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Punktes C mit der Abszisse x die x-Achse im Punkte x/2 schneidet, haben wir

% . x2 4 YT T A2
AB =, BC = T+x_-2~|/1+4x2

also AB + BC ::%(1+[/1+4;5),
wihrend fiir die Sehne gilt:
AC —Vui g wb— x}/T 5 22,

Anderseits findet man fiir den Bogen:

AsC = fl/l + y'2dx :/l/m?dx.
0 0

Man bestédtigt durch Differenzieren:

Auf Grund dieser Formeln sind die zwei Parabelbégen mit der Endabszisse 1 oder 2
berechnet worden, mit nachstehendem Ergebnis:

Abszisse des Gewogenes Genauer .
Endpunktes A AB+BC Mittel Wert Hstlrenz
1 1,414 1,618 1,482 1,479 0,003
4,472 5,123 4,689 4,647 0,042

Auch in diesem Beispiel erhoht sich die Genauigkeit in bemerkenswertem MaBe beim
Ubergang von den beiden erstbetrachteten Niherungswerten zu ihrem gewogenen
Mittel, obschon die beim Beweis beniitzten Voraussetzungen nicht lings des ganzen
Kreis- oder Parabelbogens erfiillt sind.

Die hier geschilderte Methode kann angewendet werden, um ndherungsweise eine
Bogenlidnge graphisch oder numerisch zu bestimmen. Im ersten Falle wird die Giite
der Ergebnisse wesentlich von der Genauigkeit der Tangentenkonstruktion abhingen.
Im zweiten Falle wird sich die Methode empfehlen, wenn von der in Frage kom-
menden Funktion wohl die Ableitung, nicht aber das Bogenintegral berechenbar ist.

ERrNsT VOLLM, Ziirich.

Kleine Mitteilungen

1. Eine Verallgemeinerung des Pascalschen Dreiecks

Die n-te Potenz eines k-gliedrigen Polynoms heif3t ausgeschrieben
(’Vl S 7% L xk)n :ZPtf]’t)v,, ceey Yk le : xgg e x;::h' (1)
mit 1’1’{“"’2**‘""4‘“1’](::”-

Dabei ist P((,,':)’ ..., v die Anzahl der Permutationen mit Wiederholungen von » Ele-
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menten, wobei v;, ¥,, ..., ¥, unter sich gleich sind. Mit Hilfe der Binomialkoeffizienten
lassen sich diese Permutationszahlen auf folgende Gestalt bringen:
() o ") n=v\ (B=v1=v3) ”k)
P(Vl,...,’l)k)—‘ vl!'lr'2!...vk! —(vl (£} ( v3 vk ’ (2)

Die Koeffizienten der polynomischen Entwicklung (1) geniigen der Beziehung

k k
(n) _ pn+l) ; — L
Z;P(llnlls,—--s.ui-n,uihl,,ui“...-,/«tk)—“P(,ux,/lg,...,yk) mit Z:lu{ =0 - 1. (3)
1= 1 =

Die Verifikation folgt leicht, wenn man fiir die Permutationszahlen auf die Fakultiten-
schreibweise zuriickgeht.

Im Falle 2 = 2 driickt (3) das Konstruktionsgesetz fiir das Pascalsche Dreieck aus;
die Beziehung geht ndmlich dann iiber in

1 .
P((:,), p-1) T P((Z)—l, =Py Mit it pgy=n 41

n n n+1

bz, (l‘l) + (.”1_1) o ( 13 ) ' 4
Dies bedeutet, daB3 im Pascalschen Dreieck die Summe zweier benachbarter Glieder
der n-ten Zeile gleich dem dazwischenstehenden Glied der (z + 1)-ten Zeile ist.

Entsprechend wie sich die Entwicklungskoeffizienten fiir 2 = 2 in einem nach einer
Richtung fortsetzbaren Dreieck anordnen lassen, kann man sie fiir 2 = 3 in einem nach
einer Richtung fortsetzbaren Tetraeder zusammenstellen. Dabei driickt (3) wieder das
Konstruktionsgesetz aus; aus den Koeffizienten fiir festes » lassen sich sofort die Koeffi-
zienten mit dem Index » + 1 berechnen.

