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auch hier wieder liebe Kameraden die Arbeit erleichterten. Manch neue Lebens-
freundschaft wurde in dieser Zeit geschlossen.

Noch eines zweiten Verlustes, der mich tief traf, muB} ich gedenken: der Verkauf
meines lieben Landhauses in Langenbruck im Jahre 1942. Mit keiner andern Land-
schaft ist mein Innerstes so verbunden wie mit den Weiden und Héhen des Basler
Juras. Was da alles mitspielt, ist schwer zu sagen: tiefe Jugend- und Minnererinne-
rungen. So schoén auch der Ersatz im SeeschléBli in Brunnen geworden ist, immer
zieht mich mein Sinnen und Sehnen nach den unvergleichlichen Héhenwegen im
Jura mit seinen Weiden und seinem Dufte.

In dem letzten Jahrzehnt habe ich auch die alte musikalische Tradition wieder auf-
genommen und ein Quartett gegriindet, das mir die schonste und liebste Abenderho-
lung ist. Allen meinen lieben Quartettfreunden sage ich herzlichsten Dank fiir all die
Stunden, in denen wir zusammen musizieren durften. Sie waren von den schénsten
meines Lebensabends.

Meine 1931 kurz niedergeschriebenen Grundsitze sind in keiner Weise verdndert
worden. Wenn ich noch etwas hinzufiigen soll, so ist es vielleicht dies: Es gibt nichts
Vergingliches. Alles, was einmal gewesen ist, wird fiir alle Zeiten existiert haben.
DaB wir nur zeitlich erleben und denken kénnen, liegt an unserer Unvollkommenbheit.
Die ganze Entwicklung ist esn Geschehen, von dem die Zeit nur eine Dimension ist.
In Wirklichkeit ist alles einmal Existierende ewig existierend. Dies gibt uns die
groBe Beruhigung, daB3 alles das wenige, was wir Gutes und Erfreuliches machen
durften, fiir alle Zeiten ist.

Brunnen, den 15. April 1946 RupoLFr FUETER

Die Tensorkoordinaten des Drehwinkels

1. Einleitung

Den Zusammenhang des Radius 7 mit dem Bogen s und dem Drehwinkel ¢ einer-
seits und mit dem Bogenelement ds und dem Zuwachs dg des Drehwinkels anderseits
geben die bekannten Formeln:

s=7rg, (1)
ds =rde. (2)

Den Radius und das Bogenelement kann man als gerichtete Strecken, also als Vek-
toren auffassen. Diese beiden Vektoren stehen senkrecht aufeinander. Der Zuwachs
des Drehwinkels kann dann aber kein Skalar sein; er ist vielmehr ein Tensor zweiter
Stufe. Auch der Drehwinkel erweist sich, wenn auch nicht in (1), als ein Tensor
zweiter Stufe.

Nachstehend sollen derartige Zusammenhinge dargelegt werden. Wir stellen uns
insbesondere die Aufgabe, die Koordinaten ¢;; jenes Tensors zu ermitteln, der den
Vektor a mit den kontravarianten Koordinaten?!) a* in den gleich langen Vektor b mit

1) Wir unterscheiden in Anlehnung an DuscHEx und HocHRAINER ([3], S. 6) die Koordinaten eines
Vektors von dessen Komponenten, die selbst Vektoren sind.
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den kovarianten Koordinaten b; dreht. Dabei soll diese Drehung um eine durch den
Anfangspunkt des Vektors @ gehende, sonst beliebige Achse, die durch den Vektor z
gegeben ist, und um den Winkel ¢ erfolgen. Wir setzen dabei ein geradlinig-schief-
winkliges Koordinatensystem voraus. Unser Ansatz lautet:

b; = @ a*l). 3)

2. Volumen eines Spats und Eckensinus

Da die fiir ein geradlinig-schiefwinkliges Koordinatensystem geltende Formel fiir
das Volumen eines Spats nachher benétigt wird, soll sie hier hergeleitet werden.

