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Thermodynamische Behandlung
der kalorimetrischen Grundaufgabe

Werden zwei verschieden warme Korper miteinander in Berührung gebracht, so

kühlt sich der eine ab und der andere erwärmt sich, bis der Grenzzustand des Warme-
gleichgewichtes erreicht ist Ausgehend von dieser tagtaghchen Erfahrung, sagen
wir, die sich berührenden Korper hatten alsdann dieselbe Temperatur Dieses
Kriterium der Temperaturgleichheit ist em Satz, der sich durch kalorimetrische Experimente

nicht prüfen laßt Es ist em A xwm, das den phänomenologischen Temperaturbegriff

überhaupt erst begründen hilft und damit wesensgemaß auch den Ausgangspunkt

der Kalorimetne darstellt1)
Unter der kalorimetrischen Grundaufgabe verstehen wir nun folgendes Problem

Em Korper der Wärmekapazität Kx mit der Temperatur Tx wird mit einem Korper
der Wärmekapazität K2 und der Temperatur T2 m Berührung gebracht Man
bestimme den Endzustand In der uns geläufigen Losungsart dieser einfachen Aufgabe
machen wir nicht nur von verschiedenen vereinfachenden Annahmen, sondern auch

von diesem Axiom der Temperaturgleichheit stillschweigenden Gebrauch, denn wir
setzen a priori eine einheitliche «Mischungstemperatur» Tm voraus Außerdem
verwenden wir den ersten Hauptsatz der Thermodynamik, der bei diesem arbeitslosen

Vorgang am einfachsten in folgenden Satz gekleidet wird «Die vom warmen Korper
abgegebene Wärmemenge Qx — Kx (Tx — Tm) und die vom kalten Korper aufgenommene

Wärmemenge Q2= K2(Tm— T2) smd gleich » Daraus folgt sofort die Temperatur

des Warmegleichgewichtes

Statt mit dem Temperaturgleichheitsaxiom und dem ersten Hauptsatz kann man
diese Aufgabe auch mit dem ersten und zweiten Hauptsatz losen Diese etwas
weitläufige Behandlung einer elementaren Rechnung rechtfertigt sich, denn sie demonstriert

das Funktionieren der Hauptsatze auf eine anschauliche Weise Wenn uns
damit insbesondere der zweite Hauptsatz vertrauter wird, so ist der Zweck der
Aufgabe erreicht2)

*) Näheres über das Temperaturgleichheitsaxiom und die axiomatische Begründung des Temperaturbe
griffes in E Mach, Die Prinzipien der Wärmelehre, 2 Aufl (Ambr Barth, Leipzig 1900), S 4, 39, 40, 42

2) Man beachte, daß dieser Losungsweg — trotz der ungewohnten Fragestellung — vom elementaren Weg
nicht grundsatzlich abweicht, denn im zweiten Hauptsatz ist das Temperaturgleichheitsaxiom implizit ent
halten Die Korrespondenz zwischen dem Axiom und dem zweiten Hauptsatz im Fall unseres Beispiels
laßt sich am einfachsten so beweisen Wenn ÖQ1 den virtuellen Wärmeaustausch des ersten Teilsystems mit
dem andern Teilsystem bedeutet, so lautet der zweite Hauptsatz nach (8) fur zwei wärmeleitend verbundene,

nach außen abgeschlossene Teilsysteme im Gleichgeu icht

SQi ÖQ2
_ 0

Bei Mitberucksichtigung des ersten Hauptsatzes, der fur ein abgeschlossenes und arbeitsloses System
ÖQi + öQ2==0 lautet, folgt sofort das Resultat fur den Grenzzustand des Warmegleichgewichtes 7\= Tt,
was zu beweisen war
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Dazu muß die Aufgabe noch einmal gestellt werden, jedoch so, daß die eingangs
erwähnten, meist stillschweigend vorweggenommenen Annahmen m der Fragestellung

enthalten sind. In die Begriffswelt der Thermodynamik übertragen, lautet die
kalorimetrische Grundaufgabe etwa so

Gegeben: Ein abgeschlossenes thermodynamisches System, bestehend aus zwei
Teilsystemen (Fig. 1), zwischen denen nur Wärmeaustausch stattfinden kann. Das