Im Pascalschen Dreieck sind die Koeffizienten mit festem # symmetrisch auf einer
Strecke angeordnet:

(n) ) (n) ()
Pyloys Pam-1,1 - Pion-1 Pom-

Die logische Verallgemeinerung auf & = 3 fiihrt auf die symmetrische Anordnung der
Koeffizienten mit festem #» in Form eines Dreieckes, d. h. auf

P30

( (
P(r:tl1,1,0) P(:)—x,o,l)

( (n) (
Puoy Pohw-1n P{,

Wir legen nun die Ebenen dieser Zahlendreiecke in der Reihenfolge, die durch den
Index » gegeben ist, derart iibereinander, dafl ein nach einer Richtung fortsetzbares
Zahlentetraeder entsteht. Das Konstruktionsgesetz fiir dieses Zahlentetraeder lautet
gemal (3):

(n) (n) (n) _ pn+1)
P(m, Mg,y — 1) + P(uum ~ 1, us) + P(m =1, psy p3) — (s pay pa) (3)

mit pa -k pg + pg=n+ 1.

Oder: Im trinomischen Zahlentetraeder ist die Summe dreier benachbarter Glieder
der n-ten Ebene gleich dem darunter stehenden Glied der (z + 1)-ten Ebene. Dabei ist
unter benachbart die Stellung * , * gemeint.
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Nachfolgend seien einige Koeffizientendreiecke tiir sukzessive » nach (5) berechnet.

A
———
R

7N
Dreieck Dj: Bildung von D,: (2) (2)

7NN
(1 @ @

Durch die Klammern ist angedeutet, daB die entsprechenden Zahlen in der folgenden
Ebene liegen.

1)
]
1
1 (?1) (?)
Dreieck D,: 2 2 Bildung von D;,: /2 2
B CREORRC)
1 2 1
NN N\
(1) 3) 3 @

Eine anschauliche Darstellung dieses Koeffiziententetraeders ergibt sich, wenn man
die Koeffizienten fiir festes # je auf ein durchsichtiges Blatt Papier schreibt und dann
die verschiedenen Blitter iibereinanderlegt.

Die fiir £ = 2 und %k = 3 vorgenommene Koeffizientenanordnung 148t sich leicht auf
den Fall der polynomischen Entwicklung mit beliebigem % verallgemeinern. Es sei S,
das Symbol fiir ein k-dimensionales Simplex, d. h. S; bedeute eine Strecke, S, ein
Dreieck usw. Man kann nun zeigen, da8 bei Anordnung der Polynomialkoeffizienten
fiir festes # in einem Zahlensimplex S;_,, die sukzessive Aneinanderreihung der Hyper-
ebenen dieser S;_, zu einem nach einer Richtung fortsetzbaren S, fiihrt. Die Beziehung
(3) driickt dann das Konstruktionsgesetz dieses Koeffizientensimplex aus:

Im polynomischen Koeffizientensimplex ist die Summe % «benachbarter» Glieder
derselben Hyperebene gleich dem «dazwischenliegenden» Glied der folgenden Hyper-
ebene, M. JEGER, Ziirich.
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11. Eine elementare Herleitung des Desavguesschen Satzes
aus dem Satze von Pappos-Pascal

Im folgenden wird eine besonders iibersichtliche Darstellung der zuerst von HESSEN-
BERG (1905) bewiesenen Tatsache gegeben, daB sich der Satz von DESARGUES in der
ebenen Geometrie allein unter Beniitzung der Verkniipfungsaxiome aus dem Pappos-
Pascalschen Satze ergibt. Der Ubersichtlichkeit wegen formulieren wir die Sitze mit
Beniitzung des Begriffes der Parallelitit, also mit Auszeichnung einer Geraden als
unendlichferner Geraden. Die Betrachtungen lassen sich aber unmittelbar auch ohne
diese Auszeichnung durchfiihren.

Fig. 1 Fig. 2

Den Satz von Parros-PascaL verwenden wir in der folgenden Form: Es sei C’ABC
ein beliebiger Streckemzug (Fig. 1), ferner CA’B’C’ ein evginzender Streckemzug, dessen
Ecke B’ auf der Gevaden AC liegt und dessen Streckewn pavallel demen des evsten Zuges
laufen: CA’|| C'A, A’B’|AB, B’C’|| BC. Dann liegen die Punkte A’, B, C’ in einer
Geraden.

