwendet, bei welcher also A und B keine inneren Punkte gemeinsam haben sollen; im Gegensatz zum
allgemeineren mengentheoretischen BegriffderVereinigungsmenge, bei welchem diese Nebenbedingung dahinfallt.



H. Hadwiger und P. Glur: Zerlegungsgleichheit ebener Polygone 99

Die Eigenschaften der Reflexivität und Symmetrie sind trivial verifizierbar, wir
begnügen uns deshalb mit dem Nachweis der Transitivität:

Nach den Voraussetzungen hat man

n n m tn

A=£Av, B^Bv, B=2JEß, C=yx„
1 1 1 1

mit Bv-^tv(Av) und C= tß(%)

für geeignete Translationen tv und tß. Bildet man

K=BA> Av,= K\BJ und Cv^tß(BJ,

wobei t'1 die zu tv inverse Translation bedeute, so folgt

n m n m

A=ZEA^ ™d C=ZZCrit mit Crß=tMtr(Ari),
1 1

das heißt A & C, was zu beweisen war.
In den folgenden Ausführungen wird die Transitivität der T-Zerlegungsgleichheit

fortwährend gebraucht und, um beständige Wiederholungen zu vermeiden, stets
stillschweigend verwendet.

Satz 1. Ein eigentliches Rechteck R und ein Parallelogramm P gleich langer und
parallelliegender Basis und gleicher Höhe sind T-zerlegungsgleich.

Beweis: Es sei a die gemeinsame Länge der parallelliegenden Basen, p die Länge
der Normalprojektion der Schenkel von P auf die Basislinie.

a) p ^ a: durch Figur 2 wird hier R ™ P in einfachster Weise nachgewiesen.

b) p > a: nach Figur 3 erhält man ein Parallelogramm P' & P gleicher Art mit
p'= p — a. Durch endlichfache Anwendung dieses Verfahrens erhält
man schließlich ein Parallelogramm P^ & P mit p^ < a.

Es folgt der wichtige
Satz 2. Zwei inhaltsgleiche eigentliche Rechtecke R und R' sind stets T-zerlegungsgleich.

Beweis: Wie eine einfache elementargeometrische Betrachtungsweise lehrt,
existiert stets eine Gerade g, auf welcher die Normalprojektionen geeigneter Seiten a
und a' von R und R' gleiche Länge aufweisen. Es folgt dann (vgl. Figur 4) mit Satz 1

leicht

R^P^R^R'^B'^R'.
Ein Rechteckspolygon bedeute ein Polygon, das sich in endlich viele, nicht

notwendig parallel gelagerte Rechtecke zerlegen läßt.
Dann gilt
Satz 3. Zwei inhaltsgleiche eigentliche Rechteckspolygone sind stets T- zerlegungsgleich.

Beweis: Es genügt, zu zeigen, daß A ™ Q gilt für ein eigentliches Rechteckspolygon

A und ein inhaltsgleiches Quadrat Q. Dazu zerlege man Q streifenförmig in
Rechtecke, welche einzeln mit den Rechtecken, in welche A sich zerlegen läßt, inhalts-
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n n

gleich sind: A =£ Rv, Q =£ R',. Es folgt dann nach Satz 2 RV^R'V und damit
A~Q.

Die Frage nach der T-Zerlegungsgleichheit allgemeiner gestalteter Polygone wird
erst im Abschnitt V beantwortet. Dort werden die obigen Sätze bei der Aufstellung
notwendiger und hinreichender Kriterien für T-Zerlegungsgleichheit zweier Polygone
eine wichtige Schlüsselstellung einnehmen. Bis dahin begnügen wir uns mit der
trivialen Feststellung, daß T-zerlegungsgleiche Polygone notwendig gleichen Flächeninhalt

aufweisen.

III. Es bedeute s(A) dasjenige Polygon, welches aus dem Polygon A hervorgeht
durch eine Spiegelung an einem fest gewählten Ursprung 0 der Ebene E.

Die Operation s(A) läßt sich offenbar auch als Drehung von A um den Winkel n
um 0 interpretieren; es handelt sich also insbesondere um eine eigentliche Bewegung.

Zwei Polygone A und B, für welche entweder A ^ B oder dann A ^ s(B) gilt,
heißen ST-gleich (spiegelergänzt translationsgleich), geschrieben A ^B.