Unter dem Lingenvektor @ verstehen wir das Produkt aus der Linge (Koordinate) a
und dem dimensionslosen Einheitsvektor 1,:

a=al,. (4)

Die Lange a ist ihrerseits das Produkt aus der MaBzahl « und der Lingeneinheit ¢, .
Schldgt man letztere zum dimensionslosen Einheitsvektor 1,, so erhidlt man den
Lingeneinheitsvektor ¢,. Es gilt somit:

a=al,—ae,1,=ae,. (5)

Nun mogen die drei Lingenvektoren a =a1,, b =b1,, ¢ = ¢ 1,, die nicht aufeinan-
der senkrecht stehen, vom Koordinatennullpunkt aus einen Spat aufspannen. Dessen
Volumen ist bekanntlich

V=@xbc=abc(,xT,)]1,. (6)
Hier bedeuten (2 x ) ¢ und (1,x 1,) T, gemischte Produkte von Vektoren, nimlich

das skalare Produkt aus dem Vektorprodukt a x b bzw. 1,x 1, und dem Vektor &
bzw. 1,. Es ist somit:

(I, x 1,) I, = sin (I,, 1) cos (1o x 1), 1). (7)

Dieser Ausdruck ist bekannt unter dem Namen Eckensinus?). Wir setzen abkiirzend:

(.i-a>< ~i.b) ~ic = Sgpec |- (8)

1) Wir lassen, wie das in der Tensorrechnung iiblich ist, das Summenzeichen weg, indem vereinbart ist,
daB ein in einem Term zweimal, einmal oben und einmal unten, auftretender Index als Laufindex betrachtet
wird, iiber den zu summieren ist. — In ausfuhrlicher Schreibweise wire statt (3) zu schreiben:

by = @y al + @rp a® + @z a®
by = gy a' + Py a* + @z a® | . (3a)
bg = @31 a' + @gp 4% + g5 a®

2?) Von Sraupr ([8], S. 255) definiert den Sinus eines Dreikants (einer dreiseitigen Raumecke) als das
Produkt aus dem Sinus des von zwei Kanten eingeschlossenen Winkels in den Sinus desjenigen Winkels,
welchen die dritte Kante mit der Ebene des ersteren bildet. — Dieses Produkt ist identisch mit dem ge-
mischten Produkt der drei dimensionslosen Einheitsvektoren, wenn man fiir die Vorzeichen passende An-
nahmen macht.
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Entsprechend dem Vorzeichenwechsel, den das gemischte Produkt von drei Vek-
toren erfiahrt, wenn die Faktoren die Reihenfolge tauschen, wird

Save = —Sacd = Sveca = " Sbac = Scab = —Scva- (9)

Fallen zwei oder alle drei Einheitsvektoren in dieselbe Richtung, stimmen also zwei
oder alle drei Indizes iiberein, so wird das gemischte Produkt und damit der Ecken-
sinus Null.

Mit Hilfe des Eckensinus (8) geht das Spatvolumen von (6) tiber in

V=abcsgp,- (10)

Nun fithren wir mit dem bereits erwdhnten Nullpunkt ein geradlinig-schiefwink-
liges Koordinatensystem ein. Fiir die drei gegebenen Lingenvektoren gilt dann

und man erhilt fiir das Spatvolumen die gesuchte Formel:

>

V=(@xbc=a'bicc(I;x1;)T,=atbicks;;|. (12)

Rechts auBlen steht eine Summe von 27 Gliedern ; es sind aber nur sechs Glieder von
Null verschieden.

3. Rechtwinklige Drehung eines Vektors um eine zu thm senkvecht stehende Achse

Wir suchen als ersten Schritt zur Losung der in der Einleitung gestellten Aufgabe
die Komponenten f;; jenes Tensors, der einen gegebenen Vektor ¥ um eine zu ihm
senkrecht stehende Achse, die durch den koinitialen Vektor z gegeben ist, um einen
rechten Winkel dreht, so daB der Vektor y entsteht. Die drei Lingenvektoren ¥, y
und z bilden ein rechtwinkliges Rechtssystem. x und y sind gleich lang; es gilt also

x=19. ‘ (13)

Es erweist sich als zweckmiBig, die kovarianten Koordinaten vy, von y zu ermitteln.
Die v, sind dabei jene Lingen, die man auf den Koordinatenachsen abschneidet,
wenn man ¥ rechtwinklig darauf projiziert. Setzen wir

Cix = COS (Tt 5 Ik)l (14‘)
so gilt allgemein
a«i = Cik ak 1). (15)

Lost man die Gleichungen (15) nach den 4* auf, so erhidlt man die Koeffizienten c*?,
mit welchen man nach

yE = ot g, (16)
die y* aus den y, ermitteln kann.