Durch dreimalige Anwendung solcher Pappos-Figuren, die wir hier kurz mit
(C’ABCA’B’C’) bezeichnen, 148t sich der Desarguessche Satz beweisen: Haben zwei
Dyetecke ABC, A’B’C’ die Eigenschaft, daff die Seiten AB, BC, CA des einen pavallel
den entsprechend bezeichneten Seiten A’B’, B’C’, C’A’ des andeven sind, und ist S der
Schnittpunkt der Verbindungsgevaden AA’ und BB’, dann liegen die Punkte S, C und C’ in
einer Geraden.

Beweis (Fig. 2): Man lege durch C die Parallele zu SBB’; Y sei der Schnittpunkt
dieser Parallelen mit SAA’. Durch Y ziehe man die zu A B (und A’B’) parallele Gerade,
ferner durch S die zu AC (und A4’C’) parallele Gerade; X sei der Schnittpunkt dieser
Geraden. Aus der Pappos-Figur (XSBACYX) folgt, daB3 die drei Punkte X, B, C in
einer Geraden liegen.

Weiter sei Z der Schnittpunkt der Geraden A’C’ und YC. Die Pappos-Figur
(ZA’'B’SYXZ) ergibt, da8 X, B’ und Z in einer Geraden liegen. :
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Endlich folgt aus der Pappos-Figur (XSB’C’ZCX), daB die drei Punkte S, C und C’
einer Geraden angehoéren, was zu beweisen war. J. KArRaMATA, Belgrad.

Anmerkung. Die fiir den axiomatischen Aufbau wichtige Zuriickfiihrung des Desarguesschen Satzes
auf den Pascalschen Satz findet man z. B. in den folgenden Werken:

G. HESSENBERG, Grundlagen der Geometrie (Berlin und Leipzig 1930), S. 74.
H. LieBMANN, Synthetische Geometrie (Leipzig und Berlin 1934), § 13 (Beitrag von M. STECK).
B. SEGRE, Lezioni di Geometria moderna (Bologna 1948), S. 124,

Manchem Leser wird die obige Anordnung von Herrn KArRaMATA willkommen sein.

III. A propos des abaques hexagonaux

1° Dans 'espace, soit un systeme d’axes trirectangle 0XYZ. Considérons une relation
linéaire entre les trois coordonnées d’un point.

ax-+by+cz=d.

Graduons provisoirement ’axe des x, de telle sorte que la longueur d/a soit égale &
I'unité de longueur; opérons de méme sur les autres axes, la relation devient:

x-+y+2=1,

Projetons orthogonalement la figure sur le plan n représenté par cette équation; on
obtient une isométrie orthogonale. Les lieux a », ¥ et z constants sont respectivement
des paralléles aux traces du plan =, donc des perpendiculaires aux axes 0X,0Y, 0Z.
Graduons ces axes selon les cotes de ces droites. Par le point d’intersection de deux
d’entre elles, menons la troisi¢me; elle coupe l'axe correspondant en un point dont
I’abscisse détermine la troisiéme variable.
La figure permet la résolution graphique de ’équation

f(x) + g(y) + h(z) = 0.

Le 1 du second membre a été incorporé au premier membre. Pour résoudre graphique-
ment ce systéme, on anamorphose les axes, c’est-a-dire que le point de I’axe OX d’ab-
scisse f(x) est marqué x; et on opére de méme sur OY et OZ.

2° — L’avantage du choix d’une isométrie orthogonale est la symétrie de la figure,
relativement aux trois variables #, ¥ et z. Dans la pratique, 'une des variables, z pour
fixer les idées, joue souvent le role de fonction, les deux autres étant indépendantes.
Dans ce cas, au lieu d’une isométrie orthogonale, faisons une projection orthogonale
du plan de I’espace sur le plan OXY.

Les droites z = const. se projettent suivant des perpendiculaires & la bissectrice de
I'angle XOY, les droites x = const. et y = const., suivant des paralléles & ces mémes axes.

Comme plus haut, graduons les axes selon les cotes des droites du plan qui leur sont
perpendiculaires.

Supposons que x et y soient donnés. Les droites correspondantes sont perpendicu-
laires aux axes; leur intersection est graphiquement bien déterminée, puisque ortho-
gonale. Par cette intersection, menons la droite z = const.; elle coupe encore orthogo-
nalement 1’axe des z.

