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nach außen ableitet Auf diese Weise wollen wir jetzt das System S vom Zustand Zx
m den Zustand Z0 überfuhren Dabei tauschen wir aus

1 Warme mit einer nicht zu S gehörigen Menge idealen Gases,
2 mechanische Energie mit einem heb- und senkbaren, ebenfalls nicht zu 5

gehörigen Gewicht M,
3 mechanische Energie zwischen dem idealen Gas und dem Gewicht M, um das

Gas je nach Bedarf auf eine Temperatur zu bringen welche die gewünschte Art des
Wärmeaustausches mit 5 gestattet

Das System S hat in den beiden Zustanden Zx und Z0 dieselbe Energie Denn es

war vorausgesetzt, daß S das System aller am Vorgang V beteiligten Dinge sei
Nachdem nun S im Zustand Z0 ist, haben auch das ideale Gas und das Gewicht M

zusammen wieder dieselbe Gesamtenergie wie am Anfang Um nun das Gas wieder
in den ursprünglichen Zustand zurückzuführen, fuhren wir ihm von M mechanische
Energie m dem Betrage zu, daß es die ursprüngliche innere Energie hat Jetzt kann es

ohne Änderung der inneren Energie m den ursprünglichen Zustand zurückgeführt
werden, ohne daß irgendwo Veränderungen zurückbleiben Namhch

1 wenn sein Volumen zu klein ist, durch Ausdehnung ohne Änderung der inneren
Energie (Gay-Lussac Vorgang)

2 wenn das Volumen zu groß ist, durch den dazu «reversen» Prozeß, der nach der
Voraussetzung des Satzes (r) existiert

Nach dem 1 Hauptsatz hat jetzt auch M wieder die ursprüngliche Energie, ist also
wieder im ursprünglichen Zustand, da dieser durch die Energie eindeutig bestimmt ist

Damit ist (g) aus (l) abgeleitet und daraus laßt sich, wie schon bemerkt wurde, der
zweite Hauptsatz deduzieren Der Weg, den Planck am angeführten Orte geht, ist
kurz der folgende

1 Definition der Entropie fur ideale Gase (§ 119ff
2 Beweis des zweiten Hauptsatzes fur ideale Gase (§ 124)
3 Beweis des zweiten Hauptsatzes fur beliebige Systeme

Walter Nef Fribourg.

Kleine Mitteilungen
I. Sur un probleme de M Hadamard

Le probleme 50 propose par M Hadamard dans les Elemente der Mathematik (4 18

[1949]) peut etre exprime- plus generalement sous la forme suivante
Soit c une conique quelconque et soient A et B deux points quelconques sur une

droite a Considerons toutes les coniques c' passant par A et B tangentes a c et en
collm6ation centrale avec eile le centre de colhn6ation R 6tant sur la droite a Quel
est le heu du pole P de la droite a par rapport aux coniques c'7

Faisons les notations suivantes D et E intersections de a et de c M pole de DE
par rapport ä c t axe de collm6ation tangent en 7ac et c' K mtersection des droites
t EM BP (en supposant d abord que les points B et E A et D se correspondent dans
la collm^ation) S mtersection de a et de t On remarquera tout de suite que S est le
deuxieme pomt double de la projectivit6 d6fmie sur a par (RAB et (RDE

El Math V/6
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Le point P est l'intersection des droites d MR et d' tangente ä cf en A. II existe
une correspondance (1, 2) entre les rayons d et d': Un rayon d coupe a en R. Par le
point S (univoquement determin6 par R) passent deux tangentes ä c qui coupent MD
en C et C. Les droites AC et AC sont les rayons d' qui correspondent ä <#. Inversement,
un rayon d' par ^f coupe MD en un point K. La seconde tangente men6e de K kc est
Taxe de collin6ation qui coupe AB en S; le correspondant unique R d6termine le seul
rayon MR d. Par consequent, dans l'hypothese oü les points A et B correspondent
aux points D et E dans la collin6ation, le lieu du point P est une cubique. Comme au

Doo

Fig. 1

rayon d MA correspondent les rayons confondus d' MA, le lieu est une conique
passant par A et tangente k AM. Les m&mes raisonnements s'appliquant en considerant
le point B ä la place du point A, cette conique passe aussi par 5etya pour tangente
la droite BM.

