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A problem regarding the tracing of graphs

1. One of the first questions in elementary topology, illustrated by the Konigs-
berger Bridge Problem, requires the conditions for the tracing of a plane figure in a
continuous path without passing twice through any lines in the figure. EULER solved
the slightly more general problem of deciding when it is possible to trace the sides
in an arbitrary finite graph G continuously, passing along each side once and only once
and returning to the starting point. The result, as one knows, is that the graph must be

(1) Connected.

(2) An Euler graph characterized by the property that each vertex is of even order,

that is, it must be the joining point of an even number of sides.

The proof is simple and can be found in a considerable number of expositions so
that it need not occupy us here. In the following we shall, however, discuss another
problem also connected with the tracing of Euler graphs. Our starting point is the
observation that when it is possible to draw a graph in one continuous trait without
duplication as required, it does not follow immediately how such a tracing is obtain-
able. As a very simple example let us take the figure 8 shaped graph indicated in
Fig. 1. When starting at the vertex a, one may first proceed in the cycle abcda
and in order to trace the whole figure it is necessary afterwards to insert the cycle
cefgc. This remark leads us to consider the following general problem regarding
Euler graphs:

When does a connected Euler graph have the property that if one starts and returns to
the same vertex a, then the whole graph is automatically traced without repetition if one
proceeds according to the single rule that whencver one arrives at a vertex one shall always
select some side which has not previously been traversed?

A graph with this property may be called arbitrarily traceable from the vertex a.
One sees immediately that the graph in Fig. 1is not arbitrarily traceable from a, but
it has this property with respect to the vertex c¢. In Fig.2 one has a graph which is
arbitrarily traceable from a, but from no other point, while Fig. 3 is arbitrarily
traceable both from a and b. Such a graph which consists of disjoint cycles intersect-
ing only in two vertices 4 and b as in Fig.3 we shall call a skein.

The reader readily verifies that the only graph which is arbitrarily traceable from
all its points is a cycle.

2. Before we can solve the general problem of finding all arbitrarily traceable graphs
it is necessary to derive certain auxiliary facts about them. Let G be a graph which
is arbitrarily traceable from the vertex a; furthermore, let G; be some (connected)
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Euler subgraph of G which also has a as one of its vertices. Then G, can be traced
from a and after this process there remains in G, some uniquely determined comple-
mentary graph G, such that one has the direct decomposition

G =6+ G,. (1)

But here the remaining graph G, must be arbitrarily traceable from a because other-
wise the original graph G itself could not have this property. But when the same
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argument is applied to G, in (1) it follows that also G; must be arbitrarily traceable
from a and we have:

Theorem 1. Let G be a graph which is arbitrarily traceable from the vertex a. Then
any (connected) Euler subgraph G, of G including a is also arbitrarily traceable from a
and has an arbitrarily traceable complement Gy in G.

Now let 2 be the order of the vertex a in the graph G. Any tracing of the graph
from a must start out along some particular side S; and return along a different side
S,. It is therefore clear that there exists some cycle ¢, in G containing S; and S,.
Since @, is arbitrarily traceable it follows from theorem 1 that the complement
G,= G — §, has the same property. If §, is another cycle through a in G, one con-
cludes further that G,= (G — G,) — &, is arbitrarily traceable and by continuing
the argument one arrives at the result:

Theorem 2. A graph which is arbitrarily traceable from the vertex a of order 2 n is
the direct sum of n cycles &; through a

G=C+ Gt -+ C,. 2)

This represents a necessary but not a sufficient condition for an arbitrarily traceable
graph. Now let us consider the case of fwo cycles €, and §, contained in such a graph
G. We suppose that €, and §, are disjoint, that is, have no side in common, and that
they intersect in 2 and possibly in a certain number of other vertices of G. The
graph @, + @, is then an Euler graph and therefore arbitrarily traceable according to
theorem 1.

We now select a definite direction on §; and proceed from a to the first vertex &
which €, has in common with €, and similarly, in the opposite direction on €, let ¢
be the first common vertex (see Fig.4). To trace the graph €, + G, let us begin at a
and proceed in the given direction to & and return along that part of €, which does
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not include c. Then we proceed from a to ¢ along €, in the opposite direction and
return to a along that part of €, which does not contain 4. After this process we have
no further exit from @ so that the complete graph €, + €, must have been traced.
But it is clear that if b % ¢ the section of €, between b and ¢ not including @ has not
been covered so that we conclude b = ¢. This gives the result:

Theorem 3. Let G be a graph arbitrarily traceable from the vertex a and C, and G,
two cycles in G without common sides and passing through a. Then €, and €, can
wntersect tn at most one other vertex.

2!

¢

a
Fig. 4

3. We are now ready to deduce the following criterion:

Theorem 4. The necessary and sufficient condition that an Euler graph be arbitrarily
traceable from a vertex a is that it contain no cycles not including the vertex a.

Proof. Let us suppose first that there exists some cycle € in G which does not pass
through 4. We form the graph G;= G — €. Since ¢ and € are Euler graphs all ver-
tices in G, must be of even order so that G, is also an Euler graph. G, need not be con-
nected but it has a maximal connected component G including the vertex a.
Then the sum

Gy=GW+ ¢

must be a connected Euler graph and both G, and G must be arbitrarily traceable
according to theorem 1. But this leads to a contradiction since one can begin tracing
G, by first tracing G@ from a and when one has returned to a there is no further
exit to reach the cycle €.

