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auch hier wieder liebe Kameraden die Arbeit erleichterten. Manch neue
Lebensfreundschaft wurde in dieser Zeit geschlossen.

Noch eines zweiten Verlustes, der mich tief traf, muß ich gedenken: der Verkauf
meines lieben Landhauses in Langenbruck im Jahre 1942. Mit keiner andern
Landschaft ist mein Innerstes so verbunden wie mit den Weiden und Höhen des Basler
Juras. Was da alles mitspielt, ist schwer zu sagen: tiefe Jugend- und Männererinnerungen.

So schön auch der Ersatz im Seeschlößli in Brunnen geworden ist, immer
zieht mich mein Sinnen und Sehnen nach den unvergleichlichen Höhenwegen im
Jura mit seinen Weiden und seinem Dufte.

In dem letzten Jahrzehnt habe ich auch die alte musikalische Tradition wieder
aufgenommen und ein Quartett gegründet, das mir die schönste und liebste Abenderholung

ist. Allen meinen lieben Quartettfreunden sage ich herzlichsten Dank für all die
Stunden, in denen wir zusammen musizieren durften. Sie waren von den schönsten
meines Lebensabends.

Meine 1931 kurz niedergeschriebenen Grundsätze sind in keiner Weise verändert
worden. Wenn ich noch etwas hinzufügen soll, so ist es vielleicht dies: Es gibt nichts
Vergängliches. Alles, was einmal gewesen ist, wird für alle Zeiten existiert haben.
Daß wir nur zeitlich erleben und denken können, liegt an unserer Unvollkommenheit.
Die ganze Entwicklung ist ein Geschehen, von dem die Zeit nur eine Dimension ist.
In Wirklichkeit ist alles einmal Existierende ewig existierend. Dies gibt uns die

große Beruhigung, daß alles das wenige, was wir Gutes und Erfreuliches machen
durften, für alle Zeiten ist.

Brunnen, den 15. April 1946 Rudolf Fueter

Die Tensorkoordinaten des Drehwinkels

1. Einleitung

Den Zusammenhang des Radius r mit dem Bogen s und dem Drehwinkel cp einerseits

und mit dem Bogenelement ds und dem Zuwachs dcp des Drehwinkels anderseits
geben die bekannten Formeln:

s rcp, (1)

ds r dcp. (2)

Den Radius und das Bogenelement kann man als gerichtete Strecken, also als
Vektoren auffassen. Diese beiden Vektoren stehen senkrecht aufeinander. Der Zuwachs
des Drehwinkels kann dann aber kein Skalar sein; er ist vielmehr ein Tensor zweiter
Stufe. Auch der Drehwinkel erweist sich, wenn auch nicht in (1), als ein Tensor
zweiter Stufe.

Nachstehend sollen derartige Zusammenhänge dargelegt werden. Wir stellen uns
insbesondere die Aufgabe, die Koordinaten cptk jenes Tensors zu ermitteln, der den

Vektor a mit den kontraVarianten Koordinaten1) ak in den gleich langen Vektor b mit

*) Wir unterscheiden in Anlehnung an Duschek und Hochrainer ([3], S. 6) die Koordinaten eines
Vektors von dessen Komponenten, die selbst Vektoren sind.
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den kovananten Koordinaten bt dreht Dabei soll diese Drehung um eine durch den
Anfangspunkt des Vektors a gehende, sonst beliebige Achse, die durch den Vektor z

gegeben ist, und um den Winkel cp erfolgen Wir setzen dabei em geradlinig-schiefwinkliges

Koordinatensystem voraus Unser Ansatz lautet

&,= 9>,*«fcl) (3)

2 Volumen eines Spats und Eckensinus

Da die fur em geradlinig-schiefwinkliges Koordinatensystem geltende Formel fur
das Volumen eines Spats nachher benotigt wird, soll sie hier hergeleitet werden

Unter dem Langenvektor a verstehen wir das Produkt aus der Lange (Koordinate) a

und dem dimensionslosen Einheitsvektor la

a a la (4)

Die Lange a ist ihrerseits das Produkt aus der Maßzahl a und der Längeneinheit ea