D'autre part, en faisant l'hypothese que les points A et B correspondent aux points
E et D, on obtient une nouvelle conique.

Dans le cas particulier oü le rayon d est confondu avec la droite MD, les points P
sont alors les points d'intersection avec cette droite des tangentes menies de B k la
conique donnee (de A dans le second cas). Nous avons donc la Solution de la premiere
partie du probleme de M. Hadamard :

Le lieu cherchi se compose de deux coniques passant par A et B, tangentes en ces points,
le pole de contact itant le point M. La premiere conique passe par les points d'intersection
des tangentes menies de B avec la tangente MD et par les points d'intersection des tangentes
menies de A avec la tangente ME; la seconde par les points oü les tangentes menies de B
coupent la tangente ME et oü les tangentes menies de A coupent la tangente MD (fig. 1).

Pour 6tablir la deuxieme partie du th6oreme, rappelons tout d'abord que, si S, A, B
sont trois points d'une conique, les droites SA et SB forment un groupe harmonique
avec la tangente k la conique en S et la droite joignant S au pole de AB par rapport
ä la conique. On voit donc que

A(T, B, K, P) -1 (1) et T(A,BtP, S)--l (2).



Kleine Mitteilungen 83

Considerons le faisceau bitangent d6termm6 par c et la double polaire de K Les
tangentes men6es de A a ce faisceau forment une Involution dont deux rayons correspon-
dants sont AE et AT, un rayon double 6tant AK Le deuxieme rayon double est donc
AP en vertu de (1) Par consequent, les deux tangentes menees de A k la conique c

forment un groupe harmonique avec les droites AK et AP
Considerons des lors le faisceau bitangent d6termm6 par c et la double polaire de

P La droite AP 6tant un rayon double de l'mvolution des tangentes menies de A k
ce faisceau, et les tangentes menees äcse correspondant, la droite A K est le deuxieme
rayon double, c -ä-d que la tangente en A k la conique du faisceau qui passe par A
est la droite AK Par suite, en vertu de (1), les droites A T et AB sont tangentes k une
conique de ce faisceau D'autre part, les rayons doubles de l'mvolution des tangentes
menees de T k ce faisceau etant TK et TP, les droites TA et TB sont, en vertu de
(2), tangentes k une conique du faisceau Enfin, les droites RP et RA 6tant conjuguees
par rapport ä c, la droite A B touche une conique du faisceau en R Par consequent, la
conique s' du faisceau qui touche A T touche encore TB et touche AB en R

Comme les coniques c et c' jouent le meme röle dans notre figure, il existe aussi une
conique s bitangente ä cr, le pole de contact itant M, tangente aux droites TD et TE et
touchant ED en R Cette conique est donc tnangulairement inscrite ä c (fig 2).

Cas particulier Les points A et B sont les points cycliques On a alors le probleme
propos6 par M Hadamard

Le heu des centres des cercles tangents ä une conique et en affimt6 perspective avec
eile se compose de deux cercles concentriques k la conique donn6e, ces cercles passent
par les points d'mtersection des droites isotropes des foyers avec les asymptotes de la
conique Dans le cas de l'ellipse de demi-axes a et b, ces cercles ont des rayons 6gaux
k (a ± b), dans le cas de l'hyperbole, ä (a ± i b)

Le pomt de contact T d'un de ces cercles de centre P est le foyer d'une parabole s'
d'axe parallele ä MP (M centre de la comque) bitangente ä la conique, le pole de
contact 6tant le pomt P II existe une autre parabole s, d'axe parallele k MP, bitangente

au cercle, le pole de contact 6tant le pomt M, les tangentes menees de T k s sont
paralleles aux asymptotes de la conique

Notons le theoreme correlatif
Soit c une conique quelconque et soient a et b deux droites se coupant en un pomt A

Consid6ront toutes les coniques c' tangentes k c et aux droites a et b et telles que les
deux autres points d'mtersection F et G de c et c' soient ahgn6s sur A L'enveloppe des
polaires p du point A par rapport ä ces coniques c' se compose de deux coniques tangentes

aux droites a et b aux points ou la polaire m de A par rapport a c coupe ces droites
Soient U, U', V, V, W, W les points oü a, b, m coupent c, la premiere conique touche
les droites UW, U'W, VW, VW', la deuxieme les droites UW U'W, VW, VW