On the other hand, if the Euler graph G contains no cycle not passing through a
it is connected and traceable. If it were not arbitrarily traceable one could trace a
part G, of G exhausting all exit possibilities from a. But then the complementary
graph G, to G, would also be an Euler graph, and since it is clear that an Euler graph
always contains a cycle we would have a cycle in G not including a, contrary to
assumption.

Theorem 4 gives a simple criterion for the graphs which are arbitrarily traceable
from more than one vertex. With our previous definition we have

Theorem 5. A graph which is arbitrarily traceable from two vertices is a skein.

Proof: Let a and b be the two vertices from which the graph G is arbitrarily traceable.
According to theorem 4 every cycle in G goes through both a4 and b. In the representa-
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tion (2) of G as the direct sum of cycles every cycle €, goes through a and b and
theorem 3 shows that none of them can have any other points in common. This
proves theorem 5.

4. Theorem 4 makes it possible to give a simple construction of all graphs which
are arbitrarily traceable. Let us denote by S, the star or subgraph of G which consists
of all those sides of G which are joined at the vertex a; furthermore, let G, be the
complement of S, in G, hence (see Fig. 5)

G=S,+G,.

Then according to theorem 4 the necessary and sufficient condition that G shall be

arbitrarily traceable is that the graph G, contain no cycles, that is, it must be a
topological tree.

Now let us proceed in the opposite direction and assume that some tree G, is given.
We select a new vertex 4 and draw sides from a to the vertices of G, such that the
vertices of G, in the new graph G have an even order. This may be achieved by
drawing a single side from a to the odd vertices in G; and none to the even ones,
but one can also, more general, draw an odd number of sides in the first case and
an arbitrary even number of sides in the second. To show that the resulting graph
is an Euler graph it is only necessary to verify that the order of the vertex a is even,
since the other vertices are already even. But this is an immediate consequence of

the relation
28 =2,

for any graph, where s is the number of sides and u; the order of the i-th vertex.
Thus we have:

Theorem 6. One can construct all graphs which are arbitrarily traceable by taking a
topological tree T and join each vertex of T by a number of sides to a new vertex a in
such a manner that in the resulting graph each vertex is of even order.

The construction is illustrated in Fig.5.

Since a tree is a planar graph it is clear that all arbitrarily traceable graphs must
be planar.
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5. The problem which we have discussed in the preceding may be considered as a
problem of constructing a set of roads such that when one always follows new paths
at each intersection all paths will be covered a single time and one returns to the
starting point. Such a pattern would be suitable for the lay-out of an exposition.

There are several similar questions which one may discuss. If one supposes that the
roads are lined with shops and one will cover all roads once in both directions, this
is always possible, as one easily realizes. But one may restrict the paths by requiring
that one shall not be permitted to return along the same road immediately from any
of the intersections; then certain restrictions must be imposed on the graph. One
may also ask when it is possible to cover the graph in this manner by any route if
one only follows the rule that a new path shall be selected whenever one reaches an
intersection. I leave some of these problems to the study of the reader.

OvsTEIN ORE, New Haven (Conn., U.S.A.)

Ein zeichnerisches Losungsverfahren
tir Differentialgleichungen zweiter Ordnung

Ist eine Differentialgleichung zweiter Ordnung in der explizit darstellbaren Form
gegeben , ’
Y= 19,9,

so 1aBt sich zu ihrer gendherten zeichnerischen Integration ein Verfahren verwenden,
das nicht nur zu einer ersten raschen Orientierung i{iber den Losungsverlauf geeignet
ist (wenn von Singularititen abgesehen wird), sondern das auch so genau ausgefiihrt
werden kann, daB3 es ohne weiteres den iiblichen praktischen Erfordernissen geniigen
diirfte. Das Verfahren stiitzt sich lediglich auf elementare Eigenschaften der gewéhn-
lichen quadratischen Parabel, aus der man sich die gesuchte Integralkurve stiick-
weise zusammengesetzt denkt. Ein einzelnes solches Stiick ist in der Fig. 1 dargestellt.

Fiir eine quadratische Parabel gilt bekanntlich, daB die Abszisse x des Schnitt-
punktes T zweier benachbarter Tangenten I und II gerade in der Mitte zwischen den
Abszissen ihrer beiden Beriihrungspunkte 7 und 2 liegt. Haben diese den Abstand Ax
voneinander, so 14Bt sich wegen des geradlinigen Verlaufes der ersten Ableitung v’
die zweite Ableitung y” im Parabelpunkte P mit der Abszisse x wie folgt ausdriicken:

y// L yé—y{ . 1 (Ay2 _Ay1_>

T Ay Ax \Ax T Ax

oder mit der zeichnerisch bequemeren Benutzung dhnlich vergroBerter Dreiecke:

"o _,‘ly ky - ky — Ak
Y = ax \n ) hAx®

Hat man also beispielsweise die konstante zweite Ableitung y” einer quadratischen
Parabel gegeben, so lassen sich nach der Wahl einer Anfangstangente I in einem

Anfangspunkt 7 weitere Tangenten II, ... auf folgende Weise zeichnerisch finden:
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