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Punktes C mit der Abszisse x die x-Achse im Punkte x\2 schneidet, haben wir

AB $,

also

während für die Sehne gilt:

BC |/-£ + *«=-J 1/1 + 4.

AB + BC -J (l + j/lTT^),

JC - j/%2 + *4 * |/i + x2.

Anderseits findet man für den Bogen:
X X

Asc [yr+y*dx=fyr+~4x*dx.
Ö 0

Man bestätigt durch Differenzieren:

AsC y /f+T*" + -J- lg (2 * + ^f+T**).
Auf Grund dieser Formeln sind die zwei Parabelbögen mit der Endabszisse 1 oder 2
berechnet worden, mit nachstehendem Ergebnis:

Abszisse des

Endpunktes
AC AB + BC Gewogenes

Mittel
Genauer

Wert Differenz

1

2

1,414

4,472
1,618
5,123

1,482

4,689
1,479
4,647

0,003
0,042

Auch in diesem Beispiel erhöht sich die Genauigkeit in bemerkenswertem Maße beim
Übergang von den beiden erstbetrachteten Näherungswerten zu ihrem gewogenen
Mittel, obschon die beim Beweis benützten Voraussetzungen nicht längs des ganzen
Kreis- oder Parabelbogens erfüllt sind.

Die hier geschilderte Methode kann angewendet werden, um näherungsweise eine

Bogenlänge graphisch oder numerisch zu bestimmen. Im ersten Falle wird die Güte
der Ergebnisse wesentlich von der Genauigkeit der Tangentenkonstruktion abhängen.
Im zweiten Falle wird sich die Methode empfehlen, wenn von der in Frage
kommenden Funktion wohl die Ableitung, nicht aber das Bogenintegral berechenbar ist.

Ernst Völlm, Zürich.

Kleine Mitteilungen
I. Eine Verallgemeinerung des Pascalschen Dreiecks

Die n-te Potenz eines Ä-gliedrigen Polynoms heißt ausgeschrieben

mit Vi+ v2-\ f vk n.

r("i..... "fc)

(1)

Dabei ist P$ vlA die Anzahl der Permutationen mit Wiederholungen von n Ele-
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menten, wobei vlf v2, > vk unter sich gleich sind Mit Hilfe der Bmomialkoeffizienten
lassen sich diese Permutationszahlen auf folgende Gestalt bringen

:>(») w'
¦(">» '*> VV vk* ¦(S(v)rvi 0 <2>

Die Koeffizienten der polynomischen Entwicklung (1) genügen der Beziehung
k k

2jP(Z,ih, ,ßi i,/h 1 /*,+, t*k)^PUh+,cz, pa) mit A^ wf1 (3'
*-l »= i

Die Verifikation folgt leicht, wenn man fur die Permutationszahlen auf die Fakultaten-
schreibweise zurückgeht

Im Falle k 2 druckt (3) das Konstruktionsgesetz fur das Pascalsche Dreieck aus,
die Beziehung geht namhch dann über in

<',,. - ii + <-,, »i - F'"Z ¦»¦« «.m- + >

Ö + L-.M";,1) <?>

Dies bedeutet, daß im Pascalschen Dreieck die Summe zweier benachbarter Glieder
der ^-ten Zeile gleich dem dazwischenstehenden Glied der (n + l)-ten Zeile ist

Entsprechend wie sich die Entwicklungskoeffizienten fur k 2 in einem nach einer
Richtung fortsetzbaren Dreieck anordnen lassen, kann man sie fur k 3 in einem nach
einer Richtung fortsetzbaren Tetraeder zusammenstellen Dabei druckt (3) wieder das
Konstruktionsgesetz aus, aus den Koeffizienten fur festes n lassen sich sofort die
Koeffizienten mit dem Index n + 1 berechnen

Im Pascalschen Dreieck smd die Koeffizienten mit festem n symmetrisch auf einer
Strecke angeordnet

p(») p(») p(») p(*»)
M»,0)' r(» 1 1) Ml n 1)' MO n)

