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nach aullen ableitet. Auf diese Weise wollen wir jetzt das System S vom Zustand Z,
in den Zustand Z, iiberfiihren. Dabei tauschen wir aus:

1. Warme mit einer nicht zu S gehérigen Menge idealen Gases;

2. mechanische Energie mit einem heb- und senkbaren, ebenfalls nicht zu S ge-
horigen Gewicht M ;

3. mechanische Energie zwischen dem idealen Gas und dem Gewicht M, um das
Gas je nach Bedarf auf eine Temperatur zu bringen, welche die gewiinschte Art des
Wirmeaustausches mit S gestattet.

Das System S hat in den beiden Zustinden Z; und Z, dieselbe Energie. Denn es
war vorausgesetzt, daB S das System aller am Vorgang V beteiligten Dinge sei.

Nachdem nun S im Zustand Z, ist, haben auch das ideale Gas und das Gewicht M
zusammen wieder dieselbe Gesamtenergie wie am Anfang. Um nun das Gas wieder
in den urspriinglichen Zustand zuriickzufiihren, fithren wir ihm von M mechanische
Energie in dem Betrage zu, daB es die urspriingliche innere Energie hat. Jetzt kann es
ohne Anderung der inneren Energie in den urspriinglichen Zustand zuriickgefiihrt
werden, ohne daBl irgendwo Verdnderungen zuriickbleiben. Namlich:

1. wenn sein Volumen zu klein ist, durch Ausdehnung ohne Anderung der inneren
Energie (Gay-Lussac-Vorgang);

2. wenn das Volumen zu groB ist, durch den dazu «reversen» ProzeB, der nach der
Voraussetzung des Satzes (r) existiert.

Nach dem 1. Hat ptsatz hat jetzt auch M wieder die urspriingliche Energie, ist also
wieder im urspriinglichen Zustand, da dieser durch die Energie eindeutig bestimmt ist.

Damit ist (g) aus (1) abgeleitet und daraus 148t sich, wie schon bemerkt wurde, der
zweite Hauptsatz deduzieren. Der Weg, den PLANCK am angefiihrten Orte geht, ist
kurz der folgende:

1. Definition der Entropie fiir ideale Gase (§ 119ff.).

2. Beweis des zweiten Hauptsatzes fiir ideale Gase (§ 124).

3. Beweis des zweiten Hauptsatzes fiir beliebige Systeme.

WALTER NEF, Fribourg.

Kleine Mitteilungen

I. Sur un probléme de M.Hadamard

Le probléme 50 proposé par M. HapDAMARD dans les Elemente dev Mathematik (4, 18
[1949]) peut étre exprimé plus généralement sous la forme suivante:

Soit ¢ une conique quelconque et soient 4 et B deux points quelconques sur une
droite a. Considérons toutes les coniques ¢’ passant par 4 et B, tangentes a ¢ et en
collinéation centrale avec elle, le centre de collinéation I¢ étant sur la droite a. Quel
est le lieu du podle P de la droite a par rapport aux coniques ¢’ ?

Faisons les notations suivantes: D et E: intersections de a et de ¢; M: pole de DE
par rapport 4 ¢; ¢: axe de collinéation tangent en 7 a c et ¢’; K: intersection des droites
t, EM, BP (en supposant d’abord que les points B et E, 4 et D se correspondent dans
la collinéation); S: intersection de a et de £. On remarquera tout de suite que S est le
deuxié¢me point double de la projectivité définie sur a par (RAB...) et (RDE...).

