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aufsetzen. So erhalten wir eine von Kreisbogen begrenzte Figur, die genau den
gleichen Umfang hat wie der Kreis der ersten Figur. Also muß ihr Flächeninhalt kleiner
oder gleich dem des Kreises sein, wegen der isoperimetrischen Eigenschaft des Kreises.
Das Gleichheitszeichen kann nur dann gelten, wenn die zweite Figur auch ein Kreis,
kongruent dem ersten Kreis ist; dann aber sind auch die Polygone kongruent. In
allen anderen Fällen ist die zweite Figur kleiner als die erste.

Zieht man nun beiderseits die kongruenten Kreissegmente wieder ab, so folgt, daß
auch das zweite Polygon einen kleineren Flächeninhalt hat als das erste, außer in
dem einen Fall, wo die beiden kongruent sind. Damit ist die Maximaleigenschaft des

Sehnenpolygons erneut bewiesen.
Wäre das zweite Polygon auch ein Kreissehnenpolygon, aber nicht kongruent dem

ersten, so hätte einerseits das zweite Polygon einen kleineren Flächeninhalt als das

erste, andererseits aber, da man im Beweis die Rollen der beiden Kreissehnenpolygone
vertauschen kann, das erste einen kleineren Flächeninhalt als das zweite. Das
widerspricht sich. Also kann es nur ein Kreissehnenpolygon mit gegebenen Seiten a, b,

geben. B. L. van der Waerden.

Resolution des equations algebriques
par la regle ä calcul

Quand on opere avec une regle ä calcul, on gagne en rapidite et, souvent, en

exactitude ä resoudre les equations algebriques par approximations successives. Dans
le cadre restreint de cet article, nous nous limiterons au 2e et au 3e degre. Nous
devrons quelque peu sacrifier les considerations theoriques ä l'expose des resultats

pratiques.

Equation du deuxieme degr6
Soit Tequation

x2 + px + q^0.
On Tecrit sous la forme

(i)
/> + x

On donne ä x dans le deuxieme membre une valeur quelconque xQ (de preference

xQ 0) et on tire
x - -g

On substitue ensuite dans le deuxieme membre de l'equation (1) cette valeur xx qu'on
vient de calculer; on en tire

x -——, etc.2 P + *i '

On peut demontrer que la suite xx, x2, xs, xn est convergente. Elle converge vers
la plus petite, en valeur absolue, des racines de l'equation, par valeurs constamment

superieures ou constamment inferieures si q > 0, et par oscillations si q < 0.
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Exemple Ier. x2 - 5 x + 3 0. On part de

-3 3

x — 5 5- x

On place l'index de la reglette en face du nombre 3 de l'echelle des nombres de la
regle, on amene le trait du curseur sur 5 de l'echelle des inverses de la reglette; il
recouvre alors sur la regle le quotient xx 0,6. On deplace le curseur de 0,6 divisions
vers la droite ä partir du 5 de l'echelle des inverses et on lit sur la regle (sous le trait
du curseur)

H 7T-W -TT °>68'2 5-0,6 4,4 '

A partir de cette position, on deplace le curseur de 0,08 divisions de l'echelle des
inverses (toujours vers la droite), et on lit sur la regle

0,694«* 5-0,6-0,08 5-0,68

et ainsi de suite. On obtient la suite convergente

xx 0,6, x2 0,68, x3 0,694, *4 0,696, xh 0,697.

On s'arrete, lorsque 2 valeurs successives, xn et xnhl, ne presentent plus de difference
appreciable au degre d'approximation de la r&gle.

Lorsqu'on a trouve sur la regle la premiere racine (ici 0,697), on peut lire la seconde

en face, sur la reglette, puisque, dans la position occupee par la reglette, tous
les nombres en regard forment un produit egal au produit des racines (ici 3). Mais l'ap-
proximation sera meilleure si l'on deduit la deuxi&me racine x" de la premiere x' k
l'aide de la somme x' + x" 5.

Remarques: I. - Avec une regle de 50 cm, on est certain que

0,697 < x' < 0,698
et, par suite,

4,303 > x" > 4,302
puisque x' -f x" 5.

II. — On s'arrangera pour que la racine calculee par la r&gle soit positive, ce qui
est toujours facile. Si par exemple on avait l'equation x2— 5 x — 3 0 d'oü

3
x — x-5

on poserait z —x dou z ——r-

et on obtiendrait la suite oscillante:

zx 0,6, z2 0,536, z3 0,542, *4 0,5415 ^ z'.