Dans cette disposition, on passe des deux valeurs x et y & 2, en ne construisant que
des intersections orthogonales. C’est dire que la précision de la construction est maxi-
mum. Enfin on n’utilise que des perpendiculaires ou des obliques & 45° sur I'axe de
symétrie de la figure. P. RossiER, Genéve,

IV. Bemerkung zum Beweis des Primzahlsatzes

Bekanntlich 148t sich der Beweis des Primzahlsatzes auf den der Existenz von

lim &(n)/n zuriickfiihren, wobei #(n) die Summe der Logarithmen derjenigen Prim-
n—>00

zahlen bedeutet, die # nicht iibertreffen. In der vorliegenden kleinen Note wird gezeigt,
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daB die Moglichkeit dieser Reduktion eine unmittelbare Folge des nachstehenden ele-
mentaren Hilfssatzes?) ist:

Sei b, monoton abnehmend und lim b, = 0, ferner sei 2 b, divevgent. Dann gilt:

n—>00 -1
n n
kz a; by kz a,,
lim ——1;;—— = lim 271 (1)
n—>00 n—r 00
2 by
k=1

falls nur der Grenzwert auf dev vechten Seite existiert.
1. Bei vorausgesetzter Konvergenz von #(zn)/n sei

_ log £ fiir 2= Primzahl,
L 0 fiir alle anderen Werte von &, (2)

1

=0 e =i -

(B=23,..). (3)

Dann sind die Bedingungen des Hilfssatzes offensichtlich erfiillt, und man erhilt nach
(1) wegen

n
1
Zakbk = va— =log logn + V(1) 2),
k=1

p=n
n " g
b, — 1 f 9% L V(1) = log logn + V(1) Zlogp 8(n) (4)
= = ]
“~ =% kloghk ; xlog x = =
unmittelbar lim oy _ = 1. (5)

n—>0oo

2. Wihlen wir a,, wie zuvor [in (2)] und sei

1

b]_:O, bk:m'

(k=2,3,... (6)

Nach (5) sind die Bedingungen des Hilfssatzes auch jetzt erfiillt. Folglich erhdlt man
nach (1), (4), (5) und

n n b
Zakbknz"l—n Zbk=2Tg;—k-—/l—jgix+V()
2

p<n k=1 k=2
den Primzahlsatz: lim I = lim M) =1,
n—s>oo o n—soo "
_/ dx/log x
2

L. PukANszky, Debrecen.

V. Die Quadratur des Krveises in Ndherungskonstruktionen

Herr WALTER H. LowsTtoN, New York, teilt uns die folgende Niaherungskonstruktion
fiir die Kreisflidche mit. Bei dieser Gelegenheit erinnern wir an zwei andere Konstruktio-
nen, die zwar etwas mehr Zeichnung erfordern, aber in anderer Hinsicht bemerkens-
wert sind.

1) E.CesAro, Lehrbuch der algebraischen Analysis (Teubner, Leipzig 1904), S. 100.
2) p soll hier und in den nachstehenden Summen darauf hindeuten, daB nur iiber die Primzahlwerte
zu summieren ist.
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Ich zeige hier, wie fiir einen gegebenen Kreis ein Quadrat konstruiert werden kann,
dessen Fldache fast gleich dem Inhalt des Kreises ist. — Die Genauigkeit der Konstruk-
tion zeigt sich in der Tatsache, dafl der Fehler fiir die Seite des Quadrats (im Verhiltnis
zu m), geringer ist als 0,06°/,.

Die Konstruktion ist folgende:

In der Zeichnung haben wir zunidchst 4B als Durchmesser des Kreises, und recht-
winklig dazu den Radius OC. Der Radius OD bildet einen Winkel von 45° mit A4 B.
Punkt E auf der Linie CB ist bestimmt, indem BE ein Viertel von BC ist. Verbinde ich
D mit E, so schneidet die Verlingerung die Grundlinie 4 B in F, und der Abschnitt AF
ist die Seite unseres gesuchten Quadrats. Seine Linge ist (11 4 }/2)/7-mal so groB wic
der Radius des Kreises. Das ist ungefdhr gleichbedeutend, als nidhme man 1,77346
anstatt 1,77245 fiir |/n.