EL Math. V/6
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Le point P est l'intersection des droites d = M R et d’ = tangente a ¢’ en 4. Il existe
une correspondance (1, 2) entre les rayons 4 et d’: Un rayon d coupe a en R. Par le
point S (univoquement déterminé par R) passent deux tangentes a ¢ qui coupent M D
en C et C’. Les droites AC et AC’ sont les rayons d’ qui correspondent a d. Inversement,
un rayon d’ par A4 coupe MD en un point K. La seconde tangente menée de K ac est
I’axe de collinéation qui coupe 4B en S; le correspondant unique R détermine le seul
rayon MR =d. Par conséquent, dans I’hypothése ol les points 4 et B correspondent
aux points D et E dans la collinéation, le lieu du point P est une cubique. Comme au

- — S
// -
- a
ID~
[~
P
Fig.1

rayon d = M A correspondent les rayons confondus d’ = M A, le lieu est une conique
passant par 4 et tangente a A M. Les mémes raisonnements s’appliquant en considérant
le point B a la place du point 4, cette conique passe aussi par B et y a pour tangente
la droite BM.

D’autre part, en faisant I’hypothése que les points 4 et B correspondent aux points
E et D, on obtient une nouvelle conique.

Dans le cas particulier ou le rayon d est confondu avec la droite M D, les points P
sont alors les points d’intersection avec cette droite des tangentes menées de B a la
conique donnée (de 4 dans le second cas). Nous avons donc la solution de la premiére
partie du probléeme de M. HADAMARD:

Le lieu chevché se compose de deux coniques passant par A et B, tangentes en ces points,
le pble de contact étant le point M. La premiéve conique passe par les points d’intersection
des tangentes menées de B avec la tangente M D et pay les points d’intersection des tangentes
menées de A avec la tangente ME,; la seconde par les points o les tangentes menées de B
coupent la tangente ME et on les tangentes menées de A coupent la tangente MD (fig.1).

Pour établir la deuxiéme partie du théoréme, rappelons tout d’abord que, si S, 4, B
sont trois points d’une conique, les droites S4 et SB forment un groupe harmonique
avec la tangente a la conique en S et la droite joignant S au pdle de A B par rapport
a la conique. On voit donc que

A(T,B,K,P)=—1 (1) ot T(4,B,P,S)=—1 (2)..
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Considérons le faisceau bitangent déterminé par ¢ et la double polaire de K. Les tan-
gentes menées de 4 a ce faisceau forment une involution dont deux rayons correspon-
dants sont AE et AT, un rayon double étant 4 K. Le deuxiéme rayon double est donc
AP en vertu de (1). Par conséquent, les deux tangentes menées de 4 a la conique ¢
forment un groupe harmonique avec les droites 4 K et A P.

Considérons des lors le faisceau bitangent déterminé par ¢ et la double polaire de
P. La droite 4 P étant un rayon double de 'involution des tangentes menées de 4 a
ce faisceau, et les tangentes menées a ¢ se correspondant, la droite 4 K est le deuxiéme
rayon double, c.-a-d. que la tangente en A a la conique du faisceau qui passe par 4
est la droite 4 K. Par suite, en vertu de (1), les droites AT et A B sont tangentes a une
conique de ce faisceau. D’autre part, les rayons doubles de I'involution des tangentes
menées de T & ce faisceau étant TK et TP, les droites T4 et TB sont, en vertu de
(2), tangentes a une conique du faisceau. Enfin, les droites RP et RA étant conjuguées
par rapport a ¢, la droite 4 B touche une conique du faisceau en R. Par conséquent, la
conique s’ du faisceau qui touche AT touche encorve T B et touche AB en R.

Comme les coniques ¢ et ¢’ jouent le méme role dans notre figure, il existe aussi une
conique s bitangente a c’, le pdle de contact étant M, tangente aux dvoites TD et TE et
touchant ED en R. Cette conique est donc triangulairement inscrite a ¢ (fig. 2).

Cas particulier: Les points 4 et B sont les points cycliques. On a alors le probléme
proposé par M. HADAMARD.

Le lieu des centres des cercles tangents & une conique et en affinité perspective avec
elle se compose de deux cercles concentriques a la conique donnée; ces cercles passent
par les points d’intersection des droites isotropes des foyers avec les asymptotes de la
conique. Dans le cas de l'ellipse de demi-axes a et b, ces cercles ont des rayons égaux
a (a 4+ b), dans le cas de I’hyperbole, a (a + 7 b).