On en dMuirait, pour la somme des racines, z" —5,5415, d'oü x' —0,5415,
«^ 5,5415.
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III — Nous avons choisi comme premier exemple des coefficients simples pour
facihter les exphcations On peut aisement se rendre compte que des coefficients plus
comphques ne rendent les Operations ni plus longues, ni plus difficiles, ni moms
exactes Ainsi l'equation x2 — 95,8 x + 15,2 0, dont la Solution est donnee par une
suite plus rapidement convergente, sera resolue plus rapidement que les precedentes,
et ses racines x' 0,1590, x" 95,641 sont determinees avec autant d'exactitude Si
l'on avait, avec la meme regle, resolu cette derniere equation par la formule classique,
on aurait obtenu, en un temps plus long, les resultats beaucoup moms precis x' 0,2,
x" 95,6.

IV — Quand la suite des valeurs xlf x2t xZi #4, est faiblement Convergente, la
methode des approximations successives apphquee rigoureusement pourrait devemr
plus longue que la methode classique Soit par exemple l'equation x2 + 2,3 x —1,7 0

d'oü

_ 1,7
X ~ lJV~x

On obtiendrait la suite oscillante

xx 0,74, x2 0,55, x3 0,597, #4 0,587, x5 0,589, x6 0,5885

Mais il est facile de modifier la methode de facon ä lui conserver ses avantages de

rapidite Au lieu d'ajouter d'emblee au terme 2,3 du denommateur de l'expression
x 1,7/(2,3 -f- x) la valeur xx — 0,74, on l'ajoutera par tranches de 0,1 (comptees k

partir de 2,3 de l'echelle des inverses de la reglette) en deplacant lentement le curseur
et en suivant la diminution du nombre qu'il recouvre sur la regle On voit ainsi qu'il
faut s'arreter ä 0,5 On a alors

II reste mamtenant moms de 0,1 ä ajouter On fait cette addition par tranches de

0,01 en prenant les memes precautions que plus haut (on peut ajouter ä peine 9 tranches)

ce qui conduit ä

1.7

2,3 + 0,5 + 0,09 - 0,5885 ^ x', d'oü x" - 2,8885

Ce procede, independamment de sa plus grande rapidite, presente l'avantage capital
de pouvoir etre utihse dans des cas oü la methode ngoureuse des approximations
successives cesse d'etre applicable — ce qui se produira dans l'equation du 3e degre
C'est pourquoi nous attirons des mamtenant l'attention sur lui Nous le designerons

par l'abreviation ASM (methode des approximations successives modifiee) et
nous reserverons l'abreviation A S ä la methode ngoureuse d'approximations successives

Nous laissons au lecteur le soin d'adapter le procede A S M au cas d'une
suite convergeant vers la racine par valeurs constamment superieures ou constamment

mfeneures ä celle-ci.
V — Que l'on procede par A S ou par A S M il est parfaitement inutile de hre

exactement les valeurs mtermediaires xlf x2, x3, Seule la derniere doit etre lue
aussi exactement que possible On hra les autres avec une exactitude progressive.
Ainsi dans l'equation x2 + 11 x - 5 0 (index de la reglette en face de 5, curseur sur
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11 de l'echelle des inverses), on lira, non pas xx 0,455, mais simplement xx 0,4

avec une decimale; on deplacera le curseur de 0,4 ä partir de 11, donc jusqu'en 11,4
de l'echelle des inverses. On lira alors sur la regle x2 0,44 avec deux decimales. On

poussera ensuite le curseur de 0,04, soit en 11,44 de l'echelle des inverses, et on lira
sur l'echelle des nombres de la regle xz 0,437 xf. L'ensemble des manoeuvres se

reduit, apres placement de l'index de la reglette en face de 5 de l'echelle des nombres
de la r&gle, k deplacer le curseur successivement sur 11, puis 11,4, puis 11,44 de

l'echelle des inverses, ce qui, en raison de la faible exactitude exigee des lectures, se

fait dans le temps necessaire pour prononcer lentement 11; 11,4; 11,44 avec une pause
de moins d'une seconde entre chaque nombre.

Resolution de Päquation du 3e degr6 sous la forme
xs + p x + q 0

On sait que cette equation a 1 ou 3 racines suivant que 4 pB + 27 q2 est positif ou
negatif.

I. — Cas de trois racines 4 pz + 27 q2 < 0, donc p < 0

Les racines extremes x' et #'"sont de signe contraire, x' xf" < 0; la racine interme-
diaire x" est du signe de q, donc q x" > 0.

A. — Calcul de la racine intermediaire x"

On la calcule ä partir de l'expression

* f?* W

par A. S., ce qui est toujours possible. On peut, en effet, demontrer que la derivee

par rapport ä x de la fonction y — q\(p -f x2) est inferieure k 1 au voisinage de x".
On traite l'expression (2) comme on a traite l'expression (1) (voir page 125) dans

la resolution de l'equation du 2e degre en faisant jouer ä x2 du 2e membre le röle que
jouait x. II est indispensable que la regle soit pourvue d'une echelle des carres.

