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Thermodynamische Behandlung
der kalorimetrischen Grundaufgabe

Werden zwei verschieden warme Korper miteinander in Berithrung gebracht, so
kiihlt sich der eine ab und der andere erwidrmt sich, bis der Grenzzustand des Wirme-
gleichgewichtes erreicht ist. Ausgehend von dieser tagtiglichen Erfahrung, sagen
wir, die sich berithrenden Ké&rper hiatten alsdann dieselbe Temperatur. Dieses Kri-
terium der Temperaturgleichheit ist ein Satz, der sich durch kalorimetrische Experi-
mente nicht priifen 148t. Es ist ein 4 xiom, das den phdnomenologischen Temperatur-
begriff iiberhaupt erst begriinden hilft und damit wesensgemaB3 auch den Ausgangs-
punkt der Kalorimetrie darstellt?).

Unter der kalorimetrischen Grundaufgabe verstehen wir nun folgendes Problem.
Ein Korper der Warmekapazitit K; mit der Temperatur T; wird mit einem Ko&rper
der Wiarmekapazitat K, und der Temperatur 7, in Berithrung gebracht. Man be-
stimme den Endzustand. In der uns geldufigen Ldsungsart dieser einfachen Aufgabe
machen wir nicht nur von verschiedenen vereinfachenden Annahmen, sondern auch
von diesem Axiom der Temperaturgleichheit stillschweigenden Gebrauch, denn wir
setzen a priori eine einheitliche «Mischungstemperatur» 7T, voraus. AuBBerdem ver-
wenden wir den ersten Hauptsatz der Thermodynamik, der bei diesem arbeitslosen
Vorgang am einfachsten in folgenden Satz gekleidet wird: «Die vom warmen Korper
abgegebene Wirmemenge Q, = K, (1; — T,,) und die vom kalten Kérper autgenom-
mene Wirmemenge Q, = K, (T,, — 1) sind gleich.» Daraus folgt sofort die Tempe-
ratur des Warmegleichgewichtes

K T+ K, T
Tn= i w M)

Statt mit dem Temperaturgleichheitsaxiom und dem ersten Hauptsatz kann man
diese Aufgabe auch mit dem ersten und zweiten Hauptsatz 16sen. Diese etwas weit-
ldufige Behandlung einer elementaren Rechnung rechtfertigt sich, denn sie demon-
striert das Funktionieren der Hauptsitze auf eine anschauliche Weise. Wenn uns
damit insbesondere der zweite Hauptsatz vertrauter wird, so ist der Zweck der Auf-
gabe erreicht?).

1) Niheres iiber das Temperaturgleichheitsaxiom und die axiomatische Begrundung des Temperaturbe-
griffes in E. MacH, Die Prinzipien der Wdrmelehre, 2. Aufl. (Ambr. Barth, Leipzig 1900), S. 4, 39, 40, 42.

2) Man beachte, daB dieser Losungsweg — trotz der ungewohnten Fragestellung — vom elementaren Weg
nicht grundsitzlich abweicht, denn im zweiten Hauptsatz ist das Temperaturgleichheitsaxiom implizit ent-
halten. Die Korrespondenz zwischen dem Axiom und dem zweiten Hauptsatz im Fall unseres Beispiels
148t sich am einfachsten so beweisen: Wenn dQ, den virtuellen Wirmeaustausch des ersten Teilsystems mit
dem andern Teilsystem bedeutet, so lautet der zweite Hauptsatz nach (8) fiir zwei wiarmeleitend verbun-
dene, nach auBen abgeschlossene Teilsysteme im Gleichgewicht

Bei Mitberiicksichtigung des ersten Hauptsatzes, der fiir ein abgeschlossenes und arbeitsloses System
6Q; + 60y = 0 lautet, folgt sofort das Resultat fiir den Grenzzustand des Warmegleichgewichtes: Ty = Ty,
was zu beweisen war.
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Dazu muB die Aufgabe noch einmal gestellt werden, jedoch so, daB} die eingangs
erwdhnten, meist stillschweigend vorweggenommenen Annahmen in der Fragestel-
lung enthalten sind. In die Begriffswelt der Thermodynamik {ibertragen, lautet die
kalorimetrische Grundaufgabe etwa so:

Gegeben: Ein abgeschlossenes thermodynamisches System, bestehend aus zwei
Teilsystemen (Fig. 1), zwischen denen nur Wirmeaustausch stattfinden kann. Das