Die logische Verallgemeinerung auf Ä 3 fuhrt auf die symmetrische Anordnung der
Koeffizienten mit festem n in Form eines Dreieckes, d h auf

r(n, 0, 0)

p(*) p(M)
M»-i,i 0) M«-1,0,1)

p(») p(») p(»)
MO, n, 0) 2 (0 n - 1, 1) MO, 0, n)

Wir legen nun die Ebenen dieser Zahlendreiecke in der Reihenfolge, die durch den
Index n gegeben ist, derart übereinander, daß em nach einer Richtung fortsetzbares
Zahlentetraeder entsteht Das Konstruktionsgesetz fur dieses Zahlentetraeder lautet
gemäß (3).

p(») i p(») i p(») _ p(» + l) /c\

mit /^ I ^2 -r ^3 « + 1

Oder: Im trmomischen Zahlentetraeder ist die Summe dreier benachbarter Glieder
der n-ten Ebene gleich dem darunter stehenden Glied der (n -f- l)-ten Ebene Dabei ist
unter benachbart die Stellung * * * gemeint.
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Nachfolgend seien einige Koeffizientendreiecke fur sukzessive n nach (5) berechnet

(1)
i

1

1 /\Dreieck Dx Bildung \ on D% (2) (2)

1 1

(1) (2) (1)

Durch die Klammern ist angedeutet, daß die entsprechenden Zahlen in der folgenden
Ebene liegen

(1)
i
1

1 <3) (3)
I i

Dreieck D2 2 2 Bildung von Ds
1 2 1

2 2/\/\(3) (6) (3)
i I l

1 2 1

(1) (3) (3) (1)

Schließlich noch die Bildung von Z>4 aus D3

(1)
i

1/\(4) (4)
I I

3 3/\/\(6) (12) (6)
i I i

3 6 3/\/\/\(4) (12) (12) (4)
I I I13 3 1/\/\/\/\(1) (4) (6) (4) (1)

Eine anschauliche Darstellung dieses Koeffiziententetraeders ergibt sich wenn man
die Koeffizienten fur festes n je auf em durchsichtiges Blatt Papier schreibt und dann
die verschiedenen Blatter übereinanderlegt

Die fur k 2 und k 3 vorgenommene Koeffizientenanordnung laßt sich leicht auf
den Fall der polynomischen Entwicklung mit beliebigem k verallgemeinern Es sei Sk
das Symbol fur em ß-dimensionales Simplex d h St bedeute eine Strecke, 52 ein
Dreieck usw Man kann nun zeigen daß bei Anordnung der Polynomialkoeffizienten
fur festes n m einem Zahlensimplex Sk_t die sukzessive Aneinanderreihung der Hyper
ebenen dieser Sk_x zu einem nach einer Richtung fortsetzbaren Sk fuhrt Die Beziehung
(3) druckt dann das Konstruktionsgesetz dieses Koeffizientensimplex aus

Im polynomischen Koeffizientensimplex ist die Summe k «benachbarter» Glieder
derselben Hyperebene gleich dem (dazwischenliegenden» Glied der folgenden Hyper
ebene M Jeger, Zürich
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II Eine elementare Herleitung des Desarguesschen Satzes

aus dem Satze von Pappos-Pascal

Im folgenden wird eine besonders übersichtliche Darstellung der zuerst von Hessenberg

(1905) bewiesenen Tatsache gegeben, daß sich der Satz von Desargues in der
ebenen Geometrie allem unter Benutzung der Verknüpfungsaxiome aus dem Pappos-
Pascalschen Satze ergibt Der Übersichtlichkeit wegen formulieren wir die Satze mit
Benutzung des Begriffes der Parallelität, also mit Auszeichnung einer Geraden als
unendhchferner Geraden Die Betrachtungen lassen sich aber unmittelbar auch ohne
diese Auszeichnung durchfuhren

z
C

c
%,c

A'
-1

/y/X c^^^^^^^^^-^i^^
B' X ****%^

^s?