Umgebung
LL

thermodynamisches System\\\\\ \\W \W\\
Teilsystem 1 \j\ Teilsystem 2

/ Umgebung

lug 1 Prinzipschema des thermodynamischen Systems der kalorimetrischen Grundaufgabe

Wahrend des irreversiblen Vorganges (Mischungsvorganges) ist die Außenwand in jeder Hinsicht undurchlässig,

die Zwischenwand dagegen warmedurchlassig Wahrend des reversiblen Vergleichsvorganges ist die
Außenwand warmedurchlassig, die Zwischenwand dagegen in jeder Hinsicht undurchlässig

Teilsystem 1 befolge eine Energiefunktion U1 - Kx Tx -f kx und habe im vorgegebenen

Zustand Z' die einheitliche Temperatur T[. Das Teilsystem 2 befolge die Energiefunktion

U2 — K2 T2 i- &2 und habe im vorgegebenen Zustand Z' die einheitliche
Temperatur T2. Die Größen Klt K2, kx und k2 seien feste Zahlen, Kx und K2 seien
zudem positiv1).

Gesucht: Der Endzustand Z", dem das System unter diesen Voraussetzungen durch
das Walten der beiden Hauptsätze zustrebt.

I. Die Aussage des ersten Hauptsatzes

Der erste Hauptsatz lautet
dU -dQ-rdA, (2)

oder, in Worten: Die durch die Summe der beiden (unendlich kleinen) Austauschgrößen

definierte Größe dU ist das (totale) Differential einer Zustandsfunktion des

betreffenden Systems.
dQ ist ein unendlich kleiner Wärmeaustausch, dA ein unendlich kleiner

Arbeitsaustausch zwischen dem System und der Umgebung. Die durch den ersten Hauptsatz

aufgestellte Zustandsfunktion U heißt Energie.
Wegen der Abgeschlossenheit des von uns zu untersuchenden Systems (Fig. 1)

ist dQ-=dA=-0 und somit U" - U', also

KXT^ KtTj-K^ + KtTj. (3)

*) Bei hinreichend kleinen Temperaturunterschieden 1X-T^ lassen sich alle homogenen (einphasigen)
und monovananten Systeme durch diesen linearen Ansatz wiedergeben (Gibbssche Phasenregel) Fur ideale
Gase oder isochor geführte van-der-Waalssche Gase gilt dieser Ansatz fur alle Temperaturen exakt

11 Math V'3
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II. Die Aussage des zweiten Hauptsatzes

Für ein ganz beliebiges (auch offenes) System lautet der zweite Hauptsatz: Unter
allen vom ersten Hauptsatz zugelassenen Systemsveränderungen sind nur solche

möglich, für die die Ungleichung

äS>f (4)

dS- Ö%^ (5)

gilt. Dabei ist

das (totale) Differential einer Zustandsfunktion des Systems.
dQrev ist der unendlich kleine Wärmeaustausch zwischen diesem ganz beliebigen

System und dessen Umgebung, wenn der Übergang auf einem reversiblen (d.h. allzeit
restlos umkehrbaren) Vergleichsweg erfolgen würde. Die durch den zweiten Hauptsatz

aufgestellte Zustandsfunktion S heißt Entropie.
Nun ist aber das in unserer Rechnung verwendete System als ganzes abgeschlossen

(d. h. dQ 0), und wir erhalten als Aussage des zweiten Hauptsatzes für den Übergang

unseres Systems vom Zustand Z' in den Zustand Z" nach (4):

S"-S'^0. (6)

Zur Berechnung des Entropiezustandes unseres Systems beim Übergang von Z'
nach Z" müssen wir ad hoc einen reversiblen Vergleichsüberg&ng ausfindig machen,
also einen Übergang, der sich nicht an die eingangs gemachten Führungsvorschriften
zu halten hat, der aber den Zustand Z" auf umkehrbarem Weg erreichen muß. Ein
Vorgang, der das System in den neuen Zustand zu bringen vermag und der in jedem
Übergangsstadium spurlos rückgängig gemacht werden kann, ist beispielsweise der
folgende: Der Filter zwischen den Teilsystemen sei vorübergehend wärmeundurchlässig,

die Begrenzung mit der Umgebung dagegen wärmedurchlässig (Fig. 1). Die
Teilsysteme gleichen nun ihre Temperatur dadurch dem Zustand Z" an, indem sie

mit einem Gas der Umgebung (Fig. 1), dessen Volumänderungen nur reversibel
erfolgen, Wärme austauschen. Durch adiabatische (und damit auch isentropische)
Volumveränderungen dieses Gases gelingt es, dessen Temperatur der jeweiligen
Teilsystemstemperatur anzugleichen. So ist es möglich, den Wärmeaustausch
temperatursturzfrei und damit auch reversibel vorzunehmen. Beim Übergang der Wärmemenge

