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mais en realite c'est le coup de grace: ä partir de 1904, ce ne sera plus le nom de
Picard qu'on reiterera de part et d'autre, bien qu'on trouve encore quelques travaux
ä l'ancienne mode.

Une transition aussi brusque n'aurait pu avoir lieu si la mode de Picard n'avait
pas ete artificiellement entretenue au delä de son terme approprie. On en etait dejä
ä un plan bien plus avance qu'en 1879 lors de la decouverte de Picard. Une foule de
connaissances etaient pour ainsi dire retenues en laisse, attelees au theoreme de

Picard, et il fallait qu'un jour leur elan fasse craquer les renes. Ce jour arriva en
1904, et il se passa un phenomene bien curieux.

Imaginons-nous cet attelage dont je parlais, le lourd chariot de Picard d'une part,
de l'autre l'equipage impetueux. Les deux mathematiciens de Berlin qui se sont
decides de prendre part ä la course s'installent, l'un dans le chariot, c'est Schottky,
l'autre ä cheval sur l'un des coursiers, c'est Landau. Ils ne se sont point entendus
entre eux, c'est peut-etre une coincidence. Or, c'est Landau le premier qui fait partir
l'equipage, avec un elan si brusque que les renes cedent et le chariot reste en arriere.
Landau a decouvert en effet ce fait inoui dont je vous ai parle au debut, et sous
l'effet foudroyant de cette decouverte, il s'echappe ä toute volee et attire ä lui tous les

regards. II ne s'occupe plus du theoreme general de Picard, qu'il n'a pas reussi ä

prouver. C'est Schottky, reste en arriere dans le chariot, qui y parvient, en corol-
laire d'un resultat encore plus extraordinaire que celui de Landau, et plus compre-
hensif! Malheureusement, on ne fait nullement attention ä lui. Landau revient bien
s'atteler au chariot tant perfectionne par Schottky; seulement, ce n'est plus le
chariot de Picard, c'est le chariot de Landau C'est le theoreme de Landau qu'on
voit decouler du beau resultat de Schottky.

La suite de cette histoire, pleine d'interet et d'actualite pour notre sujet, nous
menerait pourtant trop loin. Que cela suffise pour attirer l'attention sur une question
qui n'a rien de frivole et qui demanderait d'etre approfondie, afin de preserver la
recherche mathematique, dans la mesure du possible, de l'effet aveugle de forces

capricieuses et arbitraires. Cet effet, particulierement notoire lorsqu'il s'agit du choix
d'un sujet de recherche, s'exerce egalement sur le choix du style ou la disposition
formelle d'un travail. Se dissocier la de l'habitude contemporaine la mieux apte ä

durer, c'est condamner son ceuvre ä l'oubli presque certain; et pourtant, l'habitude
peut n'etre pas tres bonne. La mode du style est souvent forcee par des questions de

typographie, celle de la forme (directe, indirecte, deductive, inductive, elliptique,
complete, etc.) a ses raisons psychologiques et souvent personnelles qui bloquent
momentanement des moyens de communication excellents en eux-memes. Sans cela,
le desaccord dont j'ai fait mention dejä entre ces deux grandes intelligences Newton
et Leibniz n'aurait peut-etre jamais eu lieu, et toute la Science y aurait gagne.

R. C. Young, Londres.

Die graphische Lösung des Doppelsternproblems

Doppelsterne sind die zahlreichen Sternsysteme, in denen zwei Sonnen sich in
Keplerschen Ellipsen um den Schwerpunkt des Systems bewegen, während der

Schwerpunkt selbst eine gleichförmige, geradlinige Bewegung ausführt. Bei den von
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unserem Sonnensystem nicht zu weit entfernten Doppelsternen, deren Komponenten
einen verhältnismäßig großen Abstand besitzen, kann die Normalprojektion dieser

Bewegung auf eine zur Visierlinie normale Ebene beobachtet werden. Es ist möglich,
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aus diesen Beobachtungen Lage und Form der Bahnen und die Lage des
Schwerpunktes auf der Verbindungsstrecke zu bestimmen. Aus der Lage des Schwerpunktes
ergibt sich das Verhältnis der Massen der beiden Sterne. Sind die Entfernung des

Systems von der Erde und damit die Dimensionen der Bahnen bekannt, so liefert
das dritte Keplersche Gesetz noch die Summe der Massen, so daß sich auch die
Massen der einzelnen Sterne berechnen lassen. Abgesehen von dieser Anwendung

des dritten Keplerschen Gesetzes laßt sich das Problem
vollständig graphisch lösen.