Schlagt man letztere zum dimensionslosen Einheitsvektor 10, so erhalt man den
Langenemheitsvektor ea Es gilt somit

a a Ta a ea la a ea (5)

Nun mögen die drei Langenvektoren a ala, b =- blb,c clc, die nicht aufeinander

senkrecht stehen, vom Koordinatennullpunkt aus einen Spat aufspannen Dessen
Volumen ist bekanntlich

V ^(ax b)c abc(la\lb)lc (6)

Hier bedeuten (axb)c und (lax 1&) lc gemischte Produkte von Vektoren, namhch
das skalare Produkt aus dem Vektorprodukt ax b bzw lax 1& und dem Vektorc
bzw lc Es ist somit

(Ta x lb) lc sm (Ta, Tö) cos ((Ta x T&), Tc) (7)

Dieser Ausdruck ist bekannt unter dem Namen Eckensinus2) Wir setzen abkürzend

(lax 1&) lc — sabc (8)

2) Wir lassen wie das in der Tensorrechnung üblich ist, das Summenzeichen weg indem vereinbart ist,
daß ein in einem Term zweimal einmal oben und einmal unten auftretender Index als Laufindex betrachtet
wird, über den zu summieren ist — In ausfuhrlicher Schreibweise wäre statt (3) zu schreiben

bi 9^11 al + ^12 «2 + <Pi3 «3 |

K 9?2i al + ^22 a* + 9^23 fl3 | (3 a)

&3 9^31 al + <P32 «2 + 9^33 ß3 >

2) Von Staudt (r8], S 255) definiert den Sinus eines Dreikants (einer dreiseitigen Raumecke) als das
Produkt aus dem Smus des von zwei Kanten eingeschlossenen Winkels in den Sinus desjenigen Winkels,
welchen die dritte Kante mit der Ebene des ersteren bildet — Dieses Produkt ist identisch mit dem ge
mischten Produkt der drei dimensionslosen Einheitsvektoren, wenn man fur die Vorzeichen passende An
nahmen macht
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Entsprechend dem VorzeichenWechsel, den das gemischte Produkt von drei
Vektoren erfahrt, wenn die Faktoren die Reihenfolge tauschen, wird

sabc ~ sacb ~ sbca ~ sbac scab scba l"/

Fallen zwei oder alle drei Einheitsvektoren in dieselbe Richtung, stimmen also zwei
oder alle drei Indizes uberem, so wird das gemischte Produkt und damit der Ecken
sinus Null

Mit Hilfe des Eckensmus (8) geht das Spatvolumen von (6) über in

V=abcsabc (10)

Nun fuhren wir mit dem bereits erwähnten Nullpunkt em geradlmig-schiefwmk
hges Koordinatensystem em Fur die drei gegebenen Langenvektoren gilt dann

a a*lt, 5=6*1,, c cklk, (11)

und man erhalt fur das Spatvolumen die gesuchte Formel

'

(12)V= (axb) c atbJck (lt x 13) lk a% b3 ck stJk

Rechts außen steht eine Summe von 27 Gliedern, es sind aber nur sechs Glieder von
Null verschieden

3 Rechtwinklige Drehung eines Vektors um eine zu ihm senkrecht stehende Achse

Wir suchen als ersten Schritt zur Losung der in der Einleitung gestellten Aufgabe
die Komponenten itk jenes Tensors, der einen gegebenen Vektor x um eine zu ihm
senkrecht stehende Achse, die durch den koimtialen Vektor z gegeben ist, um einen
rechten Winkel dreht, so daß der Vektor y entsteht Die drei Langenvektoren x, y
und z bilden ein rechtwinkliges Rechtssystem x und y sind gleich lang, e^ gilt also

x=-y (13)

Es erweist sich als zweckmäßig, die kovananten Koordinaten yt von y zu ermitteln
Die y% sind dabei jene Langen, die man auf den Koordinatenachsen abschneidet,
wenn man y rechtwinklig darauf projiziert Setzen wir

ctk cos(lt,%), (14)

so gilt allgemein
at ctka**) (15)

Lost man die Gleichungen (15) nach den ak auf, so erhalt man die Koeffizienten ckt,

mit welchen man nach
yk cki yt (16)

die yk aus den y% ermitteln kann

*) Rechnet man nicht mit den Langen ai und akt sondern mit den Maßzahlen at und 0Lk, so treten an
die Stelle der ctk die Koordinaten gtk des metrischen Fundamentaltensors
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Da y auf x und auf z senkrecht steht, gilt für das Volumen des von diesen
Vektoren aufgespannten Quaders:

V xyz= y2z yl ytz.