: - X
Al-10) 0 F B0

Fig. 1

Setzen wir den Radius des Kreises gleich 1, dann errechnen wir B nach dem Sinus-
satz im A EFB. Wir bezeichnen mit « den ¢ FEB: < EFB ist natiirlich = 135° — «,
so daB sin EFB = sin (45° + «) ist.

Wir haben EB sina EB sinu

~ SinEFB  sin(x + 45°) °

Da nun EB = |/2/4, so erhalten wir leicht

tgo
FB"“’2(1+tga) '

Den Wert von tg a erhalten wir aus dem A DGE. Er ist GD/GE, also

3-)2
Somit ist FB = [

Dann ergibt sich AF, die Linie, deren Linge wir suchen,

11+ 2

AF = - 7 A~ 1,77346.

WALTER H. LowsToN1), New York.

1) Wir bedauern auch an dieser Stelle den unterdessen erfolgten plotzlichen Tod des fernen Mitar-
beiteris. — Als Quelle hat er uns genannt: H.LowstoN, 4 Note on a Approximation to the Square of the
Circle, Nat. Math. Mag. 17, Nr.2 (1942).
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Macht sich hier der Fehler im Dezimalbruch fiir die Quadratwurzel aus z immerhin
in der 3. Stelle nach dem Komma geltend, so verschiebt er sich in die 5. Stelle bei der
folgenden Konstruktion von F. ExriQues (Fig. 2)1).

Fig. 3

Auf dem Durchmesser 4B des gegebenen Kreises trage man die Strecke OD gleich
3 Fiinfteln des Radius und nach der andern Seite die Strecke OF gleich 3 Halften des

1) F.ENrIQUES, Fragen der Elementargeometrie, deutsche Ausgabe von H.FLEISCHER, Bd.1I, S.303/04.
Moglicherweise stammt aber diese Konstruktion aus der Geometria elementare von SANNIA und p’Ovipio.
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Radius ab; dann halbiere man den Radius OB in E und schlage iiber DE und AF als
Durchmesser Halbkreise auf entgegengesetzte Seiten von 4 B. Errichtet man nun in O
auf A B die Normale, die die beiden Halbkreise in G und H schneiden mag, so stellt
das Quadrat, das GH zur Seite hat, mit groBer Anndherung den Flicheninhalt des
gegebenen Kreises dar.

Die recht elementare Ausrechnung liefert

GH=v " —-1 "~ =r.1,77246 .. ..

Die Berechnung gestaltet sich leicht, wenn man in jedem Halbkreis den Hohensatz
anwendet. Fiir weitere Niherungskonstruktionen sei auf einen schonen Aufsatz von
P. FiINnsLER hingewiesen!). Wir geben daraus ein Beispiel wieder, das von A. KAai,
Thayngen, im November 1934 brieflich mitgeteilt wurde, zwar eine viel heiklere Kon-
struktion aufweist, aber dafiir, was man selten sieht, direkt auf die vier Quadrat-
ecken fiihrt. So findet man in Fig. 3 das vielumworbene Quadrat einmal wirklich auf
den Kreis gelegt. Auch braucht nur eine feste Zirkel6ffnung mit dem Radius des gege-
benen Kreises verwendet zu werden.

In den Kreis vom Radius » wird mit Kreisen vom selben Radius, die durch den Mit-
telpunkt gehen, eine regelmiBlige Zwolferrosette gezeichnet. Das bedarf neben der
Sechsteilung des Kreises nur noch der Halbierung. Wie in der Figur werden 8 Kreis-
bogen so weit gezogen, daB sie sich auflerhalb des gegebenen Kreises noch auf zwei zu-
einander normalen Symmetrieachsen schneiden, im Abstand 7}/3 vom Mittelpunkt.
Von den inneren Schnittpunkten der Rosette werden vier ausgewihlt, die zunachst bei
den Symmetrieachsen liegen und selber die Ecken eines kleinen Quadrates bilden
(kleine Kreise der Figur). Die Ecken des gesuchten Quadrates haben von je einem
duBeren Schnittpunkt und einem inneren, aber auf entgegengesetzter Seite der Sym-
metrieachse, den Abstand 7, konnen also wiederum als Schnittpunkte von Kreisbogen
gefunden werden. Die Quadratseite ergibt sich rechnerisch zu

e
l/zr 1/3—1/13 (84)/3 — 141) r ~ 1,77319 7;

sic wird also um etwa 27/2700 oder 0,042°/; zu groB. E.VoeLLMY.