Le point de contact T d’un de ces cercles de centre P est le foyer d’une parabole s’
d’axe parallele & M P (M = centre de la conique) bitangente a la conique, le pole de
contact étant le point P. Il existe une autre parabole s, d’axe paralléle a M P, bitan-
gente au cercle, le pole de contact étant le point M ; les tangentes menées de T a s sont
paralleles aux asymptotes de la conique.

Notons le théoréme corrélatif:

Soit ¢ une conique quelconque et soient a et b deux droites se coupant en un point 4.
Considéront toutes les coniques ¢’ tangentes a ¢ et aux droites a et b et telles que les
deux autres points d’intersection F et G de ¢ et ¢’ soient alignés sur 4. L’enveloppe des
polaires p du point 4 par rapport a ces coniques ¢’ se compose de deux coniques tangen-
tes aux droites a et b aux points ou la polaire m de 4 par rapport a ¢ coupe ces droites.
Soient U, U’, V, V’, W, W’ les points ou a, b, m coupent ¢; la premiére conique touche
les droites UW, U’'W, VW, V'W’, la deuxiéme les droites UW’, U'W’, VW, V'W.

Soient encore T le point de contact de ¢ et ¢’ et ¢ la tangente, FG = » étant la corde
commune, d et ¢ les tangentes menées de 4 a c.

Il existe une conique s bitangente a ¢/, la corde de contact étant m, tangente en 4
a r et passant par les points d’intersection avec ¢ des tangentes 4 et e.

I1 existe une conique s’, bitangente a ¢, la corde de contact étant p, tangente en
A a7, et passant par les points d’intersection de ¢ avec les droites a et b.

Supposons que ¢” varie dans le faisceau & = (c ¢”). Alors s” décrit un faisceau ponctuel
B, toutes les coniques étant tangentes en A a v et passant par les points d’intersection
de ¢ et de a et b. Les faisceaux § et P sont tels que leurs coniques sont deux a deux
bitangentes sur la droite m. Si c¢”=t¢v, s”=tr. Les faisceaux § et P ont une conique
commune; par conséquent, deux faisceaux quelconques du réseau (¥, P) ont une conique
commune, en particulier les faisceaux (c, s) et (¢/, d¢), c.-a-d.:

Il existe une conique passant par les points d’intersection de s et de ¢ et par les
points ot les droites d et ¢ coupent ¢’.

Il existe une conique passant par les points d’intersection de s’ et de ¢’ et par les
points oul les droites a et b coupent c.

Les points T et 4 jouent des roles analogues par rapport aux faisceaux § et . Donc:
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I1 existe une conique tangente en 4 3 7, tangente aux droites TF et TG, les points
de contact étant sur m, et passant par les points ol 4 et e coupent ¢.

Les résultats corrélatifs pour le premier probléme donnent:

Il existe une conique du faisceau tangentiel déterminé par s et ¢ qui touche les quatre
tangentes menées de D et de E a c’.

Il existe une conique du faisceau tangentiel déterminé pav ¢’ et s’ qui touche les quatre
tangentes menées de A et B a c.

k /]
A‘ [ JES
XX <

& o ‘

be
b P
s
Fig.2

Il existe une conique tangente en R a a, passant par les points o t coupe les tangentes
communes a c et ¢’, les tangentes en ces points passant pav M, et tangente aux drvoites 1D
et TE, et une autre conique tangente en R a a, passant par les points on t coupe les tangentes
communes a c et ¢’, les tangentes en ces points passant pav P, et tangentes aux dvoites T A
et TB.

Dans le cas particulier ot les points 4 et B sont les points cycliques, on obtient les
résultats particuliers suivants:

Le faisceau tangentiel détevminé pav s’ et ¢’ contient une conique homofocale a la conique
donnée c.

Le point T est le foyer d’une pavabole d’axe pavalléle a M P, passant par les points ou ¢
coupe les tangentes paralléles de ¢ et c’, les tangentes en ces points passant par P. La
directrice passe par P.