Soient encore T le point de contact de c et c' et t la tangente, FG r etant la corde
commune, d et e les tangentes menees de A k c

II existe une conique 5 bitangente k c', la corde de contact etant m, tangente en A
kr et passant par les points d'mtersection avec / des tangentes d et e

II existe une conique s', bitangente k c la corde de contact 6tant p, tangente en
A kr, et passant par les points d'mtersection de / avec les droites a et b

Supposons que c" vane dans le faisceau g (c O Alors s" decrit un faisceau ponctuel
^ß, toutes les coniques 6tant tangentes en A k r et passant par les points d'mtersection
de t et de a et b Les faisceaux g et *ß sont tels que leurs coniques sont deux ä deux
bitangentes sur la droite m Si c" — tr, s"= tr Les faisceaux g et *ß ont une conique
commune, par consequent, deux faisceaux quelconques du reseau (gf, <P) ont une conique
commune, en particulier les faisceaux (c, s) et (c', de), c -ä-d

II existe une conique passant par les points d'mtersection de s et de c et par les

points oü les droites d et e coupent c'
II existe une conique passant par les points d'mtersection de 5' et de cf et par les

points oü les droites a et b coupent c

Les points T et A jouent des röles analogues par rapport aux faisceaux g et ^ Donc
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II existe une conique tangente en A kr, tangente aux droites TF et TG, les points
de contact etant sur m, et passant par les points oü d et e coupent t.

Les resultats correlatifs pour le premier probleme donnent
II existe une conique du faisceau tangentiel ditermmi par s et c qui touche les quatre

tangentes menies de D et de E ä c'
II existe une conique du faisceau tangentiel diteimmi par c' et s' qui touche les quatre

tangentes menies de A et B ä c

Fig 2

II existe une conique tangente en R ä a, passant par les points oü t coupe les tangentes
communes ä c et c', les tangentes en ces points passant par M, et tangente aux droites TD
et TE, et une autre conique tangente en R ä a, passant par les points oü t coupe les tangentes
communes ä c et c', les tangentes en ces points passant par P, et tangentes aux droites TA
et TB

Dans le cas particulier oü les points A et B sont les points cycliques, on obtient les
resultats particuhers suivants

Le faisceau tangentiel ditermmi par s' et c' contient une conique homofocale ä la conique
donnie c

Le point T est le foyer d'une parabole d'axe parallele ä MP, passant par les points oü t
coupe les tangentes paralleles de c et c', les tangentes en ces points passant par P La
directrice passe par P.

Soit cx une conique tangente en T k une droite t Transformons cette conique par
une collmeation centrale (£ de centre R et d'axe / en une conique c2, transform6e elle-
meme en c3 par (E, cf+x — (£ ct

Soient a une droite quelconque par R, Mt son pole par rapport k ct, At et Bt ses

points d'mtersection avec ct.
D'apres les r6sultats pr6c6dents, il existe une conique st^x bitangente ä ct+1, le

pole de contact etant Mt, tangente en R k a et tangente aux droites TAt et TBt.
La conique st etant transformee en sl+x par (E, toutes les coniques st se coupent sur

/ en deux points F et G

En appliquant nos r6sultats duaux k ces coniques, nous trouvons qu'il existe une
conique tt bitangente k st, la corde de contact etant la polaire de T par rapport k st+x,
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tangente en R k a et passant par les points d'mtersection de a avec les tangentes
menees de T k st+1, c -ä-d par A% et Bt Par consequent, tt ct

Fmalement donc, on obtient que
La polaire de Mt par rapport ä st+1 coincide avec la polaire de T par rapport ä sl+2,

c.-ä-d que les points de contact de c%+1 et sl+x et les points de contact de st+x avec les
droites TAl+1 et TBl+1 sont sur une meme droite

En considerant la collm6ation £-1 inverse de (£, on voit d'autre part que
II existe une conique s'f bitangente a ct le pole de contact etant Mt+X, tangente en

R k a et tangente aux droites TAt+1 et TBl+l Toutes les coniques s[ se coupent sur
t La polaire de Mt par rapport k s' x coincide avec la polaire de T par rapport ä s£_2