VI. Kugel und einschaliges Hyperboloid

Die ovalen Flichen zweiten Grades (Ellipsoid, zweischaliges Hyperboloid, ellipti-
sches Paraboloid) lassen sich durch reelle Kollineationen ineinander iiberfiihren. Das
einschalige Hyperboloid (eH) hingegen kann durch eine reelle Kollineation niemals
in eine ovale Fliche umgeformt werden. Das ist eine Folge des Tragheitsgesetzes der
quadratischen Formen. Anschaulich zeigt es sich darin, da die ovalen Flichen keine
reellen Erzeugenden besitzen. Zwar 148t sich das eH {iiber seinen Asymptotenkegel
in ein zweischaliges Hyperboloid, dieses dann in bekannter Weise in ein Ellipsoid um-
formen. Ein solcher reeller Ubergang ist aber nur méglich, wenn man eine Ausartung
als Durchgangsform, hier den Asymptotenkegel, in Kauf nimmt. Jedoch kann man
durch imagindre Kollineation eine stetige Uberfiihrung ohne solche Ausartungen voll-
ziehen. Bekanntlich wird von imagindren Kollineationen Gebrauch gemacht?), um zum
Beispiel Eigenschaften der Kugel mit entsprechenden des eH zu vergleichen. Es mag
daher von Interesse sein, die gewOhnlich nur analytisch betrachteten imagindren Kolli-
neationen auch zur vollen geometrischen Anschauung zu bringen. Hierzu kann die
frither3) erliuterte reelle Darstellung der imagindren Elemente dienen. Wir bringen

1) Paur FINSLER, Einige elementargeometrische Ndherungskonstruktionen, Commentarii mathematici
Helvetici 10, 251 (1937/38).

%) Siehe z.B. F. KLEIN, Vorlesungen tiber hihere Geometrie, 3. Aufl. (Berlin 1926), S.182.

%) L.LocHeRr-ERNsT, Das Imagindre in der Geometrie, E1. Math. 4, H. 5 und 6 (1949).
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hier nur in Erinnerung, daB3 der Punkt P mit den Koordinaten ¥ = a 4 ia’, y=b-+ 1 b’,
z=c+1c (a,a’” usw. reell) durch den Pfeil mit dem Anfangspunkt 4 (a, b, ¢) und
dem Endpunkt B (a + a’, b+ b, ¢ + ¢’) dargestellt werden kann. Dieser Pfeil ist das
Zeichen fiir die durch den Punkt P bestimmte gerichtete elliptische Punktinvolution.
In dieser Darstellung bedeutet eine stetige Transformation eine stetige Verwandlung
einer Pfeilmannigfaltigkeit in eine andere. (Die Transformation ist kollinear, wenn
Wirbel wieder in Wirbel iibergehen; siehe die in FuBnote 3, S.15 erwidhnte Arbeit.)
Wir beschrinken uns in dieser Note darauf, den einfachsten kollinearen Uber-
gang der Kugel mit der Gleichung xx + yy + 22=1 in das eH mit der Gleichung
xx -+ yy —zz=1 anschaulich darzustellen. Hierzu geniigt die imagindre Affinitdt
¥ =ux, =19, 2=uz, wobei der variable, von x, y, z unabhingige Koeffizient u

die Form # =1 — ¢ + ¢ { habe und ¢ stetig von ¢ =0 bis {= 1 zunehme. Wir betrachten
also die fiir 0 < ¢ < 1 imagindren Flichen mit der Gleichung

z=dulfl—x— =L iulr?4y2—1 (u=1—t+tit, t=0->1). (1)

Fiir ¢ = 0 stellt (1) eine Kugel, fiir =1 ein eH dar. Die Figuren 1 bis 5 zeigen den
Ubergang im Schnitt mit der (y, z)-Ebene (» = 0). Hierbei sind die z-Pfeile nur fiir
reelle y angedeutet. Gezeichnet sind die Stationen ¢=0, 1/4, 1/2, 3/4, 1. Die reellen
Punkte (ausgeartete Pfeile) des Kreises (¢ = 0) werden zu Pfeilen mit wachsender Linge;
die Endpunkte bleiben hierbei auf dem Ausgangskreis, die Anfangspunkte wandern
schlie8lich bis zur y-Achse. Die Pfeile, welche die imagindren Punkte des Kreises
(¢ = 0) fiir reelle y darstellen, nehmen an Ldnge (Betrag des Imaginérteiles) ab, wahrend
die Pfeilanfangspunkte von der y-Achse sich nach unten bzw. oben verschieben bis
zur gleichseitigen Hyperbel, deren reelle Punkte die Endstationen darstellen. (Die
Punkte des Schnittkreises der Flichen (1) mit der (x,y)-Ebene bleiben ungedndert.)