B. — Calcul des deux racines extremes x' et x'"

Ces deux racines ne sont pas calculables directement par A. S., mais elles le sont
indirectement, par l'intermediaire de leurs carres. Nous designerons ce procede par
l'abreviation A. S. (x2).

Onecrit *aH*|±j^. (3)

La racine intermediaire ayant ete precedemment calculee, la reglette se trouve dejä
placee dans la position voulue (index en regard de | q\), et le calcul des deux racines se

fera uniquement par des deplacements du curseur. On place celui-ci sur \p\ de

l'echelle des carres, ce qui revient k faire q/x 0 (ce qui revient, autrement dit, ä

partir de la valeur initiale x0 od dans le 2e membre de l'expression ci-dessus). On

a ainsi x\ — —p. C'est la premiere valeur approchee de x'2 ou de x'"2\ c'est le point
de d£part commun a la recherche de ces deux racines. Dans cette position, le trait du
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curseur recouvre sur l'echelle des nombres de la regle le nombre x1 \/ — p et sur
l'echelle des inverses de la reglette le nombre | q\/\ xx\. En effet, l'index de la reglette
etant en face de \q\, les nombres en regard sur l'echelle des inverses de la reglette
et sur l'echelle des nombres de la regle ont pour produit \q\.

Pour calculer la plus grande des racines en valeur absolue, on deplace le curseur
vers la droite ä partir de | p \ de l'echelle des carres d'une longueur egale ä la valeur
l^i/l^il qu'on vient de lire sur l'echelle des inverses. Le trait du curseur recouvre
par suite xl — \p\ ^ (|#|/|#i|) sur l'echelle des carres et |#|/|#2| sur l'echelle des

inverses. On pousse le curseur sur \p\ + (|g|/| x2\) — %| de l'echelle des carres,
etc. On obtient ainsi une suite de valeurs %f, x\, x\, qui converge par oscillations
vers la racine cherchee.

Pour calculer la plus petite des racines en valeur absolue, on repart de \p\ sur
l'echelle des carres, on deplace le curseur vers la gauche de |#|/|#i|. On obtient
*iH£|-(|?|/|*i|),etc.

On calcule ainsi une suite de valeurs xl, xl, x\, qui converge par valeurs
decroissantes vers la Solution.

Exemple: x3 — 5 x + 3 0 (3 racines).
a) Calcul de la racine intermediaire

Index de la reglette en face de 3. On lit directement sur Vechelle des carres en face
de 5 de l'echelle des inverses x\ -= 0,36, qu'on peut arrondir ä 0,4. On deplace le

curseur vers la droite de 0,4 divisions comptees ä partir de 5 sur l'echelle des inverses.

II recouvre alors sur l'echelle des carres le nombre x\ 0,427 qu'on arrondit ä

0,43. On pousse encore le curseur de 0,03 sur l'echelle des inverses, et on lit sur
l'echelle des carres x\ 0,431 et sur l'echelle ses nombres x3 0,656 ^ x". L'ope-
ration est aussi simple que pour le 2e degre.

b) Calcul des racines extremes

x2-5±13{

On laisse la reglette dans la position qu'elle occupe ä la suite du calcul precedent.
On place le curseur sur 5 de l'echelle des carres; c'est la premiere valeur approchee

xf, point de depart commun au calcul des deux racines.
1° — Calcul de xf. Le curseur etant sur x\ 5 de l'echelle des carres, il recouvre

sur l'echelle des inverses la valeur 3/| xx\ 1,3. On ajoute cette valeur ä 5 sur l'echelle
des carres en deplacant le curseur de 1,3 divisions vers la droite, ce qui l'amene sur

6,34 de l'echelle des carres. C'est la deuxieme valeur approchee x\ 6,3. On lit sur
l'echelle des inverses 3/| x2\ 1,2. On place le curseur sur 5 + 1,2 6,2 de l'echelle
des carres, etc. On obtient ainsi pour x2 la suite - oscillante comme prevu - 5; 6,3;

6,2; 6,205 9* x'2, et on lit sur l'echelle des nombres

^ 1/6^05 2,491.

2° - Calcul de x!". On opere de la meme facon sauf qu'on retranche les valeurs

^, d'oü *"= 1,834.

El. Math. V/9
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Les trois racines de cette equation sont donc:

*' =-2,491, x" 0,656, xm 1,834.