/ \ 7¢ils ystem { :Il\ Teilsystem 2
\‘n

/

Umgebun
// /9 7
Fig. 1. Prinzipschema des thermodynamischen Systems der kalorimetrischen Grundaufgabe

Waihrend des irreversiblen Vorganges (Mischungsvorganges) ist die Aulenwand in jeder Hinsicht undurch-
lissig, die Zwischenwand dagegen wiarmedurchlissig. Wahrend des reversiblen Vergleichsvorganges ist die
AuBenwand wirmedurchlissig, dic Zwischenwand dagegen in jeder Hinsicht undurchlissig.
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Teilsystem 1 befolge eine Energiefunktion U, = K, T} + %k, und habe im vorgegebe-
nen Zustand Z’ die einheitliche Temperatur 7. Das Teilsystem 2 befolge die Energie-
funktion U, = K, T, + k, und habe im vorgegebenen Zustand Z' die einheitliche
Temperatur T;. Die GréBen K, K,, &, und &, seien feste Zahlen, K; und K, seien
zudem positiv?).

Gesucht: Der Endzustand Z”, dem das System unter diesen Voraussetzungen durch
das Walten der beiden Hauptsatze zustrebt.

1. Die Aussage des ersten Hauptsatzes

Der erste Hauptsatz lautet

oder, in Worten: Die durch die Summe der beiden (unendlich kleinen) Austausch-
groBen definierte GroBe dU ist das (totale) Differential einer Zustandsfunktion des
betreffenden Systems.

0Q ist ein unendlich kleiner Wirmeaustausch, 04 ein unendlich kleiner Arbeits-
austausch zwischen dem System und der Umgebung. Die durch den ersten Haupt-
satz aufgestellte Zustandsfunktion U heiB3t Energie.

Wegen der Abgeschlossenheit des von uns zu untersuchenden Systems (Fig. 1)
ist 0Q = 04 =- 0 und somit U" = U’, also

KT+ KT =K1+ KT (3)

1) Bei hinreichend kleinen Temperaturunterschieden 73 — Ty lassen sich alle homogenen (einphasigen)
und monovarianten Systeme durch diesen linearen Ansatz wiedergeben (Gibbssche Phasenregel). Fiir ideale
Gase oder isochor gefithrte van-der-Waalssche Gase gilt dieser Ansatz fiir alle Temperaturen exakt.

El. Math.V/3
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I1. Die Aussage des zwesten Hauptsatzes

Fiir ein ganz beliebiges (auch offenes) System lautet der zweite Hauptsatz: Unter
allen vom ersten Hauptsatz zugelassenen Systemsverdnderungen sind nur solche
moglich, fiir die die Ungleichung

is =% (4)
gilt. Dabei ist
ds - ﬂQTwz, (5)

das (totale) Differential einer Zustandsfunktion des Systems.

00Q,., ist der unendlich kleine Wirmeaustausch zwischen diesem ganz beliebigen
System und dessen Umgebung, wenn der Ubergang auf einem reversiblen (d. h. allzeit
restlos umkehrbaren) Vergleichsweg erfolgen wiirde. Die durch den zweiten Haupt-
satz aufgestellte Zustandsfunktion S heifit Entropie.

Nun ist aber das in unserer Rechnung verwendete System als ganzes abgeschlossen
(d. h. 0Q = 0), und wir erhalten als Aussage des zweiten Hauptsatzes fiir den Uber-
gang unseres Systems vom Zustand Z’ in den Zustand Z” nach (4):

S"— S =0. (6)