Die Kugel besitzt zwei Scharen von je oo? imagindren Erzeugenden (spezielle ima-
gindre Geraden), wihrend das eH auBler oo? allgemeinen imagindren Geraden insbe-
sondere auch zwei Scharen von oo! reellen Erzeugenden tragt. Die Figuren 6 bis 10
deuten an, wie diese bei unserer affinen Umformung der Kugel zustande kommen. Sie
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ergeben sich aus denjenigen Erzeugenden (rotatorische Wirbel) der Kugel, deren reelle
Punkte in der (x,y)-Ebene liegen. Die iibrigen Erzeugenden der Kugel werden in all-
gemeine imaginiare Geraden des eH umgewandelt. L. LocHER-ERNsT, Winterthur.

VIIL. Eine Bemerkung zum Axiom von Pasch in Hilbevts «Grundlagen dev Geometrie»

Wir zitieren vorerst das Axiom von PascH II 4 nach der 7. (letzten) Auflage der
Grundlagen und behalten im iibrigen die dortige Numerierung bei.

II 4. (7. Auflage): Es seien A, B,C drei nicht in gerader Linie gelegene Punkte und
a eine Gerade in der Ebene ABC, die keinen der Punkte 4, B, C trifft: wenn dann die
Gerade a durch einen Punkt der Strecke A B geht, so geht sie gewill auch entweder
durch einen Punkt der Strecke AC oder durch einen Punkt der Strecke BC.

In einem Zusatz wird bemerkt: «Dafl nicht beide Strek-
ken AC und BC von der Geraden a geschnitten werden
konnen, ist dann beweisbar» (auf Grund der Axiome I,
1T 1-4).

Dieser Zusatz erscheint iiberfliissig, denn gemas II 4
wird ja gefordert, a gehe «entweder» durch 4C oder BC.
Es handelt sich offenbar um ein redaktionelles Versehen.
In der 4. Auflage der Grundlagen (die andern waren uns
nicht zugédnglich) war das Wort «entweder» ausgelassen ;
so wird der Zusatz zu einer nichttrivialen Aussage.

Fiir diesen Zusatz wollen wir einen einfachen Beweis
geben.

Zur bequemeren Lesbarkeit geben wir die zu verwen-
denden Axiome im Wortlaut wieder:

I1. Zu zwei Punkten A4, B gibt es stets eine Gerade a,
die mit jedem der beiden Punkte 4, B zusammengehort.

I2.Zu zwei Punkten 4, B gibt es nicht mehr als eine Gerade, die mit jedem der
beiden Punkte 4, B zusammengehort.

IT 1. Wenn ein Punkt B zwischen einem Punkt 4 und einem Punkt C liegt, so sind
A, B, C drei verschiedene Punkte einer Geraden und B liegt dann auch zwischen C und 4.

IT 3. Unter irgend drei Punkten einer Geraden gibt es nicht mehr als einen, der
zwischen den beiden andern liegt.

Es bezeichne ferner II 4* das Axiom von Pasch ohne das vevschdrfende Wort «ent-
wedey ».

Wir behaupten dann:

Satz 7: Unter alleiniger Verwendung der Axiome I1, I 2, IT 1, II 3 und II 4* ijst
das starke Axiom von Pasch II 4 beweisbar.

Wir beweisen Satz 1 in folgender dquivalenten Fassung:

Satz 2: Unter denselben Voraussetzungen wie Satz 1 gilt: Es seien 4, B, C drei nicht
in gerader Linie gelegene Punkte und a eine Gerade, die keinen der Punkte 4,B,C
trifft; dann triftt sie auch nicht alle drei Strecken AB, BC und CA4.