Definition 2. Zwei Polygone A und B heißen ST- zerlegungsgleich (spiegelergänzt
translativ zerlegungsgleich), geschrieben A~B, falls simultan zwei endliche Zerlegungen

A=£Av und B=2X
1 1

existieren, so daß gilt AV^BV für alle v 1, 2, n.
Insbesondere gilt also mit A^B auch A~B.
Die ST-Zerlegungsgleichheit besitzt — wie übrigens auch die ST-Gleichheit — die

Grundeigenschaften einer Äquivalenz. Es gelten die folgenden Gesetze:

Es ist A~A (Reflexivität), (V)

aus A~B folgt B~A (Symmetrie), (2')

aus A~B und B~C folgt A~C (Transitivität). (3')

Aus A^B folgt zudem A~B, eine Relation, welche wir im folgenden stets

stillschweigend verwenden werden.
Es gilt nun:
Satz 4, Ein eigentliches Dreieck D ist mit einem inhaltsgleichen Rechteck R stets

ST-zerlegungsgleich.
Beweis: Figur 5 zeigt, daß für ein Dreieck D und ein von D abhängiges Rechteck

R' stets Z)~ R' gilt. Für ein beliebiges mit D, also auch mit R' inhaltsgleiches

eigentliches Rechteck R gilt aber nach Satz 2R'™R, und es folgt D ~ R.

Es ergibt sich nun:
Satz 5. Zwei inhaltsgleiche eigentliche Polygone sind stets ST-zerlegungsgleich.

Beweis: Es genügt, zu zeigen, daß ein beliebiges eigentliches Polygon A mit einem

inhaltsgleichen Quadrat Q ST-zerlegungsgleich ist. Dazu zerlege man A in Dreiecke

Dv und Q streifenförmig in Rechtecke Rv, welche einzeln mit den Dv inhaltsgleich

sind: A=ZDv,Q=Z;Rv. Es folgt nach Satz 4 Dv~Rv und damit A ~Q.

Zusammen mit der trivialen Feststellung, daß ST-zerlegungsgleiche Poygone

notwendig denselben Flächeninhalt aufweisen, ergibt sich nun als erstes Hauptergebnis

der vorliegenden Arbeit:
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Kriterium ST. Notwendig und hinreichend für ST-Zerlegungsgleichheit zweier eigentlichen

Polygone ist die Gleichheit ihrer Flächeninhalte.
Das Kriterium ST bzw. Satz 5 stellt also die in der Einleitung in Aussicht

gestellte Verschärfung des klassischen Zerlegungssatzes dar.
IV. Für die im folgenden angestrebte Aufstellung notwendiger und hinreichender

Kriterien für T-Zerlegungsgleichheit benötigen wir noch
Satz6. Es seien A,B,C und D eigentliche Polygone. Dann folgt aus A-\-C^B-\-D

und C & D auch A & B.
Satz 6 sagt also mit sinngemäßer Deutung des Begriffes der Ergänzungsgleichheit

aus: T-ergänzungsgleiche eigentliche Polygone sind auch T-zerlegungsgleich1).
Beweis: Es bezeichne X A für X > 0 dasjenige Polygon, welches aus A nach

Ausführung einer Ähnlichkeitsabbildung mit der linearen Vergrößerung X und dem

Ursprung 0 von E als Ähnlichkeitszentrum hervorgeht.
Für eine natürliche Zahl n existiert dann ein Quadrat Q, so daß

AnQ+JjA, mit Av^^A ' (a)
i n

gilt. Dies läßt sich zunächst für ein beliebiges eigentliches Dreieck D leicht einsehen,
indem man D durch n — 1 basisparallele äquidistante Geraden in ein Dreieck
D' ^ D/n und n — 1 Streifen zerlegt. Zerlegt man weiter jeden Streifen in ein

Parallelogramm und in ein Dreieck, welches mit D' T-gleich ist, so ergibt sich schließlich

eine Zerlegung von D in n Dreiecke und n — 1 Parallelogramme. Figur 6 zeigt
diese Zerlegung für n 3. Die n Dreiecke sind einzeln mit D/n T-gleich, während
die Vereinigungsmenge der n — l Parallelogramme nach den Sätzen 1 und 3 mit einem
Quadrat T-zerlegungsgleich ist.