J -P Sydler, Zürich

II. Sur une iquation fonctionnelle

M E Trost1) s'est occupe de l'equation

ff(x + t) sm t dt 0 (1)

qui, oc etant une constante, doit etre verihee pour chaque valeur de x II a trouve des
Solutions de forme

f(t) at-\ bt2 f(t) e*t, f(t) sm a t,

auxquelles correspondent des valeurs particuheres de la constante a, et il a pose2) le
probleme de la recherche de toutes les Solutions de (1)

Je n'ai pas reussi k trouver toutes les Solutions de (1), mais je vais demontrer qu'ä
chaque a > 0 correspond une infinite de Solutions lmeairement mdependantes A cet
effet, soit X un nombre complexe (X 4= 0) La fonction c eXi (c 4= 0) sera une Solution
de (1) seulement si

a

/ e*1 smtdt 0,

c'est-ä-dire si
X sin a cosh X a — cos a sinh X a

i-TIi °- (2)

Les valeurs X ± i sont madmissibles, parce que

a

[e±ltbint dt ^ 0

a
a

equivaut ä f sin2t dt 0, ce qui implique a ¦= 0 Donc (2) equivaut ä
a

cp(X) — X sm a cosh X ol — cos a sinhX ol 0 (3)

Soit a fixe, en tant que fonction de X (p(X) est une fonction entiere de type moyen de
l'ordre 1 Une teile fonction possede une infinite de zeros, ä moms qu'elle ne soit de la
forme P(X) eak ou P(X) est un polynome et a une constante Mais cp(X) est une
fonction impaire non constante, ce qui est impossible pour une fonction P(X) ea* Donc
pour tout ailya une infinite de valeurs de X rendant cp(X) =0 XJn tel X p -{-1 v donne

x) E Trost, Eine kennzeichnende Eigenschaft des Kreises, El Math 2, 76-80 (1947)
a) E Trost, Intermediaire Rech math 4, 99 (1948)
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naissance ä deux Solutions reelles lineairement independantes de (1), k savoir

e^tcosvt, e^tsinvt,

les parties reelles et imaginaires de ext.

De plus, soient Xx, X2, les zeros de cp(X) correspondants au meme a, et prenons
des constantes ax, a2, telles que la serie

00

g(t) Z an e*n*

n-1

converge uniformement dans tout domaine borne du plan complexe contenant un
intervalle reel. (Un tel choix des an est, bien entendu, toujours possible, et d'une infinite
non denombrable de facons.) Les parties reelles et imaginaires de g(t) fournissent des
nouvelles Solutions de (1).

II sera peut-etre interessant de noter que dans le domaine des fonctions analytiques
l'equation (1) equivaut au Systeme infini d'equations

oc

[fW(t)sintdt 0. (Ä l,2, (5)
-oc

En effet, soit f(x) une Solution analytique de (1). En derivant (1) k fois, on obtient

a

/' t{k)(x-\-t) sin t dt 0,

-a
d'oü en faisant x — 0 on tire (5). Reciproquement, une Solution f(x) de (5), analytique
pour tout x reel, est une Solution de (1). En effet, soit f(x) une teile fonction; donc il
existe un nombre positif M tel que

f W I

g M. (-ol £ t< ol; k 0, 1, 2, (6)

Les inegalites (6) entrainent que le developpement

°° Je

^ + <)=2,Tr^)W> (-«=S^«) (7)
fc 0

converge uniformement (en t) si |x\ < 1/M. Nous pouvons donc substituer (7) dans (1)
et integrer terme ä terme; en egard ä (5), on obtient bien (1) pour \x\< 1/M; mais
le membre gauche de (1) est une fonction analytique de x et, etant nul pour | x \ < 1/M,
il Test aussi pour tout x.

En faisant usage de (5), on demontre facilement que toute Solution polynomiale de (1)
est quadratique au plus. Toute polynomiale quadratique est, comme l'a montre
M. Trost, une Solution de (1), pourvu que a soit une racine de l'equation tga a.

Ralph P. Boas, Jr. (Providence, R. L, U.S.A.)