Anderseits findet man aber nach (12) und (9) auch

V xkylz)skl] xkylz>sl3k.

Hieraus erhält man durch Veigleichen mit (17):

y%z=xkz>suk oder yl=stJkz^xk.
Mit dem Ansatz

y% Uk *>*

folgt aus (19 b)

1ik — suk _

Hieraus errechnet man folgende Werte:

Uk \ 1

k

2 3

1 0
z*

~5l23T
^2

5123 T

i 2
z*

5123 T 0 ~5l23"7

3
z2

"5l23T
z1

5123 T 0

(17)

(18)

(19 a und b)

(20)

(21)

(22)

Unsere erste Teilaufgabe ist damit gelöst. Der Tensor der rechtwinkligen Drehung
ist schiefsymmetrisch.

4. Beliebige Drehung eines Vektors um eine zu ihm senkrecht stehende Achse

Der Vektor x werde um die zu ihm senkrechte, durch z gegebene Achse um den
Winkel cp gedreht, so daß der Vektor r entsteht. Wir zerlegen r parallel und senkrecht
zu x. Dementsprechend ergeben sich die koVarianten Koordinaten von r als Summe:

rt x{ cos cp -f jtk xk sin cp. (23)

Dabei kann man die kovarianten Koordinaten xt nach (15) durch die kontravari-
anten Koordinaten xk des Vektors x ausdrücken:

%i — ctk x (24)
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Somit erhalten wir
't icik cos cp + ]tk sm cp) xk (25)

Machen wir noch den Ansatz

r% V'ik x* (26)

so finden wir als Ergebnis die folgenden Koordinaten des den Vektor x um den
Winkel cp drehenden Tensors

9>i*= ctkcos<p + ^sin^1) (27)

5 Drehung eines Vektors um eine zu ihm schief stehende Achse

Der Vektor a werde um die zu ihm schief stehende, durch den Vektor z gegebene
Achse um den Winkel cp gedreht, so daß der Vektor b entsteht Wir ermitteln die
Koordinaten cptk des Drehtensors, der die kontravananten Koordinaten von a nach dem
Ansatz

b^cptkak (28)

m die kovananten Koordinaten von b überfuhrt
Die in die Achse fallende Komponente von a und b ist

,*¦ »x T (at) I" (aT) +* ah zh ^ /oma cos (a, z) - a -—- -^- z ——^ z (29)v ' z a z z z2 z2 v '

Dabei ist (25) das skalare Produkt von a und z, also az cos (S,S) oder ah zh Fur die
gegebenen Vektoren gilt dann

a^^-z+x, l=°Ll!Lz + r (29a und b)

Fur die kovananten Koordinaten von b findet man nach (29b) unter Beachtung von
(26) und mit Ersatz des Index h durch k

6,= -^*»,,+ r,= ^«*+yU*» (30)

Aus (29 a) folgt

**=«*_ ^a* (31)

(30) geht damit über in

bt =- A4 «* + <p\k «* - <p[k *-¦» z" (32)

Das m (32) im rechts außen stehenden Glied auftretende Produkt cp'tkzk laßt sich
mit Verwendung von (27) wie folgt umformen, indem man (15) auf zk anwendet und

*) Man beachte die Analogie mit dem fur komplexe Zahlen geltenden Ausdruck

eJ<p cos9? -f ; smcp (27 a)

Wir schreiben, in Übereinstimmung mit den Elektrotechnikern,; fur die imaginäre Einheit
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indem man beachtet, daß sich wegen (9) stets zwei Glieder stjkzjzk zu Null ergänzen:

z3'

y'ik zk — cik cos <p zk + snk — sm <P zk cos <P zi + sin cp • 0 cos cp zt. (33)