1) Rechnet man nicht mit den Langen a; und a¥, sondern mit den MaBzahlen o; und ok, so treten an
die Stelle der c;; die Koordinaten g;;, des metrischen Fundamentaltensors.
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Da ¥ auf ¥ und auf 7 senkrecht steht, gilt fiir das Volumen des von diesen Vek-
toren aufgespannten Quaders:

V=xyz=1y*z2=y'y;2. (17)
Anderseits findet man aber nach (12) und (9) auch
V=xobyidds,,i=2%y"2s;5. (18)

Hieraus erhalt man durch Vergleichen mit (17):

j
V2= x%z1s;5, oder y,= S; —zz— %%, (19a und b)
Mit dem Ansatz
Vi = Jix X* (20)
folgt aus (19b)
. A
Jix = Sijk |- (21)
Hieraus errechnet man folgende Werte:
k=
1 2 3
23 22
. 1 0 — S123 - S123 7~
T = ‘ ‘ (22)
) 3 21
1= 2 1237~ 0 T S128
2 41
3 | =123 = 128 7~ 0

Unsere erste Teilaufgabe ist damit gelost. -- Der Tensor der rechtwinkligen Drehung
ist schiefsymmetrisch.

4. Beliebige Drehung eines Vektors um eine zu thm senkrecht stehende Achse

Der Vektor ¥ werde um die zu ihm senkrechte, durch z gegebene Achse um den
Winkel ¢ gedreht, so daB der Vektor 7 entsteht. Wir zerlegen 7 parallel und senkrecht
zu ¥. Dementsprechend ergeben sich die kovarianten Koordinaten von 7 als Summe:

7= %;COSQ + ;1 x¥ sin . (23)

Dabei kann man die kovarianten Koordinaten x; nach (15) durch die kontravari-
anten Koordinaten x* des Vektors ¥ ausdriicken:

Xy = Cqpp %", (24)
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Somit erhalten wir
7; = (C; COS@ + 71 Sin @) «F. (25)
Machen wir noch den Ansatz

so finden wir als Ergebnis die folgenden Koordinaten des den Vektor ¥ um den
Winkel ¢ drehenden Tensors:

‘P§k = ;5 COSQ + i Sing?) |. (27)

5. Drehung eines Vektors wm eine zu thm schief stehende Achse

Der Vektor @ werde um die zu ihm schief stehende, durch den Vektor z gegebene
Achse um den Winkel ¢ gedreht, so daB der Vektor 6 entsteht. Wir ermitteln die Koor-
dinaten g, des Drehtensors, der die kontravarianten Koordinaten von z nach dem
Ansatz

bi == (pzk ak (28)

in die kovarianten Koordinaten von ¥ iiberfiihrt.
Die in die Achse fallende Komponente von a und & ist

a coS (Z, 2) —=a -t =

- F @3 F @Y
2 2

(29)
Dabei ist (%) das skalare Produkt von a und Z, also az cos (a, z) oder a* z,. Fiir die
gegebenen Vektoren gilt dann '

ahzh

AT, (29a und b)

a="ri+%, b=

Fiir die kovarianten Koordinaten von b findet man nach (29b) unter Beachtung von
(26) und mit Ersatz des Index A durch &

h .
b, = f,T;ZP_ 2+ ;= %;lc_ ar+ @iy x*. (30)
Aus (29a) folgt
h
o — gk _ _‘f};& ok (31)
(30) geht damit iiber in
_ h
= —z—;;’l ak + @i aF — @i f_z:g_ 2. (32)

Das in (32) im rechts auBen stehenden Glied auftretende Produkt g, z* 1aBt sich
mit Verwendung von (27) wie folgt umformen, indem man (15) auf z* anwendet und

1) Man beachte die Analogie mit dem fiir komplexe Zahlen geltenden Ausdruck
¢/? = cos + f sing. (27 a)

Wir schreiben, in Ubereinstimmung mit den Elektrotechnikern, § fiir die imaginire Einheit.
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indem man beachtet, daB sich wegen (9) stets zwei Glieder s,;;, 27 2% zu Null ergéinzen:

i
P4 . .
@i 3¢ = Cy cosp FF+ Sisk sing 2¥= cos@ 2, + singp - 0= cosg z,. (33)