III. Studie zu einer Funktionalgleichung

Die vorliegende kleine Note bringt einige Bemerkungen über die allgemeine Lösung
0(x) der für alle x > 0 gültig erklärten Funktionalgleichung

0(olx) -ol0(x) =F(#), (1)
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wobei ol ••¥ 1 eine feste positive Konstante (Parameter der Funktionalgleichung) und
F(x) eine vorgegebene, für x^O definierte Funktion bezeichnet.

Es ist keine wesentliche Beschränkung der Allgemeinheit, die Bedingung

0 < ol < 1 (2)

zu stellen. In der Tat: Ist nämlich zunächst oc > 1, so transformiert die Substitution
y ol x, ß 1/ol die Funktionalgleichung (1) in

9{ßy)-ß9{y) -F{ßy), (3)

wobei der Parameter ß nunmehr die Bedingung (2) erfüllt.
Zunächst wird eine Darstellung einer partikulären Lösung &0(x) der inhomogenen

Gleichung (1) angegeben. Diese ist an eine Voraussetzung über das infinitesimale
Verhalten der Funktion F(x) in der rechtsseitigen Umgebung von x 0 gebunden, eine
Voraussetzung, welche für die Funktionen einer sehr umfassenden Klasse erfüllt ist, so
z. B. für diejenigen, welche in einer Umgebung von x 0 zweimal stetig differenzierbar
sind. Die fragliche Voraussetzung lautet wie folgt: Die Funktion F(x) besitzt in x 0

eine rechtsseitige Ableitung F'(0), und es gibt ein r > 1, so daß für x -> -f 0 die Beziehung

F(x) F(0) -f F'(0) x + 0(xr) (4)

gilt. Eine partikuläre Lösung der Funktionalgleichung (1) ist sodann durch

_,x F(0) F'(0) x ^ F(olv x) - F(0) \®M -T-1-^ + i x log x - — > — '- — - F'(0 (5ÜV ' 1 — oc aloga a
v o

^ '

gegeben. Die in dieser Darstellung vorgeschriebene Reihe ist offenbar konvergent, da
wegen (4) für v -> oo

gilt, woraus sich mit (2) die Konvergenz ergibt. Die Verifikation, daß durch Ansatz (5)
tatsächlich eine Lösung von (1) gegeben ist, gestaltet sich sehr einfach, und sie darf dem
Leser überlassen werden.

Nunmehr kann die allgemeine Lösung von (1) in der Form

0(X) 0O(X) 4- (p(x) (6)

angesetzt werden, wobei cp(x) die allgemeine Lösung der homogenen Funktionalgleichung

cp(oL x) — ol cp(x) 0 (7)

bezeichnet. Diese ist indessen durch

z x
LlogocJ I LlogaJ)

Cf(x) =- OL CO\X OL I (8)

gegeben, wobei [] das Gaußsche Klammersymbol bezeichnet und m(d) eine im Intervall
a < & 5^ 1 definierte willkürliche Funktion bedeutet.

Das Argument
riog*i

q LlogaJ
17 X OL

fällt in das oben festgelegte Definitionsintervall der Funktion o>(#). Um dies einzusehen,

setzt man
/log*\
\loga /
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so daß sich
&= ol* (0 ^ A < 1)

ergibt. Hieraus folgt ol < # fg 1.
Daß durch (8) eine Lösung der homogenen Funktionalgleichung (7) gegeben ist,

kann unmittelbar abgelesen werden. Andererseits kann jede Lösung in der Form (8)
dargestellt werden. In der Tat: Die Funktion cp(x) ist offenbar vollständig bestimmt, wenn
ihre Funktionswerte im Intervall oc < x ^ 1 vorgegeben sind. Ausgehend von einer
vorgeschriebenen Lösung cp(x) setze man im Intervall oc < # ^ 1 cofö) cp(&). Mit
der auf diese Weise ermittelten Funktion co(#) hat man in (8) zunächst im Intervall
ol < x 5g 1 Übereinstimmung erzielt, da dort ja

mh'
gilt. Wegen der geltenden Funktionalrelation (7) folgt die Übereinstimmung für alle
x > 0.

Eine weitere Bemerkung bezieht sich auf die Stetigkeit der Lösung.
Es ist leicht zu erkennen, daß cp(x) dann und nur dann stetig ist, wenn co(&) im

Intervall oc <£ & ^ 1 stetig (in den Endpunkten einseitig stetig) ist und wenn weiter die
Relation co(ol) ol o>(1) besteht.