Beweis: Entgegen der Behauptung sei a eine Gerade, die alle drei Strecken A B, BC
und CA treffe, und zwar bzw. in den Punkten X, Y und Z. Die sechs Punkte 4, B, C;
X,Y, Z sind dann alle voneinander verschieden (I 1-2, IT 1).

GemaB I 1 gibt es eine Gerade g, die durch C und X geht. Im Dreieck 4 BZ sind
beziiglich g die Voraussetzungen von II 4* erfiillt. Wegen II 3 kann g die Strecke AZ
nicht treffen; also trifft g die Strecke BZ. Im Dreieck BY Z sind deshalb beziiglich g
wieder die Voraussetzungen von II 4* erfiillt. g trifft BY nicht (IT 3). Somit trifft g die
Strecke YZ in einen Punkt S. S muB aber mit X identisch sein, denn g und 4 haben
nur einen Punkt gemeinsam. Also liegt X zwischen Y und Z.

Mit derselben SchluBweise beweist man, daB3 auch Y zwischen X und Z liegt, indem
man an Stelle der Geraden g eine Gerade # durch 4 und Y betrachtet. (Analog folgt,
daf3 Z zwischen X und Y liegt.)

El. Math. 2
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Damit haben wir aber einen Widerspruch gegen Axiom II 3 konstruiert. Die Gegen-
annahme ist also zu verwevfen und Satz 2 ist vollstindig bewiesen.
W. GRUNER, R. STETTLER, Bern.

Aufgaben

Aufgabe 56. In wie viele Gebiete wird die Ebene durch » Kreise zerlegt, die die
maximale Anzahl reeller Schnittpunkte haben ? C. BiINnDscHEDLER (Kiisnacht).

7. Losung: G(n) sei die Anzahl der Gebiete bei » Kreisen. G(1) = 2. Der n-te
Kreis wird durch die » — 1 {ibrigen Kreise in 2 (# — 1) Bogenstiicke zerlegt, von denen
jedes ein Gebiet in zwei Teile teilt, so da3 2 (» — 1) neue Gebiete entstehen. Daher ist

G(n)—_—2+2{1+2+-.-+(n—l)}:z(g>+2(’2’)=n2—n+2.

Denselben Wert fiir G(n) erhidlt man, wenn die Kreise auf der Oberfliche einer
Kugel liegen. Damit 148t sich die Anzahl K(%) der Teile finden, in die der Raum durch
n Kugeln geteilt wird, bei denen die maximale Anzahl reeller Schnittpunkte von drei
Kugeln auftritt. Die n-te Kugel wird durch die andern in # — 1 Kreisen mit maximaler
Schnittpunktanzahl geschnitten, so daB die Kugelfliche in # (z — 1) + 2 Flichenstiicke
zerlegt wird. Jedes Fldchenstiick teilt ein Raumgebiet in zwei Teile, wobei stets ein
neues Teilstiick entsteht. Somit ist

_,22( SR n—1)+2=2(§)+2(¥>~

H. FAsNDRICH (Bern).

2. Losung: Es sei e(n) die Zahl der Schnittpunkte der » Kreise, k(%) die Zahl der
unmittelbar benachbarte Punkte verbindenden Kreisbogen («Kanten») und f(») die
Zahl der Gebiete, dann ist nach EULER:

f(n) = k(n) + 2 —e(n) h(1) =0} (1)
Nun ist e(n) =2 (Z) =n(n—1). (2)
k(n) findet man z. B. mit Hilfe einer Rekursionsformel. Gibt man zu » — 1 Kreisen

einen weiteren, so entstehen auf den ersteren offenbar 2 (» — 1) neue « Kanten», ebenso
viele aber auch auf dem »-ten Kreis. Also ist

k(v =k(v—1) +4 (v —1). rv=2 (3)
Setzt man hierin der Reihe nach » = 2, 3, ..., » und addiert die erhaltenen Gleichungen,
so erhdlt man
k(n) =4[1 42+ ... F(n—l)]:4(g>=2n(n—1)’ (4)
Aus (3), (2) und (1) folgt:
fm=2nmn—1)+2—nmn—1)=n(n-—1)+ 2. (5)

Fiir Kurven, die sich paarweise in m Punkten schneiden, erhélt man in entsprechender
Weise

f(n)=~;‘~mn(n——1) 42

B. SCHENKER (Fetan).
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