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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und z2ur Forderung des mathematisch-physikalischen Unterrichis
Organ fiir den Verein Schweizerischer Mathematiklehrer

El. Math. Band VI Nr.4 Seiten 73-96 Basel, 15. Juli 1951

Sur les forces d’inertie

Etant donné que certains manuels didactiques de mécanique ne mettent pas suf-
fisamment en évidence les points délicats dont nous parlerons plus bas, il nous a paru
utile de formuler quelques pensées sur l’application de la loi fondamentale de la
dynamique dans les différents systémes de référence. Nous resterons dans le cadre de
la mécanique classique et nous étudierons seulement le mouvement d’un point maté-
riel; la généralisation des raisonnements sur le cas du mouvement d'un corps solide
ne présente aucune difficulté.

Admettons qu’un point matériel m se trouve en équilibre dans un systéme de
référence X,Y,Z, supposé galiléen par rapport au systéme absolument fixe de la méca-

nique classique. Nous dirons que la résultante de toutes les forces de contact N ; et
de volume F; agissant sur # est nulle dans le systéme X, Y, Z.
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Fig.1. Systéme X, Y, Z.

Si le point matériel 7 se trouve en mouvement non-uniforme d’accélération a par
rapport 3 X, Y, Z, nous dirons alors que la résultante des forces n’est pas nulle, mais
égale & m a. L’équation du mouvement s’écrira (fig. 1):

R=mi=YF+) N, (1)

L’expression R — m a ne signifie pas qu'un vecteur R est égal & un autre vecteur m a,
mais qu'un sex/ vecteur R est égal & m a conformément & la définition de la masse;
cette derniére étant indépendante des systemes de référence.
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Admettons maintenant un systéme de référence X’, Y’, Z’ qui n’est pas galiléen
par rapport 4 X, Y, Z, ce qui revient a dire qu’on va mesurer pour m dans le systéme
X', Y’, Z’ une accélération @', qui n’aura généralement ni la méme grandeur ni la
méme direction que a. Nous dirons que dans le systéme X', Y’, Z’ la résultante des
forces agissant sur m est égale & m a’. Les forces de contact et de volume n’ayant pas
changé (le monde physique est indépendant du choix des axes de référence) nous
constatons I'existence réelle d’une nouvelle force —m (@ — a’) ol la différence a — @’
est égale a la somme géométrique de 1’accélération d’entrainement et de ’accélération

-mac
Fig.2. Systéme X’,Y’, Z’.
de CorioLis. Cette nouvelle force, nommeée force d’inertie, est mesurable dans le sys-

téme de référence X', Y’, Z’, a I'aide d’'un dynamomeétre par exemple. L’équation du
mouvement s’écrira (fig. 2):

§’=m2’=2E+2ﬁi+[~m(a~a')] (2)
ou IE’——-mZ':ZE-I-Zﬁ,-—I—(—mEe)—{—(—mEc). (3)

La décomposition de la force d’inertie —m (@ — a’) dans les deux forces —m a, et
—m a, n’est possible que si I’observateur dans le systéme X’, Y’, Z’ connait le mou-
vement relatif de X', Y’, Z’ par rapport & X, Y, Z. On peut toutefois s’imaginer un
observateur immatériel qui ne connait pas ce mouvement. Cet observateur constate
alors expérimentalement une force réelle —m (@ — a’) d’origine inconnue, ce qui
I'oblige 4 admettre 'existence d’un champ de gravitation qui produit cette force. Ce
fait est en accord avec la théorie de la relativité généralisée d’EINSTEIN.

1 exemple. Une sphére se trouve sur une plate-forme. Faisons abstraction de
tout frottement possible. La plate-forme se meut avec une accélération a’ par rapport
aux axes fixes X, Y, Z. Pour un observateur dans le systéme fixe, la sphére se trouve
en équilibre. Pour un observateur dans le systéme X', Y’, Z’ relié a la plate-forme,
la sphére se meut avec une accélération — a’. S’il sait que X', Y’, Z’ se meut avec
a’ par rapport & X, Y, Z, il dira que c’est la force d’inertie d’entrainement

—m[0 — (—a)]=—-—ma =—ma,

qui agit sur la spheére (2,= 0). Pour lui, cette force est une réalité physique, mesurable
avec un dynamométre. L’observateur qui ne connait pas &, sera obligé de constater
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I’existence d’un champ de gravitation horizontal d’accélération — 7’. Pour lui, la force
—ma’ est tout aussi réelle que —m g pour les habitants de la terre.