Wir betrachten zunächst die Bewegung des zweiten Sternes

relativ zum ersten Stern. Auch diese Relativbewegung
erfolgt in einer Keplerschen Ellipse. F sei die Normalprojektion

des ersten Sternes, J5lP2P3jF^P5 diejenige von fünf
Bahnpunkten des zweiten Sternes (Fig. I)1). Wir bestimmen

den Schnittpunkt P6 einer parallelen Geraden zu
P3P± durch P1 mit der Ellipse durch Anwendung des

Satzes von Pascal (in Figur 1 mit dem Sehnensechseck

P^PgPgPgJJ). Die Verbindung der Sehnenmitten von PXP%

und PzPi liefert einen Durchmesser dx der Ellipse. In
gleicher Weise erhalten wir mit dem Schnittpunkt P7 einer Parallelen zu dx durch Px

den zu ä\ konjugierten, zu PxPe parallelen Durchmesser d2. Damit ist der Mittelpunkt

M der Ellipse gegeben. Eine parallele Sehne zum Durchmesser d3 MF (in
Figur 1 die Sehne P5PS) liefert den zu d3 konjugierten Durchmesser dA.

Wir konstruieren die Schnittpunkte von da und dA mit der Bahnellipse. Die Ellipse
ist schief-affin mit der Affinitätsachse d3 zu einem Kreis mit dem Mittelpunkt M.

*) Zur Erleichterung der Übersicht ist die ganze Konstruktion auf die drei Figuren 1, 2, 4 verteilt.
Aus dem gleichen Grunde sind in diesen Figuren die Projektion der Bahnellipse und m Figur 4 auch
diejenige des Kreises über ihrer großen Achse eingezeichnet Fur die Konstruktion sind diese Kurven nicht
erforderlich.

Fig 3



H Schüepp Die graphist he Losung des Doppelsternproblems 35

Wir gehen von dem Mittelpunkt 0 einer Sehne aus (P3P^ in Figur 2). Dem Dreieck
MOQ entspricht in der Kreisfigur ein rechtwinkliges Dreieck. Der affine Punkt 0*
zu 0 liegt also auf dem Halbkreis über MQ. Da überdies den Geraden parallel zu
i4 als affine Geraden die Normalen zur Affinitatsachse d3 entsprechen, ist 0*
bestimmt. Dadurch ist die Äffinitat definiert. Der entsprechende Punkt P3* zu P3
liefert einen Punkt des gesuchten Kreises und damit den Ellipsendurchmesser AXA2.
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Mit dem entsprechenden Punkt Bx zu Bf erhalten wir noch den konjugierten Durchmesser

Bx B2. Mit diesen Konstruktionen haben wir die ursprüngliche Bestimmung
der Ellipse durch fünf Punkte erbetzt durch die fur die weiteren Konstruktionen
vorteilhaftere Bestimmung durch den Durchmesser des Punktes F und den dazu
konjugierten Durchmesser. Dem Astronomen stehen in der Regel nicht nur die fünf zur
Bestimmung notwendigen Punkte zur Verfugung. Er wird daher auf Grund des

gesamten Beobachtungsmaterials unter Verwendung der Ausgleichsrechnung,
ausgehend von dem gefundenen Resultat, noch die Ellipse bestimmen, welche den kleinsten

Gesamtfehler gegenüber den Beobachtungen liefert1).