Damit wird, wenn man schlieBlich noch in a”z, den Index % durch k& ersetzt,

b= [ (1 — cos @) + gia] o~ (34)

22

Fig.1

Durch Vergleichen mit (28) findet man schlie§lich

Q= "5* (1~ cosg) + ¢la, (35a)
oder:
Qir = ziz—;’? (1 —cosp) + c;pcosp + 7, sineg|. (35b)

Damit ist unsere Aufgabe gelost; die Koordinaten ¢,, des Drehtensors kann
man nach (35b), (22) und (8) berechnen. Die verschiedenen Summanden von b, die
den verschiedenen Gliedern der ¢, entsprechen, lassen sich leicht geometrisch
deuten?).

Den fiir rechtwinklige Koordinatenachsen geltenden Spezialfall des Ausdrucks
(35b) haben, in etwas anderer Schreibweise, DusCHEK und HOCHRAINER ([3], S.78)
bekanntgegeben.

6. Das Bogenelement und der Bogen

Wir wollen zuerst das Bogenelement durch den Radius ausdriicken. Das gerichtete
Bogenelement ds (Fig. 1) ist das Differential dr des Vektors 7. Der Bogen s und sein
Differential ds sind Skalare. An die Stelle von (2) tritt nun der Ansatz

Die drei Vektoren 7, dr und Z stehen je senkrecht aufeinander. Wir haben daher d@;s,

1) Rechnet man mit den MaBzahlen f;, ¥, {;, {; und { statt mit den Lingen (= GroBen) b;, a¥, z;,
2, und 3, so treten die g;;, an die Stelle der ¢y .
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nach (27) zu ermitteln und erhalten

Adpi= 111 dg. 37)
Damit wird
ar;=j; " de. (38)

Zur INustration diene folgender Spezialfall: Das Koordinatensystem sei recht-
winklig; dr und 7 liegen in der durch die Achsen 1 und 2 aufgespannten Ebene, so daB3
z in die Achse 3 fillt. Damit wird in (22) der Eckensinus 1, ferner verschwinden die
Koordinaten z! und 22, schlieBlich ist die Koordinate 23 gleich der Linge z:

ik = Lo =110 (39)

Die dr; werden nun besonders einfach.

Zur urspriinglichen Aufgabe zuriickkehrend, verstehen wir unter dem Bogen s das
von ¢, bis g, erstreckte Wegintegral des skalaren Produkts des dimensionslosen Ein-
heitstangentenvektors 7 und des Differentials dr:

Ps P2
s=/ds:ftidr,.. (40)
12} L2

Die in (38) auftretenden Faktoren j,,7* stellen nach (20) die kovarianten Koordi-
naten eines zu 7 senkrecht stehenden Lingenvektors dar, der auch auf Z senkrecht
steht. In der Reihenfolge 7, neuer Lingenvektor, Z bilden die drei Vektoren ein recht-
winkliges, rechtshdndiges Dreibein. Der neue Vektor hat demnach die Richtung des
dimensionslosen Einheitstangentenvektors 7, und er ist gleich lang wie 7. Es ist also

Jin?*=1t;7. (41)
Damit geht (38) iiber in
dr;=t;rdg, (42)
und aus (40) wird
P
s =ft" 47 dp. 43)

P

Unter dem Integral steht nun das skalare Produkt des Einheitstangentenvektors
mit sich selbst; es hat den Wert 1:

Pl=1, (44)
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Damit wird schlieBlich der Bogen
Pa
S=/7d¢:7(¢2"¢1):77712- (45)
P1
Dieses Ergebnis erhdlt man auch, wenn man die dr, nicht durch die 7*, sondern

durch die x* ausdriickt. Man hat dann allerdings etwas mehr Umformungen vorzu-
nehmen.