Damit wird, wenn man schließlich noch in ahzh den Index h durch k ersetzt,

h= [^(1-cos?)+ ?;,]«*. (34)

ds

<Pik=- —£k (1-cos 99) + <p'tk, (35 a)

(Plk lJ" (1 cos cp) + ctk cos cp + Uk sm cp (35 b)

Fig.l

Durch Vergleichen mit (28) findet man schließlich

oder:

Damit ist unsere Aufgabe gelöst; die Koordinaten cptk des Drehtensors kann
man nach (35b), (22) und (8) berechnen. Die verschiedenen Summanden von b, die
den verschiedenen Gliedern der cplk entsprechen, lassen sich leicht geometrisch
deuten1).

Den für rechtwinklige Koordinatenachsen geltenden Spezialfall des Ausdrucks
(35b) haben, in etwas anderer Schreibweise, Duschek und Hochrainer ([3], S. 78)

bekanntgegeben.

6. Das Bogenelement und der Bogen

Wir wollen zuerst das Bogenelement durch den Radius ausdrücken. Das gerichtete
Bogenelement ds (Fig. 1) ist das Differential dr des Vektors r. Der Bogen s und sein
Differential ds sind Skalare. An die Stelle von (2) tritt nun der Ansatz

dr% dcpik rk. (36)

Die drei Vektoren r, dr und I stehen je senkrecht aufeinander. Wir haben daher dcpik

*) Rechnet man mit den Maßzahlen ßi, 0Lk, £*4> Ck und f statt mit den Längen Größen) b%, akf zif
zk und z, so treten die gtk an die Stelle der c%k.
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nach (27) zu ermitteln und erhalten

Damit wird
dtpik^Ukdcp

drt - )lk rk dcp

(37)

(38)

Zur Illustration diene folgender Spezialfall Das Koordinatensystem sei
rechtwinklig dr und 7 liegen m der durch die Achsen 1 und 2 aufgespannten Ebene, so daß
Jin die Achse 3 fallt Damit wird in (22) der Eckensinus 1, ferner verschwinden die
Koordinaten z1 und z2, schließlich ist die Koordinate zz gleich der Lange z

1tk \ 1

k

2 3

1 0 -1 0

*= 2 1 0 0

3 0 0 0

(39)

Die drt werden nun besonders einfach
Zur ursprünglichen Aufgabe zurückkehrend, verstehen wir unter dem Bogen 5 das

von 9?j bis cp2 erstreckte Wegintegral des skalaren Produkts des dimensionslosen

Einheitstangentenvektors t und des Differentials dr

Vi

¦I ds t' dr,. (40)

Die in (38) auftretenden Faktoren )lkrk stellen nach (20) die kovananten Koordinaten

eines zu r senkrecht stehenden Langenvektors dar, der auch auf z senkrecht
steht In der Reihenfolge r, neuer Langenvektor, z bilden die drei Vektoren em
rechtwinkliges, rechtshändiges Dreibein Der neue Vektor hat demnach die Richtung des

dimensionslosen Einheitstangentenvektors Tf und er ist gleich lang wie r Es ist also

Damit geht (38) über in

und aus (40) wird

Ukrk==ttr

drt= ttrdcp,

s / i% t% r dcp

(41)

(42)

(43)

Unter dem Integral steht nun das skalare Produkt des Einheitstangentenvektors
mit sich selbst; es hat den Wert 1.

***,= (44)
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Damit wird schließlich der Bogen

s I r dcp r (cp2~ cpt) r <Pn

111

(45)

Dieses Ergebnis erhalt man auch, wenn man die drt nicht durch die rk, sondern
durch die xk ausdruckt Man hat dann allerdings etwas mehr Umformungen vorzu
nehmen

7 Nochmals die rechtwinklige Drehung eines Vektors um eine
zu ihm senkrecht stehende Achse

In einer zum Vektor z senkrecht stehenden und durch dessen £ ußpunkt gehenden
Ebene liegen komitial die Vektoren u, X, und w, und zwar so, daß, von der Spitze von