Soit ¢; une conique tangente en T & une droite ¢, Transformons cette conique par
une collinéation centrale € de centre R et d’axe ¢ en une conique ¢,, transformée elle-
mémeencgpar €, ...:c, ., =Cc,.

Soient a une droite quelconque par R, M, son pdle par rapport a ¢;, 4, et B, ses
points d’intersection avec ¢;.

D’aprés les résultats précédents, il existe une conique s, , bitangente & ¢, ,, le
pole de contact étant M,, tangente en R a a et tangente aux droites T4, et TB,.

La conique s; étant transformée en s,,, par @, toutes les coniques s; se coupent sur
¢t en deux points F et G.

En appliquant nos résultats duaux a ces coniques, nous trouvons qu'il existe une

conique f; bitangente a s,, la corde de contact étant la polaire de T par rapport a s;,,,
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tangente en R a a et passant par les points d’intersection de a avec les tangentes
menées de T'a s, ,, c.-a-d. par 4, et B,. Par conséquent, ;= c;.

Finalement donc, on obtient que:

La polaire de M, par rapport a s, coincide avec la polaire de T par rapport a s
c.-a-d. que les points de contact de ¢, ets;, et les points de contact de s;
droites 74, , et TB, , sont sur une méme droite.

En considérant la collinéation €—1 inverse de €, on voit d’autre part que:

Il existe une conique s; bitangente a ¢;, le pole de contact étant M, ,, tangente en
R & a et tangente aux droites T4, , et TB, . Toutes les coniques s; se coupent sur
t. La polaire de M, par rapport a s;_, coincide avec la polaire de T par rapport a s} ,.

J.-P. SYDLER, Zurich.

i+2?

41 avec les

I1. Sur une équation fonctionnelle

M. E. TrosT?) s’est occupé de I'équation

[Hx+ g sintdt=0 (1)

= QL

qui, « étant une constante, doit étre vérifiée pour chaque valeur de ». Il a trouvé des
solutions de forme

f&y=at+bt?  f(t)=ekt, f(t)=sinat,

auxquelles correspondent des valeurs particuliéres de la constante «, et il a posé?) le
probléme de la recherche de toutes les solutions de (1).

Je n’ai pas réussi a trouver toutes les solutions de (1), mais je vais démontrer qu’a
chaque a > 0 correspond une infinité de solutions linéairement indépendantes. A cet
effet, soit A un nombre complexe (A4 0). La fonction cet (¢ + 0) sera une solution
de (1) seulement si

o
/e“ sintdt=0,
- &

c’est-a-dire si
Asina coshd o« — cosa sinh A «
1 - A2

= 0. (2)

Les valeurs 4 = + ¢ sont inadmissibles, parce que

o
/ei”sintdt:

- o

o
équivaut a fsin”t dt = 0, ce qui implique o = 0. Donc (2) équivaut a
— o

®(A) =Asina coshd a — cosa sinh 4 a = 0. (3)

Soit « fixé; en tant que fonction de A, ¢(4) est une fonction entiére de type moyen de
Pordre 1. Une telle fonction posséde une infinité de zéros, & moins qu’elle ne soit de la
forme P(1) e22 ot P(A) est un polynome et a une constante. Mais ¢(d) est une
fonction impaire non constante, ce qui est impossible pour une fonction P(A) e44. Donc
pour tout « il y a une infinité de valeurs de A rendant ¢(4) = 0. Un tel A = u + 7 » donne

1) E.Trosr, Eine kennzeichnende Eigenschaft des Kreises, El. Math. 2, 76-80 (1947).
2) E.Trost, Intermédiaire Rech. math. 4, 99 (1948).
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naissance a deux solutions réelles linéairement indépendantes de (1), & savoir

ettcosvit, eMtsinvt,

les parties réelles et imaginaires de e??.