7. Nochmals die rechtwinklige Drehung eines Vektors um eine
zu thm senkrecht stehende Achse

In einer zum Vektor z senkrecht stehenden und durch dessen FuBpunkt gehenden
Ebene liegen koinitial die Vektoren %, v, und @, und zwar so, daB, von der Spitze von

Fig.2

z aus gesehen, v um den Winkel (#, 7) und @ um einen rechten Winkel gegeniiber %
im Gegenuhrzeigersinn verdreht sind (Fig.2). % und @ sollen gleich lang sein:

u = w. (46)

Nun wird 7 parallel zu # und @ in die rechtwinkligen Komponenten 4 und g zerlegt.
Wir kénnen zu einem neuen Ausdruck fiir die Koordinaten j;;, des Tensors der recht-
winkligen Drehung kommen, indem wir die kontravarianten Koordinaten von g auf
zwei verschiedene Arten durch die kontravarianten Koordinaten von # und v aus-
driicken.
Einerseits gilt
7=—p+7, 47)

woraus

q,-=—Pi+vi=*“i%005(a:§)+vi (48)

folgt. Aus dem skalaren Produkt von % und v folgt

- k
cos (u, v) = “1‘:;‘5&" (49)
Somit wird
uk
gi=— "k oy, (50)

u
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Da das skalare Produkt von # mit sich selbst

Py = u? (51)
liefert, wird auch
u, ukF v v, Uk u - v, -+ U, u
Qiz—— tuz k+ u? L= : ’;2 : kuk. (52)
Anderseits gilt
> > U i - U . > >
g=w_-sin(u,v) =w - Sin (#, v), (53)
woraus
g;= w; Zv— sin (%, v) (54)

folgt. Ersetzt man w, nach (20) durch 7,; und #*, so erhilt man
qi= fir u* 'E“ sin (#, v). (55)

Durch Vergleichen von (52) und (55) findet man schlieBlich

— Uy Uy U U= Jy % SIN (1, ), (56)
oder:
o T Uk Vit
Tie = Y sin @, 77) |’ (57)

Zerlegt man einen beliebig gelegenen Vektor z in zwei rechtwinklige Komponenten,
so daB die eine in den Vektor z und die andere in die durch % und v aufgespannte
Ebene fillt, so 148t sich leicht zeigen, daB3 der Tensor der rechtwinkligen Drehung
lediglich die letztere Komponente um einen rechten Winkel dreht, die andere Kom-
ponente dagegen nicht beeinfluBt.

8. Das dufere Produkt zwerer Vektoven

In der Vektorrechnung schreibt man fiir das duBBere Produkt der beiden Vektoren
A und B - > -
- C=A4AxB. (58)

Dabei gilt fiir den skalaren Anteil

C=ABsin (4, B). (59)

C deutet man in der Vektorrechnung als axialen Vektor. Tatsachlich ist das duflere
Produkt von zwei Vektoren ein Tensor zweiter Stufe mit schiefsymmetrischen Koor-
dinaten, der sich im dreidimensionalen Raum auf einen Vektor abbilden 148t. Wir
ersetzen daher wie BRiLLouiN ([2], S. 215), WEYL ([10], S. 41) und andere die
Vektorgleichung (58) durch

Cik= ”“AlBk‘*" BiAk" (60)
Daraus erhalten wir nach (56)

Civ=fjix ABsin (4, B). (61)
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Unter Beriicksichtigung von (59) wird dann
Cir =i C. (62)

Als Beispiel erwidhnen wir das Drehmoment, das eine an der Spitze des Vektors 7
angreifende Kraft I’ erzeugt. Statt der (58) entsprechenden Vektorgleichung

M=7xF (63)
setzen wir nach (60)
M= —r,F,+ F,r,. (64)
Mit -
M = ¢ F sin (7, F) (65)
geht (64) iiber in
My =7 M. (66)

Ganz analog kann man andere dullere Vektorprodukte und andere «axiale Vektoren»
darstellen, so zum Beispiel die Flache, die zwei Vektoren aufspannen, ferner die
Winkelgeschwindigkeit, die magnetische Induktion.
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Kleine Mitteilungen

1. Eine Bemerkung zuv Definition des geometvischen Ovtes

In einigen schweizerischen Lehrmitteln?) ist die folgende Definition des geometrischen
Ortes gegeben: «Ein geometrischer Ort ist eine Linie, auf der alle Punkte liegen miissen
(und keine andern), die eine vorgeschriebene Bedingung erfiillen.» Da3 diese Definition

1) F.GonsetH und P.Marti, Planimetrie I (Orell Fubli, Zurich). — H. Frick, Planimetrie (SchultheB,
Zirich).

El Math. V/8
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