*) Vgl Waldmeier, Einführung in die Astrophysik (Birkhauser, Basel 1949), Seite 205-216. Die
Seite 208 erwähnte «graphische Losung» bezieht sich nur auf ein Teilproblem, die Bestimmung der Richtung
der Knotenlinie unter Verwendung des Kreises über der großen Achse der Bahnellipse.
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Durch die gegenseitige Lage der Punkte Alf A2, F ist die numerische Exzentrizität
und damit die Form, nicht aber die Große der Bahnellipse gegeben (Fig. 3). Wir
denken uns zur Bahnellipse den Kreis über der großen Achse hinzu. Da durch die
Projektion das Verhältnis MB± MCX nicht verändert wird, lassen sich die Punkte
CXC2 auch m der Projektion eintragen (Fig. 4). Wir kennen damit von der Projektion
des Kreises die konjugierten Durchmesser A1A2 und CXC2. Die bekannte Konstruktion
von Rytz1) liefert deren große und kleine Achse, DXD2 und E1E2. Die Spur s der
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Ebene, welche die Bahnellipse und den zugehörigen Kreis mit dem Durchmesser
D1D2 enthalt, ist parallel zu DXD2. Da fur die Kote des Mittelpunktes M noch keine
Festsetzung getroffen ist, können wir fur s eine beliebige Parallele zu DXD2 wählen.
In Figur 4 ist s durch Ex gelegt, um Projektion und Umlegung voneinander zu
trennen. Die Konstruktion der Umlegung des Kreises und damit auch der
Bahnellipse ist aus der Figur ersichtlich. Sie liefert Form und Große der Bahnellipse, dazu
den Winkel ß zwischen der großen Achse der Ellipse und der Spur s und den
Neigungswinkel ol der Bahnebene gegen die Projektionsebene. Durch s und a sind zwei
zur Projektionsebene symmetrische Bahnebenen definiert. Welche derselben fur den
betrachteten Stern in Frage kommt, laßt sich nur durch spektroskopische Beobachtungen,

durch Bestimmung der Bewegungen normal zu unserer Projektionsebene
entscheiden.

Wir wenden uns der zweiten Aufgabe zu, der Bestimmung der Lage des
Schwerpunktes des Doppelsternsystems. Auch fur die der Beobachtung zugängliche Normal-

1) Vgl zum Beispiel Flukiger, Leitfaden der darstellenden Geometrie (Orell Fußli, Zürich 1943), Seite 40,
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Projektion gilt wie für die Bewegung im Raum der Satz, daß die Projektion des
Schwerpunktes eine geradlinige, gleichförmige Bewegung ausführt und die
Verbindungsstrecke der Sternorte in konstantem Verhältnis teilt. Es seien (Fig. 5) Alt Bx
auf glt A2, B2 auf g2 und A3, B3 auf g3 die Normalprojektionen der Sternorte für
drei Zeiten. Dann ist als Projektion der Bahn des Schwerpunktes eine Gerade gesucht,
welche die drei Strecken im gleichen Verhältnis teilt. Die drei Punktepaare definieren
drei ähnliche Punktreihen. C1,C2,C3 sei irgendeine weitere Gruppe entsprechender
Punkte dieser Reihen (in Figur 5 sind die Punkte gewählt, welche die Strecken AB
außerhalb im Verhältnis 2:1 teilen). Auch die gesuchten Schwerpunktslagen S-l^*^ 53
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bilden eine Gruppe entsprechender Punkte. Die Verbindungsgeraden a AXA2,
b BXB2, c CXC2, entsprechender Punkte von gx und g2 umhüllen eine Parabel;
ebenso die Verbindungsgeraden a' =- A2A3, b' B2B3, c' C2C3, entsprechender
Punkte von g2 und g3x). Die beiden Parabeln haben zwei Tangenten, g2 und die unendlich

ferne Gerade, gemeinsam. Die beiden weiteren gemeinsamen Tangenten liefern
die Lösung unseres Problems, da sie die Strecken A1B1, A2B2 und A3B3 im gleichen
Verhältnis teilen. Ihre Bestimmung entspricht einer Fundamentalaufgabe der
projektiven Geometrie, die sich im vorliegenden Falle besonders einfach gestaltet. Die
von A2, B2,C2, ausgehenden Tangentenpaare a, a'\ b, b'\c,c'\ definieren auf
der unendlich fernen Geraden zwei projektive Punktreihen. Wir übertragen dieselben
in bekannter Weise von 0 aus auf einen Hilfskreis. Den Doppelpunkten dieser Pro-
jektivität entsprechen von einem Punkte der Geraden g2 ausgehende Tangenten an
beide Parabeln, die in die gleiche Gerade fallen. Durch OQ und OQ' sind also die
Richtungen der gesuchten Geraden gegeben. Der Satz von Brianchon (in der Figur
angewandt auf die Tangentensechsseite abgxg2 unendlich ferne Gerade und die
gesuchten Geraden) liefert noch je einen Punkt der gemeinsamen Parabeltangenten und

x) In Figur 5 sind diese Kurven ubersichtshalber eingezeichnet. Fur die Konstruktion sind sie nicht
notwendig.
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damit die Losungen q und q'. Von diesen besitzt nur q fur das astronomische Problem
Bedeutung, da der Schwerpunkt ein innerer Punkt der Strecken AB sein muß. Eine
Probe ist dadurch gegeben, daß sich die Strecken SXS2 und S2S3 wie die zugehörigen
Zeitabschnitte verhalten müssen.