De plus, soient 4, 4,, ... les zéros de ¢(4) correspondants au méme «, et prenons
des constantes a,, a,, ... telles que la série
o
g(t) = 2 a, e*nt
n-=1

converge uniformément dans tout domaine borné du plan complexe contenant un
intervalle réel. (Un tel choix des a,, est, bien entendu, toujours possible, et d’une infinité
non dénombrable de fagons.) Les parties réelles et imaginaires de g(f) fournissent des
nouvelles solutions de (1).

11 sera peut-étre intéressant de noter que dans le domaine des fonctions analytiques
I’équation (1) équivaut au systéme infini d’équations

[ 1%) sin¢ at = o. (k=1,2,...) (5

-0
En effet, soit f(x) une solution analytique de (1). En dérivant (1) % fois, on obtient

o
fﬂ"’(x 4-¢) sin¢ dt =0,

—&

d’ol en faisant x = 0 on tire (5). Réciproquement, une solution f(x) de (5), analytique
pour tout x réel, est une solution de (1). En effet, soit f(x) une telle fonction; donc il
existe un nombre positif M tel que

'I,(glﬁl‘gM. Ca<t<oa k=012 ...) (6

Les inégalités (6) entrainent que le développement
APl
He+t) =3+ 100, Cast=a) (7)
k=0 :

converge uniformément (en ¢) si x| < 1/M. Nous pouvons donc substituer (7) dans (1)
et intégrer terme 4 terme; en égard 4 (5), on obtient bien (1) pour |x|< 1/M; mais
le membre gauche de (1) est une fonction analytique de x et, étant nul pour |x¥|< 1/M,
il I’est aussi pour tout x.

En faisant usage de (5), on démontre facilement que toute solution polynomiale de (1)
est quadratique au plus. Toute polynomiale quadratique est, comme l’a montré
M. TrosT, une solution de (1), pourvu que « soit une racine de 1’équation tga = a.

RarpH P. Boas, Jr. (Providence, R. 1., U.S.A.)

I11. Studie zu einer Funktionalgleichung

Die vorliegende kleine Note bringt einige Bemerkungen iiber die allgemeine L&sung
@(x) der fiir alle ¥ > 0 giiltig erklirten Funktionalgleichung

®(a #) — a D(#) = F(z), . (1)
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wobei o #+ 1 eine feste positive Konstante (Parameter der Funktionalgleichung) und
F(x) eine vorgegebene, fiir x = 0 definierte Funktion bezeichnet.
Es ist keine wesentliche Beschrinkung der Allgemeinheit, die Bedingung

0<a<1 (2)
L]

zu stellen. In der Tat: Ist ndmlich zunichst o« > 1, so transformiert die Substitution
y = a %, § = 1/a die Funktionalgleichung (1) in

D(py) - BD(y) = —F(By), (3)

wobei der Parameter § nunmehr die Bedingung (2) erfiillt.

Zunichst wird eine Darstellung einer partikuldren Losung ®,(x) der inhomogenen
Gleichung (1) angegeben. Diese ist an eine Voraussetzung iiber das infinitesimale Ver-
halten der Funktion F(x) in der rechtsseitigen Umgebung von » = 0 gebunden, eine Vor-
aussetzung, welche fiir die Funktionen einer sehr umfassenden Klasse erfiillt ist, so
z. B. fiir diejenigen, welche in einer Umgebung von x = 0 zweimal stetig differenzierbar
sind. Die fragliche Voraussetzung lautet wie folgt: Die Funktion F(x) besitzt in ¥ =0
eine rechtsseitige Ableitung F7(0), und es gibt ein 7 > 1, so daB fiir » > + 0 die Bezie-
hun

i F(#) = F(0) + F'(0) % + 0(#7) 4)

gilt. Eine partikulire Losung der Funktionalgleichung (1) ist sodann durch

() = FO_ | FO xlogx_gz{w_p(o)} (s)

— v
l1—a o loga S~ o’ ¥

gegeben. Die in dieser Darstellung vorgeschriebene Reihe ist offenbar konvergent, da
wegen (4) fiir y > oo ,
(Fe2) =T _ ) - ofotr-119
o X
gilt, woraus sich mit (2) die Konvergenz ergibt. Die Verifikation, daB durch Ansatz (5)

tatsichlich eine Losung von (1) gegeben ist, gestaltet sich sehr einfach, und sie darf dem
Leser iiberlassen werden.