Für ein beliebiges eigentliches Polygon A erhält man nun (a), indem man A in
Dreiecke zerlegt und die Relation (a) für jedes einzelne Dreieck herstellt; addiert
man dann alle Relationen, so ergibt sich (a) für das gesamte Polygon A unter
nochmaliger Verwendung von Satz 3.

Wählt man nun n groß genug, so lassen sich n verschiedene Polygone Cv der Eigenschaft

C ^ Cjn aus Q herausschneiden. (In der Tat: Wählt man n m2, so läßt
sich Q, das mit wachsendem n nur größer wird, in n Teilquadrate zerlegen. Während
nun die Seitenlängen dieser Teilquadrate mit wachsendem m wie \\m abnehmen,
nehmen die Durchmesser der Cv wie 1/w2 ab, so daß sich schließlich die Cv aus den
einzelnen Teilquadraten herausschneiden lassen.) Bezeichnet man mit P das
Restpolygon, so hat man n

Q-P+2JC, (b)
1

und zusammen mit (a)

A*P+j](A9+C9). (c)

*) Dieser Sachverhalt liegt tiefer, als es auf den ersten Blick erscheint. Es ist sehr fraglich, ob sich
Satz 6 allgemein allein aus der Gruppeneigenschaft der Translationen herleiten laßt. Die folgende
Beweiskonstruktion stutzt sich bereits auf Satz 3 und ist einer Idee nachgebildet, welche J.-P. Sydler (Comm.
Math. Helv. 16, 266-273 [1943/44]) zur Begründung des entsprechenden Satzes fur die Zerlegungsgleichheit
im klassischen Sinne gedient hat.



H Hadwiger und P Glur Zerlegungsgleichheit ebener Polygone 103

Im Hinblick auf die Voraussetzungen des Satzes findet man leicht Av + Cv^ Bv+ D%

und CV^DV mit Bv™ Bjn und Dv^ D/n Es ergibt sich fur (c)

A^P+]T(Bv + Dv)kP4-2J(Bv+Cv
i 1

unter Verwendung von (b)

p+ZJc, ~£bv,

A*Q+2JBV (d)
1

Andererseits gilt aus denselben Gründen wie fur (a) auch

B^Q'-\£ßr (a')
1

Endlich ergibt eine einfache Bilanz der Flächeninhalte von A, B, C und D im
Hinblick auf die Feststellung am Schluß des Abschnittes II die Inhaltsgleichheit der
beiden Quadrate Q und Q', woraus nach Satz 2 Q & Q' folgt Aus (a') und (d) erhalt
man schließlich A & B, was zu beweisen war

V Die Frage nach den notwendigen und hinreichenden Bedingungen fur T-Zerle-
gungsgleichheit hangt eng zusammen mit dem Problem der translationsmvananten
und einfach-additiven Polygonfunktionale

Em Funktional cp, welches jedem Polygon A eindeutig einen Wert cp(A) zuordnet,
ist als solches charakterisiert durch die Eigenschaften

cp(A) cp(A') fur A ^ A' (Translationsmvananz), (4)

/ n \ n

9 £ Av) =£ <PiAv) (Emfach-Additivitat) (5)

Em solches Funktional ist offenbar durch den Flächeninhalt F(A) gegeben
Weniger geläufig durften die folgenden Funktionale sein, welche sich aus Langen

und Richtungswinkeln der Randstrecken eines Polygons zusammensetzen
Zur Bildung solcher Funktionale orientieren wir alle Randstrecken eines eigentlichen

Polygons derart, daß beim Durchlaufen derselben das Innere des Polygons
zur Linken hegt Die Richtung eines Randstreckenvektors charakterisieren wir durch
den Winkel, welchen dieser mit einem fest gewählten Nullvektor der Ebene E, im
positiven Drehsinn gemessen, einschließt, er werde Richtungswinkel der
Randstrecke genannt

Es bezeichne jetzt ST(A) die Summe der Langen derjenigen Randstrecken von A,
welche den Richtungswinkel r aufweisen Da em Polygon nur endlich viele
Randstrecken positiver Lange aufweist, ist ST(A) nur fur endlich viele Winkel r von
Null verschieden

Setzt man jetzt
LX(A) - SX(A) - Sr+*(A)> (6)

so laßt sich leicht bestätigen, daß durch LM) ebenfalls em translationsmvanantes
und einfach-additives Polygonfunktional gegeben ist
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Es gilt stets
LT+M) ~LM)> (7)

das heißt: für ein festes Polygon A ist LM) erne ungerade Funktion des

Winkelparameters r1).
F(A) und L(A) sind unter gewissen weiteren Bedingungen, auf die wir hier nicht

näher eingehen wollen, die einzig möglichen translationsinvarianten und
einfachadditiven Polygonfunktionale2).