Zur Berechnung des Entropiezustandes unseres Systems beim Ubergang von Z’
nach Z" miissen wir ad hoc einen reversiblen Vergleichsiibergang ausfindig machen,
also einen Ubergang, der sich nicht an die eingangs gemachten Fiihrungsvorschriften
zu halten hat, der aber den Zustand Z” auf umkehrbarem Weg erreichen muB. Ein
Vorgang, der das System in den neuen Zustand zu bringen vermag und der in jedem
Ubergangsstadium spurlos riickgingig gemacht werden kann, ist beispielsweise der
folgende: Der Filter zwischen den Teilsystemen sei vorubergehend warmeundurch-
lassig, die Begrenzung mit der Umgebung dagegen wirmedurchlissig (Fig.1). Die
Teilsysteme gleichen nun ihre Temperatur dadurch dem Zustand Z” an, indem sie
mit einem Gas der Umgebung (Fig. 1), dessen Volumadnderungen nur reversibel
erfolgen, Wirme austauschen. Durch adiabatische (und damit auch isentropische)
Volumverdnderungen dieses Gases gelingt es, dessen Temperatur der jeweiligen
Teilsystemstemperatur anzugleichen. So ist es moglich, den Warmeaustausch tem-
peratursturzfrei und damit auch reversibel vorzunehmen. Beim Ubergang der Wirme-
menge 0Q,,,; vom Teilsystem 1 in die Umgebung des Gesamtsystems fillt die Entro-
pie des Teilsystems 1 um den Betrag 00Q,,,,/7; [vgl. Definition (5)]. Die Entropie der
Umgebung wichst um diesen Betrag?).

Damit berechnet sich die Entropie des Gesamtsystems im Zustand Z"(T}, T")
aus der Entropie des Ausgangszustandes Z'(7}, T,) wie folgt:

Sl_{_/erevl +/OQrevz

1) Ein anderes (xedankenexperlment zur Berechnung der Entropiezunahme ist belsplelswelse vom
zusammengesetzten Carnot-ProzeB her bekannt: Die Umgebung besteht hier aus unendlich vielen Wirme-
speichern mit unendlich groBer Warmekapazitit. Der reversible Vergleichsweg besteht in unendlich vielen
temperatursturzfreien und damit quasistatischen und reversiblen Wiarmeaustauschen zwischen den Teil-
systemen und diesen Warmereservoiren.
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Fiir die beiden reversiblen Austauschwidrmen erhilt man aus den Energiefunktionen
der Teilsysteme mit dem ersten Hauptsatz (2)

0Qrw1 =K dTy und  0Q., = K, dT;.
Damit folgt fiir die Entropie des beliebigen zweiten Zustandes Z”

i ;o T” . TH
S"-= 8§ TKlln 7:;“ +K21n “,fz’,
und bei Beriicksichtigung des ersten Hauptsatzes (3):
” ’ TJ’., 4 Kl ’[{ “ Ti,
S S Ky In gt 4 Kyln [t (ST ], )
In unserer Aufgabe ist nicht nur irgendein von Z’ aus thermodynamisch erreich-
barer Zustand Z”, sondern der unter den gegebenen Voraussetzungen sich einstel-
lende Endzustand gesucht. Dieser Endzustand ist der Gleichgewichtszustand des
Systems, d. h. derjenige Zustand, fiir den alle mit den beiden Hauptsitzen vertrig-
lichen differentiellen Systemsverinderungen nur quasistatisch und damit auch nur
reversibel verlaufen kénnen. Ein im Gleichgewicht sich befindendes, ganz beliebiges
(auch offenes) System mufl damit die Variationsbedingung erfiillen:

0Q
0S = 7

(allgemeine Gleichgewichtsbedingung thermodynamischer Systeme). Hier bedeutet
0Q ein kleiner virtueller Wiarmeaustausch dieses Systems mit seiner Umgebung, und
0S ist die Variation der Zustandsfunktion S. In Verbindung mit (6) ergibt sich fiir
unser abgeschlossenes System fiir den Endzustand die Bedingung

0S =0 oder S = Maximum. (8)

Zur Ermittlung der gesuchten Endtemperatur 7;" bilden wir die Ableitung von (7)
nach 7;": 05" K, KK,
OTr T TV T KT+ K, Ty K, T1°
Nach (8) muB3 im Zustand des Wirmegleichgewichtes dieser Differentialquotient ver-
schwinden. Daraus folgt, daB (7) fiir die Stelle
7o Kali+ KTy
L K, + K,

ein Maximum einnimmt. Damit ist mit (3) auch die andere Teiltemperatur (7') fest-
elegt : ,
g g ]‘2/1 - ]‘1 .

Diese kombinierte Aussage der berden Hauptsitze beantwortet unsere Frage er-
schépfend. Das Ergebnis lautet: Das abgeschlossene System im beliebigen Zustand
Z' verlaBt diesen Zustand und geht iiber in seinen Gleichgewichtszustand Z”. Im
Gleichgewichtszustand sind beide Teiltemperaturen gleich, namlich — in Uberein-
stimmung mit (1) — — KT+ K, T

LI K+ K,
M. JaGaG1, Winterthur.
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