-̂ '̂¦*$>
<*5fc

W
Fig l tig 2

Den Satz von Pappos-Pascal verwenden wir in der folgenden Form Es sei C'ABC
ein beliebiger Streckenzug (Fig 1), ferner CA'B'C ein ergänzender Streckenzug dessen
Ecke B' auf der Geraden AC liegt und dessen Strecken parallel denen des ersten Zuges
laufen CA'\ CA, A'B'\AB, B'C'\ BC Dann hegen die Punkte A' B Cm einer
Geraden

Durch dreimalige Anwendung solcher Pappos-Figuren, die wir hier kurz mit
(CABCA'B'C) bezeichnen, laßt sich der Desarguessche Satz beweisen Haben zwei
Dreiecke ABC, A'B'C die Eigenschaft, daß die Seiten AB, BC, CA des einen parallel
den entsprechend bezeichneten Seiten A'B', B'C, CA' des anderen sind, und ist S der
Schnittpunkt der Verbindungsgeraden AA' und BB', dann liegen die Punkte S C und C in
einer Geraden

Beweis (Fig 2) Man lege durch C die Parallele zu SBB', Y sei der Schnittpunkt
dieser Parallelen mit SAA' Durch Y ziehe man die zu AB (und A'B') parallele Gerade,
ferner durch S die zu AC (und A'C) parallele Gerade, X sei der Schnittpunkt dieser
Geraden Aus der Pappos-Figur (XSBACYX) folgt, daß die drei Punkte X, B, C in
einer Geraden hegen

Weiter sei Z der Schnittpunkt der Geraden A'C und YC Die Pappos-Figur
(ZA'B'SYXZ) ergibt, daß X, B' und Z in einer Geraden liegen
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Endlich folgt aus der Pappos-Figur (XSB'CZCX), daß die drei Punkte S, C und C
einer Geraden angehören, was zu beweisen war. J Karamata, Belgrad

Anmerkung Die fur den axiomatischen Aufbau wichtige Zuruckfuhrung des Desarguesschen Satzes
auf den Pascalschen Satz findet man z B in den folgenden Werken

G Hessenberg, Grundlagen der Geometrie (Berlin und Leipzig 1930), S 74
H Lifbmann, Synthetische Geometrie (Leipzig und Berlin 1934), § 13 (Beitrag von M Steck)
B Segre, Lezioni di Geometria moderna (Bologna 1948), S 124

Manchem Le«er wird die obige Anordnung von Herrn Karamata willkommen sein

III A propos des abaques hexagonaux
1° Dans Tespace, soit un Systeme d'axes tnrectangle OXYZ Consid6rons une relation

Impaire entre les trois coordonnees d'un pomt

a x b y -+- c z d

Graduons provisoirement Taxe des x, de teile sorte que la longueur d/a soit 6gale ä
l'umt6 de longueur, op6rons de meme sur les autres axes, la relation devient

x \ y -f z 1

Projetons orthogonalement la figure sur le plan 7r repr6sente* par cette 6quation, on
obtient une isom6tne orthogonale Les heux ä x, y et z constants sont respectivement
des paralleles aux traces du plan n, donc des perpendiculaires aux axes OX, OY, OZ

Graduons ces axes selon les cotes de ces droites Par le pomt d'mtersection de deux
d'entre elles, menons la troisieme, eile coupe Taxe correspondant en un pomt dont
l'abscisse d6termme la troisieme variable

La figure permet la r6solution graphique de l'6quation

f(*)+g(y)- h(z) 0

Le 1 du second membre a 6te* mcorpore' au premier membre Pour resoudre graphique-
ment ce Systeme, on anamorphose les axes, c'est ä-dire que le pomt de Taxe OX d'ab-
scisse f(x) est marque" x, et on opere de meme sur OY et OZ

2° — L'avantage du choix d'une isom6tne orthogonale est la sym6tne de la figure,
relativement aux trois variables x, y et z Dans la pratique, l'une des variables, z pour
fixer les id6es, joue souvent le röle de fonction, les deux autres etant md6pendantes
Dans ce cas, au heu d'une isom6tne orthogonale, faisons une projection orthogonale
du plan de l'espace sur le plan OXY

Les droites z const se projettent suivant des perpendiculaires ä la bissectrice de
l'angle XOY, les droites x const. et y const suivant des paralleles ä ces memes axes

Comme plus haut, graduons les axes selon les cotes des droites du plan qui leur sont
perpendiculaires