II ne peut y avoir aucune hesitation sur les signes. On sait en effet que x", la racine
intermediaire, est positive puisque q 3 est positif. Quant aux racines extremes
dont l'une est positive et l'autre negative, il est clair que la plus grande en valeur
absolue est ici negative, puisque, dans l'equation reduite xs + px + q 0, on a

x'-\- x" + xm 0. Cette particularite nous permet en outre un contröle aise et rapide
de l'approximation des calculs. Si, dans le cas present, nous effectuons cette somme,
nous obtenons

x'+ x"+ x,f,= -2,491 + 0,656 + 1,834 -0,001,

ce qui permet pratiquement de conclure que les trois racines sont bien calculees ä

moins de 0,001 pres.
Voici quelques equations calculees par A. S. et A. S. M. avec une regle de 50 cm.

%' x" *'" #' + x" + x'"

xz- 5,55*+ 2,8 0 2,045 0,5316 - 2,576 + 0,001
*3~129* _ 27 0 -11,25 - 0,2093 11,46 + 0,001

*3-129* -270 0 -10,12 -2,172 12,29 - 0,002
#3_ Sx + 1 0 1,532 0,347 - 1,879 + 0,000
x*- 19,45*- 14,25 0 - 3,982 - 0,7542 4,738 - 0,002

On voit que l'approximation est tres satisfaisante. Quant au temps employe, il
represente en moyenne le dixieme de ce que demande la methode classique.

II. — Cas d'une racine 4 pz + 27 q2 > 0

p peut etre alors positif ou negatif. Si p < 0, la racine unique peut toujours etre cal-
culee par A. S. (x2) comme la plus grande en valeur absolue des racines extremes de

l'equation a 3 racines.
Si p > 0, la methode des A. S. peut etre en defaut, mais la methode des A. S. M.

reste toujours applicable. On part de x — q/(p + x2).
Exemple: Soit l'equation xz + 175 x — 9375 0 qui ne peut etre resolue que

par A. S. M. On part de x 9375/(175 + x2). L'index de la reglette etant place en
face de 9375 de l'echelle des nombres et le curseur amene sur 175 de l'echelle des

inverses, il recouvre sur l'echelle des carres le nombre x\ 2870. Nous l'ajoutons ä

175 par tranches de 100 en surveillant k chaque etape le nombre recouvert par le

curseur sur l'6chelle des carres. Quand nous avons ajoute 300, le curseur recouvre
sur TecheHe des inverses le nombre 175 + 300 475 et sur l'echelle des carres le
nombre 390. II reste donc moins de 90 k ajouter. On continue par tranches de 10. On
aboutit k la Solution x 18,33.
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Nous donnons ci-dessous un resume des resultats d'ensemble:

f racine intermediaire calculable par A. S.
4£3+27?2<0, d'ohp<0, 3racines \racines extremes calculables par A. S. (xl)

{ si p < 0 racine unique calculable par A. S. (x2)
4 £3 _f_ 27 q2 > 0

I si /> > 0 racine unique calculable par A. S. M.

Ce tableau peut encore etre simplifie. II est superflu de former l'expression
4 p3 + 27 q2. II suffit de considerer le signe de p et de q. Voici une marche qui nous
parait donner des garanties süffisantes tout en reduisant au minimum les calculs
accessoires.

Regle pratique pour la resolutwn de Vequation x^+px + q — 0

Placer l'index de la reglette en face de \q\. (Cette position est definitive; tous les
calculs se fönt ensuite exclusivement par deplacements du curseur.)

Si p > 0, racine unique, de signe contraire ä celui de q. On la calcule par A. S. M.
Si p < 0, il y a au moins une racine de signe contraire ä celui de q dont la valeur

absolue est superieure ä Y— p. On la calcule par A. S. (x2) comme la plus grande en
valeur absolue des racines extremes d'une equation ä trois racines. On tente ensuite,

par le meme procede, d'obtenir l'autre racine extreme. Si cette tentative echoue,
c'est que l'equation proposee n'a qu'une racine. Si eile aboutit, l'equation a trois
racines, et il ne reste plus qu'ä calculer la troisieme — racine intermediaire — par
A. S. ou A. S. M. (ä volonte). On sait que cette racine est du signe de q.

M. Besson et Edm. Brasey, Fribourg.

Kleine Mitteilungen

I. Die graphische Ermittlung der reellen Wurzeln kubischer Gleichungen

Die Bestimmung der Schnittpunkte des Kreises

(x-p)*+(y-q)* p*\q*
mit der Parabel

y -#2

fuhrt auf die Gleichung vierten Grades:

x*-\ (2 q + 1) x* - 2 p x x O3 f (2 q \ 1) * - 2 p] 0.

Von den vier Wurzeln dieser Gleichung ist xx 0, wahrend die drei weiteren der
kubischen Gleichung

x3+(2q+l)x-2p=^-0

angehören. Da komplexe Wurzeln in einer Gleichung nur paarweise auftreten können,
muß diese Gleichung dritten Grades noch eine oder drei reelle Wurzeln haben. Der
Kreis geht wegen x1 0 durch den Scheitel der Parabel und schneidet diese außerdem
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