Endlich sei bemerkt, daß sich für cofö) C & die triviale Lösung

cp(x) Cx (9)

ergibt1). H.Hadwiger, Bern.

IV. Zur Herleitung der Additionstheoreme der goniometrischen Funktionen

Es gibt bekanntlich wenige Möglichkeiten, die Additionstheoreme der goniometrischen

Funktionen in voller Allgemeinheit herzuleiten. Daher dürfte folgender Weg,
der an den «historisch ältesten Beweis2)» anknüpft, nicht des Interesses ermangeln.
Jener Beweis stützt sich auf den Ptolemäischen Lehrsatz:

In jedem konvexen Sehnenviereck ist das Produkt der Diagonalenmaßzahlen gleich
der Summe der Produkte der Maßzahlen seiner Gegenseiten.

Unser Weg führt den Schüler ganz «naturgemäß» auf die Additionstheoreme.
Gespannt wird der Schüler auf das Kommende etwa durch folgende Vorbereitung.

Sei a irgendein analytischer Winkel und P (cos ol, sin oc) der Einheitspunkt seines
Endschenkels3). Dann ist bekanntlich nach Pythagoras (rechtwinkliges Dreieck mit
den Seitenmaßzahlen

|#|=|cosa|, |y| |sinoc|,

|sinoc|2 + |cosoc|2 1,

also sin2oc + cos2oc 1, (1)

eine Formel, die allgemeine Gültigkeit besitzt. Wegen sina cos (90° — a) und
cos a sin (90° - oc) und sin 90° 1, folgt aus (1):

sin oc cos (90° - oc) -f cos a sin (90° - oc) sin 90°.

x) A.C. Oeconomon (Sur une Equation fonctionnelle, Actes Congr. Interbalkan. Math., Athenes, 1934,
S. 215—218) hat u. a. gezeigt, daß die triviale Lösung die einzige nichtkonkave Lösung ist.

2) Siehe G. Hessenberg, Ebene und sphärische Trigonometrie (Sammlung Göschen, 4. Auflage, 1934),
S.66.

8) Siehe meinen Aufsatz: Herleitung der Quadrantenrelationen in der Goniometrie, diese Zeitschrift,
Heft 3 (1950).



Kleine Mitteilungen 89

Und weil 90° oc + (90°— oc), ist es naheliegend, zu fragen, ob ganz allgemein

sm ol cos ß -J- cos ol sm ß sm (oc + ß) (2)

ist Eine analoge Frage entsteht bei der Betrachtung der Identität

cos ol sm oc — sm ol cos ol 0,

wenn man diese so anschreibt

cos ol cos (90° - oc) - sm ol sm (90° - oc) cos 90°,

namhch, ob ganz allgemein gilt
cos ol cos ß — sin ol smß cos (oc -1- ß) (3)

Zunächst sieht der Schuler em, daß, wenn man z B (2) als allgemeingültig annimmt,
(3) aus (2) unmittelbar folgt, denn

cos (oc + ß) sm [(90° - oc) + (- ß)] sm (90° - oc) cos (- ß) + sm (90°

cos ol cos ß — sm ol sm ß

oc)sin(-/?)

aber auch umgekehrt Ferner ergaben sich aus der Annahme der Allgememgultigkeit
von (2) die Entwicklungen (sogenannte «Subtraktionstheoreme»)

und

sm (oc — ß) sm fa + (— ß)] sm a cos ß — cos a sm ß

cos (a — ß) cos [oc + (— ß)] cos oc cos ß + sm a sm ß

(4)

(5)

Der Schuler gewinnt daher die Überzeugung, daß es genügt, die allgemeine Gültigkeit
einer der vier Entwicklungen (2), (3), (4), (5) nachzuweisen, um die übrigen sicherzustellen

Ich beweise nun die Allgememgultigkeit des Subtraktionstheorems (4)
Sei P der Einheitspunkt des Endschenkels des analytischen Winkels ö (ol— ß)