Supposons que x et y soient donne*s Les droites correspondantes sont perpendiculaires

aux axes, leur mtersection est graphiquement bien determme'e, puisque
orthogonale Par cette mtersection, menons la droite z const eile coupe encore
orthogonalement Taxe des z

Dans cette disposition, on passe des deux valeurs x et y ä z, en ne construisant que
des intersections orthogonales C'est dire que la pr6cision de la construction est maximum

Enfin on n'utihse que des perpendiculaires ou des obliques ä 45° sur Taxe de
sym6tne de la figure P Rossier, Gen&ve

IV. Bemerkung zum Beweis des Primzahlsatzes

Bekanntlich laßt sich der Beweis des Primzahlsatzes auf den der Existenz von
hm ^(n)In zurückfuhren, wobei ft(n) die Summe der Logarithmen derjenigen Prim-

n-+oo
zahlen bedeutet, die n nicht übertreffen In der vorliegenden kleinen Note wird gezeigt,
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daß die Möglichkeit dieser Reduktion eine unmittelbare Folge des nachstehenden ele
mentaren Hilfssatzes1) ist ^Sei bn monoton abnehmend und hm bn 0, ferner sei £ bk divergent Dann gilt

n->oo k 1

n n

£ akb!c £ a]
hm A_l hm AJ (1)

n-»oo J^
T «->oo w

k 1

/a//s ww der Grenzwert auf der rechten Seite existiert
1 Bei vorausgesetzter Konvergenz von &(n)jn sei

_ log k fur A Primzahl,
k \ 0 fur alle anderen Werte von k, * '

&1 0' fc* w*- (Ä 23 > (3)

Dann sind die Bedingungen des Hilfssatzes offensichtlich erfüllt, und man erhalt nach
(1) wegen

£-1 /><« ^

« n n

Zb*=Zj^k={i^x~tvw ^^ + vm. i,«»=2,iog?=#(«) (4)
*-l « 2 ° £ ö & l £<«

#(w)unmittelbar lim —— 1 (5)
»->oo n

2 Wahlen wir ak wie zuvor [m (2)] und sei

1

vi - °' 6» w' (Ä 2-3> (6>

Nach (5) smd die Bedingungen des Hilfssatzes auch jetzt erfüllt Folglich erhalt man
nach (1), (4), (5) und

kl p<n k-l k 2 8
2

-r. 1 **(») / 1 ^M \den Primzahlsatz hm —— 1= hm 1 1

n-*oo r \ n->oo n /
j dx/log x
2

L Pukänszky, Debrecen.

V. Die Quadratur des Kreises in Naherungskonstruktionen

Herr Walter H Lowston, New York, teilt uns die folgende Naherungskonstruktion
fur die Kreisfläche mit Bei dieser Gelegenheit erinnern wir an zwei andere Konstruktionen,

die zwar etwas mehr Zeichnung erfordern, aber in anderer Hinsicht bemerkenswert

sind

*) E CesAro, Lehrbuch der algebraischen Analysis (Teubner, Leipzig 1904), S 100
2) p soll hier und in den nachstehenden Summen darauf hindeuten, daß nur über die Primzahlwerte

zu summieren ist
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Ich zeige hier, wie fur einen gegebenen Kreis em Quadrat konstruiert werden kann
dessen Flache fast gleich dem Inhalt des Kreises ist — Die Genauigkeit der Konstruktion

zeigt sich m der Tatsache, daß der Fehler fur die Seite des Quadrats (im Verhältnis
zu n), geringer ist als 0,06°/0

Die Konstruktion ist folgende
In der Zeichnung haben wir zunächst AB als Durchmesser des Kreises, und recht

winklig dazu den Radius OC Der Radius OD bildet einen Winkel von 45° mit AB
Punkt E auf der Linie CB ist bestimmt, indem BE em Viertel von BC ist Verbinde ich
D mit E, so schneidet die Verlängerung die Grundlinie AB m F, und der Abschnitt AF
ist die Seite unseres gesuchten Quadrats Seme Lange ist (11 + l/2)/7-mal so groß wie
der Radius des Kreises Das ist ungefähr gleichbedeutend, als nähme man 1,77346
anstatt 1,77245 fur jAr.

k(-1t 0)

D(ifrtß)