ÖQrevl vom Teilsystem 1 in die Umgebung des Gesamtsystems fällt die Entropie

des Teilsystems 1 um den Betrag dQrevl/T1 [vgl. Definition (5)]. Die Entropie der

Umgebung wächst um diesen Betrag1).
Damit berechnet sich die Entropie des Gesamtsystems im Zustand Z"(T{, T2)

aus der Entropie des Ausgangszustandes Z'(Tl, T2) wie folgt:

C" C _i_ / ÖQrevl
i / ÖQrev2

*) Ein anderes Gedankenexperiment zur Berechnung der Entropiezunahme ist beispielsweise vom
zusammengesetzten Carnot-Prozeß her bekannt Die Umgebung besteht hier aus unendlich vielen Warme-
speichern mit unendlich großer Wärmekapazität. Der reversible Vergleichsweg besteht in unendlich vielen
temperatursturzfreien und damit quasistatischen und reversiblen Wärmeaustauschen zwischen den
Teilsystemen und diesen Warmereservoiren.
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Für die beiden reversiblen Austauschwärmen erhält man aus den Energiefunktionen
der Teilsysteme mit dem ersten Hauptsatz (2)

ÖQrevi Kx dTx und dQrev 2 K2dT2.

Damit folgt für die Entropie des beliebigen zweiten Zustandes Z"

S" Sf + Kx In |f + K2 ln J'
1 1 1 2

und bei Berücksichtigung des ersten Hauptsatzes (3):

S" -S' + Kt In |[ + K2 In [£ T^) + l]. (7)

In unserer Aufgabe ist nicht nur irgendein von Z' aus thermodynamisch erreichbarer

Zustand Z", sondern der unter den gegebenen Voraussetzungen sich einstellende

Endzustand gesucht. Dieser Endzustand ist der Gleichgewichtszustand des

Systems, d. h. derjenige Zustand, für den alle mit den beiden Hauptsätzen verträglichen

differentiellen Systemsveränderungen nur quasistatisch und damit auch nur
reversibel verlaufen können. Ein im Gleichgewicht sich befindendes, ganz beliebiges
(auch offenes) System muß damit die Variationsbedingung erfüllen:

öS - f
(allgemeine Gleichgewichtsbedingung thermodynamischer Systeme). Hier bedeutet
ÖQ ein kleiner virtueller Wärmeaustausch dieses Systems mit seiner Umgebung, und
öS ist die Variation der Zustandsfunktion S. In Verbindung mit (6) ergibt sich für
unser abgeschlossenes System für den Endzustand die Bedingung

öS 0 oder S Maximum. (8)

Zur Ermittlung der gesuchten Endtemperatur T{ bilden wir die Ableitung von (7)

nach 77: ds„ ^ ^^dTj - y» IqTl+KzTi-KiTZ '

Nach (8) muß im Zustand des Wärmegleichgewichtes dieser Differentialquotient
verschwinden. Daraus folgt, daß (7) für die Stelle

T" =-
Kl T'x + K~T'2

11 ~
Kx + K2

ein Maximum einnimmt. Damit ist mit (3) auch die andere Teiltemperatur (T2)
festgelegt: T"-T'i2 — i1.

Diese kombinierte Aussage der beiden Hauptsätze beantwortet unsere Frage
erschöpfend. Das Ergebnis lautet: Das abgeschlossene System im beliebigen Zustand
Z' verläßt diesen Zustand und geht über in seinen Gleichgewichtszustand Z". Im
Gleichgewichtszustand sind beide Teiltemperaturen gleich, nämlich - in Überein-

Stimmung mit (1) -
_ K.TJ +Ktrt

M. Jaggi, Winterthur.


	Thermodynamische Behandlung der kalorimetrischen Grundaufgabe