Eine einfachere Lösung erhalten wir, wenn wir die Zeiten tx,t2,t3 fur die betrachteten

Sternorte zur Konstruktion benutzen. Die Aufgabe wird dadurch uberbestimmt.
Fur die Zeit t2 benotigen wir nur noch die Lage der Geraden g2, nicht aber diejenige
der Punkte A2 und B2. Wir betrachten (Fig. 6) die Bewegung der Sterne bezogen auf
ein Koordinatensystem, das sich relativ zum Ausgangssystem in der Richtung AXA3
mit der Geschwindigkeit AxA3/(t3— tx) gleichförmig parallel verschiebt. Auch in
diesem System wird die Bewegung des gesuchten Schwerpunktes gleichförmig und
geradlinig. Ist AXBX die Stellung im neuen System zur Zeit tx, so ist AgBg (A$= Ax)
die Stellung zur Zeit t3. Die Verbindungsgerade g2 der Sternorte zur Zeit t2 erhalten

wir durch Parallelverschiebung von g2 in der Richtung A3AX um die Strecke
d AXA3 (t2— tx)/(t3— tx). Da die Verbindungsgerade der drei Schwerpunktslagen die
Strecken AXBX und A^B^ im gleichen Verhältnis teilt, erfolgt die Schwerpunktsbewegung

parallel zu BXB$. Teilen wir BXB$ im Punkte P innerhalb im Verhältnis
(k ~ h): (^3 ~~ k)> so muß der Schwerpunkt Sf auf AXP und auf gf liegen. Damit
ist die Lösung SfSfS* im neuen Koordinatensystem gegeben. Aus ihr folgt sofort
die Losung SXS2S3 im Ausgangssystem. S2 wird die (in der Figur 6 nicht eingetragene)
Strecke A2B2 im gleichen Verhältnis teilen müssen wie Sx und S3 die Strecken AXBX

und ^43P3, wenn die Sternorte und Zeiten miteinander in Einklang stehen. Fur die

Verwertung des gesamten Beobachtungsmaterials gilt die gleiche Bemerkung wie beim
ersten Problem. H. Schüepp, Zollikon-Zürich.

Aufgaben

Aufgabe 38. a) Im Jahre 0 leben tausend Individuen, welche die nulUe Generation

bilden. Nach einem Jahre sterben sie ab und hinterlassen Nachkommen, die
erste Generation usw. Die Wahrscheinlichkeit, daß em Individuum k (0, 1, 2, 20)
«Kinder» hat, sei pk> so daß also pQ + pt-^r ••• +^2o= 1 gdt. Ferner sei die Erwartung
0 • p0+ 1 • px-\- 2 p2-\ '" -f 20 p2o=^ 1. Wir setzen die Wahrscheinlichkeit, daß ein
Individuum nach n Jahren keine Nachkommen mehr hat, gleich x(n) Diese Folge
(fur n — 1, 2, ist nirgends abnehmend und <Z* 1. Sie besitzt also eine Grenze x. Die
Aufgabe besteht in der Berechnung und Deutung dieses x.

b) Im Jahre 0 sollen alle Individuen verschiedene Familiennamen haben, die sich
vererben. In der 1000 Generation sei die Anzahl der Individuen 2000. Was laßt sich
über die Anzahl der noch existierenden Familiennamen aussagen A. Speiser (Basel).

Losung des Aufgabenstellevs: Es gilt die Formel

x (n + 1) p0 + px x(n) + p2 x2(n) - • • • + p20 x20(n).

In der Grenze fur n oo und wegen der Stetigkeit der Wurzeln als Funktionen der
Koeffizienten gilt p0+ (px— 1) x +p2 x2 + ••• + />2o #20= 0. Diese Gleichung hat die
Wurzel x 1 und nach der Descartesschen Zeichenregel noch genau eine positive
Wurzel. Nun verschwindet die Ableitung pt — 1 + 2 p2 x ~\ h 20 p20 x19 fur x 1 nach
der «Erwartung». Daher ist auch die zweite Wurzel gleich 1. Die Paradoxie besteht
nun dann, daß die Wahrscheinlichkeit fur Nachkommen verschwindet, wahrend doch
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