Unmittelbar aus der Definition der T-Zerlegungsgleichheit und aus der
Translationsinvarianz und Einfach-Additivität der Funktionale F(A) und L(A) ergibt sich

Satz 7. Für zwei T-zerlegungsgleiche Polygone A und B gilt notwendig F(A) =F(B)
und LM) ^ Lr(B) für alle 0 ^ t < 2 n.

Zum Nachweis, daß auch die Umkehrung dieses Satzes richtig ist, formulieren wir
vorbereitend

Satz8. Ein eigentliches Polygon A, für welches LM) ® für alle 0 ^ t < In gilt,
ist T-zerlegungsgleich mit einem inhaltsgleichen Quadrat.

Wegen (7) würde es genügen, die Bedingung nur für das Winkelintervall 0 ^ x < n
zu stellen.

Beweis: Wir legen durch die Richtungswinkel r0 und T0-f^/2 in der Ebene E zwei
Normalrichtungen fest und bezeichnen ein eigentliches rechtwinkliges Dreieck, dessen
Katheten zu diesen Normalrichtungen parallel sind, als Elementardreieck A. Die
Hypotenuse eines Elementardreiecks hat demnach einen Richtungswinkel, welcher
sowohl von t0 als auch von t0 -f n/2 verschieden ist.

Man zerlege nun A in eigentliche Dreiecke und verschiebe diese in der Ebene E so
weit auseinander, daß sich die folgenden Konstruktionen gegenseitig nicht stören. Man
hat dann, wenn man die verschobenen Dreiecke mit Dv bezeichnet,

n
A&ZDV.

l
Wie Figur 7 zeigt, läßt sich jedes dieser Dreiecke Dv durch Anfügen von höchstens drei
Elementardreiecken Aß zu einem Rechteckspolygon ergänzen. Es folgt

A +ZA„™£Dv+ZAflKiQ', (a)ii l
worin Q' ein mit der Vereinigungsmenge aller Rechteckspolygone inhaltsgleiches
Quadrat bedeutet. Es ist offenbar LT(Q) 0, und wegen der Voraussetzung LM) ~ 0

gilt

:T(f^) o für alle 0 <, r < 2 n.

Es bezeichne nun A^ diejenigen Dreiecke A^, deren Hypotenusen den Richtungswinkel
t aufweisen, und es sei h(r) die Summe der Längen dieser Hypotenusen. Für

n
T*T0, T#T0 + y

x) Diese Eigenschaft gestattet die eindeutige Bildung des Funktionais LX(A) auch für uneigentliche
Polygone A : uneigentliche Bestandteile liefern danach den Beitrag Null.

2) Vgl. H. Hadwiger, Über beschränkte additive Funktionale konvexer Polygone, Publicationes Mathe-
maticae 1 (Debrecen 1949).
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ist dann
/ tn \

h(r) - h(r + n) 0.'(iN
Wir betrachten nun einen Winkel r, für welchen ä(t) > 0 gilt, und schieben alle

Dreiecke A^ derart aneinander, daß ihre Hypotenusen auf ein und derselben Geraden
liegen. Es entsteht so eine Dreieckskolonne der Rückenlänge h(x). Ebenso verfahren
wir mit den Dreiecken AMx+n. Wegen h(r + n) h(r) lassen sich diese beiden
Dreieckskolonnen zu einem Rechteckspolygon RT zusammenschieben (vgl. Fig. 8). Man hat
also

ZA^+ZA^ + nWRr,

und es folgt durch Addition dieser Relationen für alle 0 g t< 2 n, welche ein h(x) > 0
liefern,

m

EA^Q", (b)

worin Q" ein mit der Vereinigungsmenge aller Rv inhaltsgleiches Quadrat bedeutet.
Zusammen mit (a) erhält man

A+Q"~Q'. (c)

Hier ist F(A) F(Q') - F(Q") > 0, und für ein Quadrat Q mit dem Flächeninhalt
F(Q) F(Q') ~ F(Q") gilt nach Satz 3 Q'n Q + Q", was in (c)

A+Q"* Q + Q"

liefert. Nach Satz 6 schließt man daraus A m Q, was zu beweisen war.