CfoO

GX

£

Hg 1

F B(t,o)
— X

Setzen wir den Radius des Kreises gleich 1, dann errechnen wir FB nach dem Sinussatz

im AEFB Wir bezeichnen mit oc den <£ FEB <^r EFB ist natürlich 135° — a,
so daß sm EFB sm (45° -f oc) ist

Wir haben _„ ^„£ßsma £i5Sinoc
~ smEFB ~ sin (oc + 45°7

Da nun EB ^2 \\, so erhalten wir leicht

FB= *« _,2(l + tgoc)

Den Wert von tg oc erhalten wir aus dem A DGE Er ist GD/GE, also

/2/4
V

Somit ist FB V2

Dann ergibt sich AF, die Linie, deren Lange wir suchen,

AF- U
y— k 1,77346

Walter H Lowston1), New York

x) Wir bedauern auch an dieser Stelle den unterdessen erfolgten plötzlichen Tod des fernen Mitar
beiteis - Als Quelle hat er uns genannt H Lowston, A Note on a Approximation to the Square of the

Circle, Nat Math Mag 17, Nr 2 (1942)
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Macht sich hier der Fehler im Dezimalbruch fur die Quadratwurzel aus n immerhin
in der 3 Stelle nach dem Komma geltend, so verschiebt er sich in die 5 Stelle bei der
folgenden Konstruktion von F Enriques (Fig 2)1)

F
£

H
Fig 2

Fig 3

Auf dem Durchmesser AB des gegebenen Kreises trage man die Strecke OD gleich
3 Fünfteln des Radius und nach der andern Seite die Strecke OF gleich 3 Hälften des

1) F Enriques, Fragen der Elementargeometrie, deutsche Ausgabe von H Fleischer, Bd II, S 303/04
Moglicherweise stammt aber diese Konstruktion aus der Geometria elementare von Sannia und d'Ovidio
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Radius ab, dann halbiere man den Radius Oßin£ und schlage über DE und AF als
Durchmesser Halbkreise auf entgegengesetzte Seiten von A B Errichtet man nun m O
auf AB die Normale, die die beiden Halbkreise m G und H schneiden mag, so stellt
das Quadrat, das GH zur Seite hat, mit großer Annäherung den Flächeninhalt des
gegebenen Kreises dar

Die recht elementare Ausrechnung liefert

GH - r *™±yüö -r. 1.77246

Die Berechnung gestaltet sich leicht, wenn man in jedem Halbkreis den Hohensatz
anwendet Fur weitere Naherungskonstruktionen sei auf einen schonen Aufsatz von
P Finsler hingewiesen1) Wir geben daraus em Beispiel wieder, das von A Kagi
Thayngen, im November 1934 brieflich mitgeteilt wurde, zwar eine viel heiklere
Konstruktion aufweist, aber dafür, was man selten sieht, direkt auf die vier Quadrat
ecken fuhrt So findet man m Fig 3 das vielumworbene Quadrat einmal wirklich auf
den Kreis gelegt Auch braucht nur eine feste Zirkeloffnung mit dem Radius des
gegebenen Kreises verwendet zu werden

In den Kreis vom Radius r wird mit Kreisen vom selben Radius, die durch den
Mittelpunkt gehen, eine regelmäßige Zwölferrosette gezeichnet Das bedarf neben der
Sechsteilung des Kreises nur noch der Halbierung Wie m der Figur werden 8 Kreis
bogen so weit gezogen, daß sie sich außerhalb des gegebenen Kreises noch auf zwei
zueinander normalen Symmetrieachsen schneiden, im Abstand r (/ 3 vom Mittelpunkt
Von den inneren Schnittpunkten der Rosette werden vier ausgewählt, die zunächst bei
den Symmetrieachsen liegen und selber die Ecken eines kleinen Quadrates bilden
(kleine Kreise der Figur) Die Ecken des gesuchten Quadrates haben von je einem
äußeren Schnittpunkt und einem inneren, aber auf entgegengesetzter Seite der Sym
metneachse, den Abstand r, können also wiederum als Schnittpunkte von Kreisbogen
gefunden werden Die Quadratseite ergibt sich rechnerisch zu