Choisissons maintenant un systéme de référence X”, Y, Z" tel que a" =0 (c’est
toujours possible). Nous dirons que  étant en équilibre par rapport a X", Y", Z”, la
résultante des forces agissant sur m est nulle dans ce systéme. Sur m agissent toujours
les mémes forces du systéme X, Y, Z et, en plus, une force d’inertie —m a. Connaissant
le mouvement de X", Y”, Z" par rapport & X’, Y’, Z’, nous pouvons décomposer
~m a dans une somme géométrique (—ma,) + (—ma,) + (—ma’). La force —ma

2Fi

Rﬂ=0

-m3a;¢
Fig.8. Systéme X", Y”", Z".

est mesurable dans le systéme X", Y", Z”, donc une réalité physique pour un obser-
vateur dans ce systéme. L’équation du mouvement s’écrira (fig. 3):

R'=m@'=0=3 F+ 3 N+ (-md) 4)
ou 0= Fit 3 Nt (—mi) + (~ma;) + (~m ). 5)

Si nous comparons les équation (1) et (4), nous constatons qu’elles sont identiques,
mais que leur interprétation peut étre différente:

17 interprétation: Nous restons dans le systéme de référence X, Y, Z et écriyons
I’équation (1) sous la forme (4). C’est le principe de D’ALEMBERT. La force —m a est
fictive, vu que m est en mouvement non-uniforme en X, Y, Z et pas en équilibre.

2¢ interprétation: Nous écrivons I'équation (4) dans son propre systéme de référence
X",Y", Z", dans ce cas la force —ma est une réalité physique, vu que m est en
équilibre en X", Y”, Z".

De méme, si nous comparons les équations (3) et (5): , .

17 interprétation: Nous restons dans le systéme X', Y’, Z' et écri\ions l’e.qu.atlon (3)
sous sa forme (5). C’est le principe de D’ALEMBERT. La force —m a’ est fictive, mais
les forces —m a, et —m Zc sont, pour I'observateur en X', Y’, Z’, des forces réelles.

2¢ interprétation: Nous écrivons ’équation (5) dans son propre systéme de référence
X", Y", Z" et les forces —ma', —ma, et —ma, sont toutes réelles, parce que m est
en équilibre par rapport & X", Y", Z". .

Nous remarquons encore que l’observateur dans le systf:r{le X, Y, Z peut écrire
I’équation (1) sous une nouvelle forme (fig. 1 en traits pointillés):

m (@ + G+ 3 =X Fi+ 3 N,. (3)
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Si nous comparons les équations (3) et (3'), nous constatons aussi qu’elles sont iden-
tiques, mais que leur interprétation peut étre différente:

17 interprétation: Nous restons dans le systéme X, Y, Z et écrivons I'équation (3')
sous sa forme (3). C’est le principe de D’ALEMBERT. Les forces —m a, et —m a, sont
fictives, vu que # a un mouvement d’accélération a dans X, Y, Z et non d’accélé-
ration a’.

2¢ interprétation: Nous écrivons (3) dans son propre systéme de référence X', Y', Z’
et les forces —m a, et —ma, sont réelles, vu que m a un mouvement d’accélération
a'en X',Y', Z'.

Les forces de contact et de volume ne dépendent pas en mécanique classique du systéme
de référence choisi, mais leuwr résultante seva différente dans chaque systéme. Il est
toujours possible de choisir un systéme tel que la résultante des forces soit nulle,
I’équation du mouvement devient alors, dans ce systéme, une équation d’équilibre.
Les forces d’inertie sont des forces physiquement existantes pour les observateurs se
trouvant dans les systémes accélérés par rapport & X, Y, Z. La premiére interpréta-
tion provoque souvent chez les étudiants en mécanique des malentendus déplorables,
parce qu’elle est purement formelle et cache le sens physique des choses. Dans l’en-
seignement il serait souhaitable de n’insister que sur la deuxiéme interprétation,
naturelle pour un étudiant qui se place mentalement dans le systéme de coordonnées
dans lequel il étudie le probléme. Cette deuxiéme interprétation est, par ailleurs,
celle de M. PoHL dans son livre Einfithrung in die Mechantk und Akustik.