/w

TV

fig 2

z aus gesehen, v um den Winkel (u, v) und w um einen rechten Winkel gegenüber u
im Gegenuhrzeigersinn verdreht smd (Fig 2) u und w sollen gleich lang sein

u — w (46)

Nun wird v parallel zu u und w in die rechtwinkligen Komponenten p und q zerlegt
Wir können zu einem neuen Ausdruck fur die Koordinaten ]lk des Tensors der lecht
winkligen Drehung kommen, indem wir die kontravananten Koordinaten von q auf
zwei verschiedene Arten durch die kontravananten Koordinaten von u und v
ausdrucken

Einerseits gilt
q=-p + v, (47)

woraus
V

-Pt+Vt= -ut-^cos(u, v) + vt

folgt Aus dem skalaren Produkt von u und v folgt

cos (u, v)

Somit wird

+ v%.

(48)

(49)

(50)
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Da das skalare Produkt von u mit sich selbst

uk uk =- u2 (51)

liefert, wird auch

ut uk vk vt uk uk -utvk+ vt uk Mth

u2 u2 u2 (52)

Anderseits gilt
q w — sm (u, v) w — sm (u, v), (53)

woraus

(li^wiVrr sin («* v) (54)

folgt. Ersetzt man wx nach (20) durch jlk und uk, so erhält man

?* /«* «*^ sin (5, v). (55)

Durch Vergleichen von (52) und (55) findet man schließlich

- u%vk + vz uk /ifc u v sin (5, v), (56)
oder:

j ^ -uivk+vtuk
*lk u v sm(u,v)

(57)

Zerlegt man einen beliebig gelegenen Vektor a in zwei rechtwinklige Komponenten,
so daß die eine in den Vektor z und die andere in die durch u und v aufgespannte
Ebene fällt, so läßt sich leicht zeigen, daß der Tensor der rechtwinkligen Drehung
lediglich die letztere Komponente um einen rechten Winkel dreht, die andere
Komponente dagegen nicht beeinflußt.

8. Das äußere Produkt zweier Vektoren

In der Vektorrechnung schreibt man für das äußere Produkt der beiden Vektoren
/und B ^ ^ ^C-=AxB. (58)

Dabei gilt für den skalaren Anteil

C ABsin(A,B). (59)

C deutet man in der Vektorrechnung als axialen Vektor. Tatsächlich ist das äußere
Produkt von zwei Vektoren ein Tensor zweiter Stufe mit schiefsymmetrischen
Koordinaten, der sich im dreidimensionalen Raum auf einen Vektor abbilden läßt. Wir
ersetzen daher wie Brillouin ([2], S. 215), Wteyl ([10], S. 41) und andere die

Vektorgleichung (58) durch

Cth=-AtBk+BtAk. (60)

Daraus erhalten wir nach (56)

Ctk=jtkABsin(Ä,B). (61)
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Unter Berücksichtigung von (59) wird dann

Ctk Uk C (62)

Als Beispiel envahnen wir das Drehmoment, das eine an der Spitze des Vektors r
angreifende Kraft F erzeugt Statt der (58) entsprechenden Vektorgleichung

setzen wir nach (60)

Mit

geht (64) über in

M=rxF (63)

Mtk--rtFk + Ftrk (64)

M rFsm(r,F) (65)

Mtk u*M (66)

Ganz analog kann man andere äußere Vektorprodukte und andere «axiale Vektoren»
darstellen, so zum Beispiel die Flache, die zwei Vektoren aufspannen, ferner die
Winkelgeschwindigkeit, die magnetische Induktion
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Kleine Mitteilungen
I Eine Bemerkung zur Definition des geometrischen Ortes

In einigen schweizerischen Lehrmitteln1) ist die folgende Definition des geometrischen
Ortes gegeben «Em geometrischer Ort ist eine Linie, auf der alle Punkte liegen müssen
(und keine andern), die eine vorgeschriebene Bedingung erfüllen » Daß diese Definition

x) F Gonseth und P Marti, Planimetrie I (Orell Fußli, Zürich) - H Frick, Planimetrie (Schultheß,
Zürich)

El Math. V/8
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