V 2 j/3 - 1/ *
(84J/3 - 141) r ^ 1,77319 r

sie wird also um etwa 2 r/2700 oder 0,042% zu groß E Voellmy

VI Kugel und emschahges Hyperboloid

Die ovalen Flachen zweiten Grades (Elhpsoid, zweischahges Hyperboloid, elhpti
sches Paraboloid) lassen sich durch reelle Kolhneationen ineinander überfuhren Das
emschahge Hyperboloid (eH) hingegen kann durch eine reelle Kollmeation niemals
m eine ovale Flache umgeformt werden Das ist eine Folge des Trägheitsgesetzes der
quadratischen Formen Anschaulich zeigt es sich darin, daß die ovalen Flachen keine
reellen Erzeugenden besitzen Zwar laßt sich das eH über seinen Asymptotenkegel
in em zweischahges Hyperboloid, dieses dann in bekannter Weise in ein Elhpsoid um
formen Em solcher reeller Übergang ist aber nur möglich, wenn man eine Ausartung
als Durchgangsform, hier den Asymptotenkegel, in Kauf nimmt Jedoch kann man
durch imaginäre Kollmeation eine stetige Überfuhrung ohne solche Ausartungen voll
ziehen Bekanntlich wird von imaginären Kolhneationen Gebrauch gemacht2), um zum
Beispiel Eigenschaften der Kugel mit entsprechenden des eH zu vergleichen Es mag
daher von Interesse sein, die gewöhnlich nur analytisch betrachteten imaginären
Kolhneationen auch zur vollen geometrischen Anschauung zu bringen Hierzu kann die
früher3) erläuterte reelle Darstellung der imaginären Elemente dienen Wir bringen

x) Paul Finsler, Einige elementargeometrische Psaherungskomtruktionen, Commentarn mathematici
Helvetici 10, 251 (1937/38)

2) Siehe z B F Klein, Vorlesungen über höhere Geometrte, 3 Aufl (Berlin 1926), S 182
3) L Locher Ernst, Das Imaginäre m der Geometrie, El Math 4, H 5 und 6 (1949)
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hier nur in Erinnerung, daß der Punkt P mit den Koordinaten x a + ia', y 6-f ib'
z — c f i c' (a, a' usw reell) durch den Pfeil mit dem Anfangspunkt A (a, b, c) und
dem Endpunkt B (a + a', b + b', c + c') dargestellt werden kann Dieser Pfeil ist das
Zeichen fur die durch den Punkt P bestimmte gerichtete elliptische Punktinvolution
In dieser Darstellung bedeutet eine stetige Transformation eine stetige Verwandlung
einer Pfeilmannigfaltigkeit in eine andere (Die Transformation ist kollmear, wenn
Wirbel wieder in Wirbel übergehen, siehe die in Fußnote 3, S 15 erwähnte Arbeit)

Wir beschranken uns in dieser Note darauf, den einfachsten kollmearen Übergang

der Kugel mit der Gleichung xx + yy + z z 1 in das eH mit der Gleichung
xx {-yy — zz=l anschaulich darzustellen Hierzu genügt die imaginäre Affinitat
x'— x, y'=y, zr u z wobei der variable, von x y, z unabhängige Koeffizient u

© fz ^/k z t=i

1 1 l
?'!

/};»
ut z

®

71 I \ I

t.O

/?
/

z t=±

tu
ttL^r,

n n
d?

X

'¦i t.i /
\\\m

i, w l

t *

die Form u= 1 ~ t + it habe und / stetig von t 0 bis t 1 zunehme Wir betrachten
also die fur 0 < t < 1 imaginären Flachen mit der Gleichung

±«(/l ¦ y*=±iu\/x2+y2-l (u - 1 - / f * t, t 0 -> 1) (1)