2e exemple. Un point matériel m est attaché a I'une des extrémités d’un fil inexten-
sible de longueur 7, dont 'autre extrémité est un point fixe 0. On imprime au fil et
au point matériel s dans le plan horizontal un mouvement de rotation autour de
O avec une vitesse angulaire constante w par rapport a un axe de référence fixe X

passant par O. Nous isolons # du {il et nous introduisons la force centripéte S. Cette

force ne change pas avec le choix du systéme de référence. C’est 'unique force de

contact agissant sur m, les forces de volume étant nulles dans le plan horizontal.
L’observateur lié & X écrira 1’équation du mouvement:

ma,=S. (1)

Sachant que a,= 0 et que a,, = 7 w?, on en déduit que S = m » w? L’observateur lié
a I'axe de référence X' qui tourne par rapport a I'axe X avec une vitesse angulaire
constante w — o’ (0’ < w), ot @’ est la vitesse angulaire de m relative a 'axe X',
écrira comme suit I’équation du mouvement de m, dans le cas o1 il ne connafitrait pas
le mouvement relatif:

m =S+ [—m @, — )], (2)
mrw?=S+[—m@row:—rw?)]. (2")

L’expression entre crochets représente une force d’inertie centrifuge mesurable en X’.
Pour un observateur dans le systéme X', qui connait le mouvement relatif, la force
centrifuge —m (a2, — a,,) se décompose dans la somme (—m a,) + (—m a,).

Nous remarquons que:

’

a,=rw? apn=rw? ap=rw—-0)? a4,=0 et a,=2(w—0o)rw.
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Toutes ces accélérations sont centripétes, inclusivement a, pour le cas o’ < w.
mro?=S+[-mr(w—o)2]+[-2mr o (0— )]

Aprés simplifications, il reste S = mr w?2. Pour 'observateur en X’ les forces d’inertie
d’entrainement et de CorIOLIS sont une réalité physique. Sinon S ne serait pas égal
a mr w? Pour un observateur dans le systéme X", qui tourne par rapport & X avec
la méme vitesse angulaire que m, m se trouve en équilibre:

0=5+ (-ma,). )

—m a, est une force centrifuge réelle, mesurable en X". La force centrifuge n’existe
que pour un observateur en rotation par rapport & un axe fixe, elle atteint sa valeur
maxima m v w2 pour I'observateur qui tourne @ la méme vitesse que m par rapport d cet
axe. Mais, comment un observateur fixe, pour lequel les forces centrifuges n’existent
pas, pourrait-il expliquer la déformation des corps élastiques en rotations? Un corps
élastique peut étre assimilé & un nombre trés grand N de points matériels Am reliés
entre eux par des petits «ressorts» immatériels. L’observateur fixe écrira I’équation
du mouvement pour 'ensemble N des points Am:

N(Am)a,=S ou N{dm)ryw?=S,
N
7o étant le rayon du cercle décrit par le centre de gravité des Am. ry =2, 7;/N. On peut
1
toutefois écrire I’équation du mouvement pour chaque point A si 'on introduit les

forces de liaison S;:
Amr, w?2= 5 — S;,

..................

L’addition de ces équations nous donne Am w2} 7;= S d’ot N(Am) ryw?=S. Les
1

forces de liaison S;, ..., Sy_; agissent deux A deux sur les «ressorts», d’ou résulte la
déformation du corps élastique. Les deux exemples présentés ici peuvent servir de
prototype pour les différents problémes de mécanique. GEORGES V.TORDION, Zurich.

Elementare Bestimmung der Bewegung eines
Korpers im Gravitationsfeld

Es wird im folgenden das kinetische Problem behandelt, welche Bahn ein Korper
unter der anziehenden Wirkung eines andern Korpers beschreibt. Dabei wird das
Newtonsche Gravitationsgesetz vorausgesetzt:

4

wobei £ die Gravitationskonstante, M die Masse des als ruhend betrachteten Zentral-
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