(gemeinsamer Endschenkel von a und /?') und seien P' und P" die Normalproiektionen
von P auf die Anfangsschenkel von a und ß Dann liegen die vier Punkte P, P', P" und
O (gemeinsamer Scheitel von a und ß) auf einer Kreislinie mit dem Durchmesser 1

Denkt man sich auch noch die Verbindungsstrecke P'P" eingezeichnet, so kann man
die vier Punkte O, P, P', P", abgesehen von Grenzfallen, fur jede Winkelwahl in einer
passenden Reihenfolge als Ecken eines konvexen Sehnenvierecks betrachten und, unter
Beachtung, daß die Maßzahl einer Kreissehne gleich dem Produkt aus der Maßzahl des
Kreisdurchmessers und dem Sinus des über der Sehne stehenden Peripheriewmkels ist,
den Ptolemaischen Lehrsatz auf dieses Sehnenviereck anwenden, woraus das in Rede
stehende Subtraktionstheorem sofort folgt

Einige Zeichnungen mögen kommentarlos das Gesagte illustrieren Es ist fur den
Schuler immer em Vergnügen, die gleiche Methode allen denkbaren Fallen dienstbar zu
machen

Maßzahl von

h«b2

d£L

r

' PP' smoc
PP" sm/?
OP' ist cosa
OP" cos/?
P'P" sm (a --ß)

1 • sm (a — ß) + cos a sm/? sm a cos ß,

sm (a — ß) sm a cos ß — cosa sm/?.

Fig 1
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Maßzahl von

PP'
PP"
OP'
OP"
P'P"

ist

I sma I =-sma
sin/?
cosa
cos ß
sm (a - 180° - ß) - sm (a - ß)

Fig 2

1 • [— sin (a — /?)] — sma cosß -f- cosa sin/?,

sm (a — ß) sm a cos /? — cos a sm /?.

4-4

Maßzahl von

PP'
PP"
OP'
OP"
P'P"

} ist

sma
I sm/?| — sm/?
j cos a | — cos a
j cos ß 1| — cos /?

sin(360°-a + j8) ¦ sm(a — /?)

Fig 3

l'[— sm(a — /?)] sma (— cos/3) + (—cosa) (—sm/?),

sm (a — /?) sm a cos /? — cos a sin /?.

Viktor Krakowski, Zürich.

Aufgaben
Aufgabe 67. Durch einen veränderlichen Punkt P einer Parabel mit dem Scheitel S

ziehe man den Durchmesser, der die Scheiteltangente m A schneidet Man bestimme
den geometrischen Ort des Fußpunktes des von A aus SP gefällten Lotes

E. Rothmund (Zürich)

7.Losung: Die Verlängerung des Lotes aus A auf SP schneide die Parabelachse in
Q. Dann ist wegen SQ:SA SA:AP SQ SA2JAP konstant. Der gesuchte
geometrische Ort ist also ein Kreis über SQ als Durchmesser Da die Konstante gleich 2 p
ist (p Parameter der Parabel), so ist der Kreis der Scheitelkrummungskreis

F Goldner (London).

2. Losung. Die Parabel mit dem Scheitel 5 und der Schelteltangente s darf aufgefaßt
werden als zentralkollmeares Bild eines Kreises R, welcher 5 in S berührt, mit 5 als
Kollmeationszentrum, s als Kolhneationsachse und der dazu parallelen Kreistangente t
in T als Verschwmdungslmie. Die Symmetriegerade durch die Berührungspunkte S
und T wird dann Hauptachse der Bildparabel. Der Geraden TKA durch den
beliebigen Kreispunkt K entspricht die zu ST parallele Bildgerade PA durch den
zugeordneten Parabelpunkt P, und der Punkt K hat offenbar gerade die in der Aufgabe
geforderte Fußpunktseigenschaft. Der gesuchte geometrische Ort ist somit der Kreis $t
Dieser Kreis ergibt sich auch als Grenzlage des Kreises, der 5 in S berührt und durch
P geht, wenn sich P unbegrenzt S nähert. Er ist also der Krummungskreis in S

P. Glur (Bern)

Weitere Losungen sandten A Bager (Hjerring, Danemark), I.Hesselberg (Noest-
ved, Danemark), S. Joss (Bern), L. Kiefer (Luxemburg), A Schwarz (Seuzach) und
A. Stoll (Zürich).
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