Fur t — 0 stellt (1) eine Kugel, fur t 1 ein eH dar Die Figuren 1 bis 5 zeigen den
Übergang im Schnitt mit der (y, z)-Ebene (x 0) Hierbei smd die z-Pfeile nur fur
reelle y angedeutet Gezeichnet smd die Stationen t 0, 1/4, 1/2, 3/4, 1 Die reellen
Punkte (ausgeartete Pfeile) des Kreises (t ~ 0) werden zu Pfeilen mit wachsender Lange,
die Endpunkte bleiben hierbei auf dem Ausgangskreis, die Anfangspunkte wandern
schließlich bis zur y-Achse Die Pfeile, welche die imaginären Punkte des Kreises
(t 0) fur reelle y darstellen, nehmen an Lange (Betrag des Imagmarteiles) ab, wahrend
die Pfeilanfangspunkte von der y-Achse sich nach unten bzw oben verschieben bis
zur gleichseitigen Hyperbel, deren reelle Punkte die Endstationen darstellen (Die
Punkte des Schnittkreises der Flachen (1) mit der (x, y)-Ebene bleiben ungeandert)

Die Kugel besitzt zwei Scharen von je oo2 imaginären Erzeugenden (spezielle
imaginäre Geraden), wahrend das eH außer oo2 allgemeinen imaginären Geraden
insbesondere auch zwei Scharen von oo1 reellen Erzeugenden tragt Die Figuren 6 bis 10
deuten an, wie diese bei unserer affinen Umformung der Kugel zustande kommen. Sie
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ergeben sich aus denjenigen Erzeugenden (rotatorische Wirbel) der Kugel, deren reelle
Punkte in der (x,y) -Ebene liegen Die übrigen Erzeugenden der Kugel werden m
allgemeine imaginäre Geraden des eH umgewandelt L Locher-Ernst, Wmterthur

VII Eine Bemerkung zum Axiom von Pasch in Huberts ((Grundlagen der Geometrie»

Wir zitieren vorerst das Axiom von Pasch II 4 nach der 7 (letzten) Auflage der
Grundlagen und behalten im übrigen die dortige Numerierung bei

II 4 (7 Auflage) Es seien A,B,C drei nicht m gerader Linie gelegene Punkte und
a eine Gerade in der Ebene ABC, die keinen der Punkte A,B,C trifft wenn dann die
Gerade a durch einen Punkt der Strecke AB geht, so geht sie gewiß auch entweder
durch einen Punkt der Strecke AC oder durch einen Punkt der Strecke BC

In einem Zusatz wird bemerkt «Daß nicht beide Strek-
ken AC und BC von der Geraden a geschnitten werden
können, ist dann beweisbar» (auf Grund der Axiome I,
II 1-4)

Dieser Zusatz erscheint überflüssig, denn gemäß II 4
wird ja gefordert, a gehe «entweder» durch AC oder BC
Es handelt sich offenbar um em redaktionelles Versehen
In der 4 Auflage der Grundlagen (die andern waren uns
nicht zugänglich) war das Wort «entweder» ausgelassen,
so wird der Zusatz zu einer nichttrivialen Aussage

Fur diesen Zusatz wollen wir einen einfachen Beweis
geben

Zur bequemeren Lesbarkeit geben wir die zu verwendenden

Axiome im Wortlaut wieder
I 1 Zu zwei Punkten A, B gibt es stets eine Gerade a

die mit jedem der beiden Punkte A, B zusammengehört
I 2 Zu zwei Punkten A,B gibt es nicht mehr als eine Gerade, die mit jedem der

beiden Punkte A,B zusammengehört
II 1 Wenn ein Punkt B zwischen einem Punkt A und einem Punkt C hegt, so smd

A, B,C drei verschiedene Punkte einer Geraden und B hegt dann auch zwischen C und^f
II 3 Unter irgend drei Punkten einer Geraden gibt es nicht mehr als einen, der

zwischen den beiden andern liegt
Es bezeichne ferner II 4* das Axiom von Pasch ohne das verschärfende Wort

((entweder))

Wir behaupten dann
Satz 7 Unter alleiniger Verwendung der Axiome II, 12, III, 113 und II 4* ist

das starke Axiom von Pasch II 4 beweisbar
Wir beweisen Satz 1 in folgender äquivalenten Fassung
Satz 2 Unter denselben Voraussetzungen wie Satz 1 gilt Es seien A,B,C drei nicht

m gerader Linie gelegene Punkte und a eine Gerade, die keinen der Punkte A,B,C
trifft, dann trifft sie auch nicht alle drei Strecken AB, BC und CA