Wir gelangen nun zum
Satz 9. Zwei eigentliche Polygone A und B, welche den Bedingungen F(A) =F(B)

und LT(A) Lr(B) für alle 0 rgj r < 2 n genügen, sind T-zerlegungsgleich.
Wegen (7) würde es auch hier genügen, die Bedingungen nur für das

Winkelintervall 0 ^ t < n zu stellen.
Beweis: Man lege die Normalrichtungen r0 und t0 + n/2 so fest, daß sowohl

LTM) 0 als auch Lto+nlM) 0 gilt.
Wir betrachten nun einen Winkel r, für welchen LM) * 0 ausfällt. Es gibt dann

ein Elementardreieck Ar, für welches LMT) —LM) wird, nämlich das Elementardreieck

mit der Hypotenusenlänge |jLt(^4)| und dem Hypotenusenrichtungswinkel
t bzw. r + n, je nachdem LM) < ° oder LM) > ° ist-

LM) ist nur für endlich viele Winkel r des Intervalls 0 ^ r < n von Null
verschieden. Wir fügen die zugehörigen endlich vielen Dreiecke Ar beiden Polygonen A
und B zu und erhalten so die Polygone

A +£A\ B +£A\
Es folgt zusammen mit den Voraussetzungen

F(A+2JA*)=F{B+ZA').

It(.4+2»=Lt(ß+2» 0.

Nach Satz 8 hat man also

A+£AX*>Q und B+£A*~Q,
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worin Q em Quadrat mit dem Flächeninhalt F(Q) =F(A +1AT) F(B + Z Ar)
bedeutet Nach Satz 6 schließt man daraus A ^ B, was zu beweisen war.

Zusammen mit Satz 7 erhalten wir als zweites Hauptergebnis unserer Arbeit das

KritenumT. Notwendig und hinreichend fur die T-Zerlegungsgleichheit zweier eigentlichen

Polygone A und B ist das Erfulltsem der Bedingungen F(A) F(B) und

LM) Lr(B) fur alle 0^r<2n.
Wegen (7) genügt es, die zweite Bedingung nur fur das Winkelintervall 0 ^ r < n

zu stellen.
Besonders beachtenswert ist der Umstand, daß das Kriterium T nichtabzahlbar

viele Bedingungen enthalt, daß aber fur zwei beliebige, aber feste Polygone stets fast
alle Bedingungen m trivialer Weise erfüllt smd

Es bestätigt sich nun, daß em Quadrat und em mhaltsgleiches gleichseitiges Dreieck

nicht T-zerlegungsgleich sein können, wie dies m der Einleitung erwähnt wurde.
Allgemeiner kann sogar festgestellt werden, daß zwei nicht T-gleiche Dreiecke

auch nicht T-zerlegungsgleich smd, das heißt, es gibt zwischen Dreiecken überhaupt
keine mchttriviale T-Zerlegungsgleichheit. Figur 9 veranschaulicht eine triviale
T-Zerlegungsgleichheit zwischen zwei T-gleichen Dreiecken.

Dagegen zeigt Figur 10 eine nichttriviale T-Zerlegungsgleichheit zwischen Trapezen.
H. Hadwiger und P. Glur, Bern.

Kleine Mitteilungen

I. Polygone mit maximalem Flächeninhalt

Der im Heft V/6 von Herrn van der Waerden bewiesene Satz «Unter allen n-Ecken
mit gegebenen Seiten hat dasjenige den größten Flächeninhalt, das sich einem Kreise
einbeschreiben laßt», gestattet einen mit den einfachsten Begriffen der Statik arbeitenden

K
R..<i*i

Sc

ML

Plausibüitatsbeweis, der, wenn auch nicht mathematisch streng, so doch recht anschaulich

ist und wohl jedem mit den Grundbegriffen der Trigonometrie und der Statik
vertrauten Mittelschuler ohne weiteres einleuchten durfte

Wir denken uns einen auf dem horizontalen, glatten Boden verschiebbaren vertikalen,
prismatischen Mantel mit gelenkig verbundenen Seitenflächen von vorgeschriebener
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