Beweis Entgegen der Behauptung sei a eine Gerade, die alle drei Strecken AB, BC
und CA treffe, und zwar bzw m den Punkten X, Y und Z Die sechs Punkte A,B,C,
X, Y, Z smd dann alle voneinander verschieden (I 1-2, II 1)

Gemäß I 1 gibt es eine Gerade g, die durch C und X geht Im Dreieck ABZ smd
bezuglich g die Voraussetzungen von II 4* erfüllt Wegen II 3 kann g die Strecke AZ
nicht treffen, also trifft g die Strecke BZ Im Dreieck BYZ smd deshalb bezüglich g
wieder die Voraussetzungen von II 4* erfüllt g trifft BY nicht (II 3) Somit trifft g die
Strecke YZ in einen Punkt S 5 muß aber mit X identisch sein, denn g und a haben
nur einen Punkt gemeinsam Also hegt X zwischen Y und Z

Mit derselben Schlußweise beweist man, daß auch Y zwischen X und Z liegt, indem
man an Stelle der Geraden g eine Gerade h durch A und Y betrachtet (Analog folgt,
daß Z zwischen X und Y hegt)

El Math 2
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Damit haben wir aber einen Widerspruch gegen Axiom II 3 konstruiert. Die
Gegenannahme ist also zu verwerfen und Satz 2 ist vollständig bewiesen.

W. Grüner, R. Stettler, Bern.

Aufgaben
Aufgabe 56. In wie viele Gebiete wird die Ebene durch n Kreise zerlegt, die die

maximale Anzahl reeller Schnittpunkte haben C. Bindschedler (Kusnacht).

I.Lösung: G(n) sei die Anzahl der Gebiete bei n Kreisen. G(l) 2. Der n-te
Kreis wird durch die n — 1 übrigen Kreise in 2 (n — 1) Bogenstücke zerlegt, von denen
jedes ein Gebiet in zwei Teile teilt, so daß 2 (n — 1) neue Gebiete entstehen. Daher ist

G(n) 2 + 2 {l + 2 + • • • + (n - 1)} 2 (fy + 2 (fy n*-n + 2.

Denselben Wert für G(n) erhält man, wenn die Kreise auf der Oberfläche einer
Kugel liegen. Damit läßt sich die Anzahl K(n) der Teile finden, in die der Raum durch
n Kugeln geteilt wird, bei denen die maximale Anzahl reeller Schnittpunkte von drei
Kugeln auftritt. Die n-te Kugel wird durch die andern inw-1 Kreisen mit maximaler
Schnittpunktanzahl geschnitten, so daß die Kugelfläche in n (n — 1) + 2 Flächenstücke
zerlegt wird. Jedes Flächenstück teilt ein Raumgebiet in zwei Teile, wobei stets ein
neues Teilstück entsteht. Somit ist

K(n) 2ßj-1)+2(n-l)+2=2$,2(>l).
H. Fähndrich (Bern).

2. Lösung: Es sei e(n) die Zahl der Schnittpunkte der n Kreise, k(n) die Zahl der
unmittelbar benachbarte Punkte verbindenden Kreisbogen («Kanten») und f(n) die
Zahl der Gebiete, dann ist nach Euler:

f(n) k(n) -\ 2 -e(n) [k(l) OJ (1)

Nun ist e(n)=-2^^n(n-\). (2)

k(n) findet man z.B. mit Hilfe einer Rekursionsformel. Gibt man zu v-1 Kreisen
einen weiteren, so entstehen auf den ersteren offenbar 2 (v — 1) neue «Kanten», ebenso
viele aber auch auf dem v-ten Kreis. Also ist

k(v) k (v - 1) f 4 (v - 1). (v I> 2) (3)

Setzt man hierin der Reihe nach v — 2, 3, n und addiert die erhaltenen Gleichungen,
so erhält man

Ä(») 4[l f-2-f-... h(»-l)] 4(2)-2n(«-l). (4)

Aus (3), (2) und (1) folgt:

f(n) 2 n (n - 1) + 2 - n (n - 1) n (n - 1) + 2. (5)

Für Kurven, die sich paarweise in m Punkten schneiden, erhält man in entsprechender
Weise

1
f(n) — m n (n — 1) + 2.

B. Schenker (Fetan).
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