Nunmehr kann die allgemeine Lsung von (1) in der Form

D(x) = Py(%) + @(%) (6)

angesetzt werden, wobei @(x) die allgemeine Lésung der homogenen Funktionalglei-
chung

P %) — 2 @(x) = 0 (7)

bezeichnet. Diese ist indessen durch

BRE _[logx
Q)(x) — o loga] w(:r o« [loga ]) (8)

gegeben, wobei [] das GauBsche Klammersymbol bezeichnet und w({#) eine im Intervall
a < ? < 1 definierte willkiirliche Funktion bedeutet.
Das Argument
log x h
- [loga ]

fillt in das oben festgelegte Definitionsintervall der Funktion o(#). Um dies einzu-
sehen, setzt man
( log )
log &
==

d=xa
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so daB sich
¢ = ad 0 4<1)

ergibt. Hieraus folgt o« < & < 1.

DaB durch (8) eine Losung der homogenen Funktionalgleichung (7) gegeben ist,
kann unmittelbar abgelesen werden. Andererseits kann jede Losung in der Form (8) dar-
gestellt werden. In der Tat: Die Funktion ¢(#) ist offenbar vollstindig bestimmt, wenn
ihre Funktionswerte im Intervall « < ¥ < 1 vorgegeben sind. Ausgehend von einer
vorgeschriebenen Losung @(#) setze man im Intervall « <& <1 w(d) = (). Mit
der auf diese Weise ermittelten Funktion o(#) hat man in (8) zunichst im Intervall
« < ¥ < 1 Ubereinstimmung erzielt, da dort ja

[ log x] — 0
loga
gilt. Wegen dér geltenden Funktionalrelation (7) folgt die Ubereinstimmung fiir alle
x> 0.

Eine weitere Bemerkung bezieht sich auf die Stetigkeit der Losung.

Es ist leicht zu erkennen, daB ¢(#) dann und nur dann stetig ist, wenn w(#) im
Intervall « < & < 1 stetig (in den Endpunkten einseitig stetig) ist und wenn weiter die

Relation w(x) = o w(1) besteht.
Endlich sei bemerkt, da8 sich fiir w(}) = C & die triviale Lésung

p¥) =Cx (9)
ergibtl). H.HADWIGER, Bern.

IV. Zur Herleitung dev Additionstheoveme dev goniometrischen Funktionen

Es gibt bekanntlich wenige Moglichkeiten, die Additionstheoreme der goniometri-
schen Funktionen in voller Allgemeinheit herzuleiten. Daher diirfte folgender Weg,
der an den chistorisch dltesten Beweis?)» ankniipft, nicht des Interesses ermangeln.
Jener Beweis stiitzt sich auf den Ptolemaiischen Iehrsatz:

In jedem konvexen Sehnenviereck ist das Produkt der Diagonalenmaf@zahlen gleich
der Summe der Produkte der MaBzahlen seiner Gegenseiten.

Unser Weg fiihrt den Schiiler ganz «naturgemdB» auf die Additionstheoreme.
Gespannt wird der Schiiler auf das Kommende etwa durch folgende Vorbereitung.

Sei « irgendein analytischer Winkel und P (cos «, sin «) der Einheitspunkt seines
Endschenkels?). Dann ist bekanntlich nach PyTHAGORAS (rechtwinkliges Dreieck mit
den Seitenmaflzahlen

| %] = |cosa, |y|=[sinal,

|sina|2+4 |cosa|2=1,
also sin?a + cos?a =1, (1)

eine Formel, die allgemeine Giiltigkeit besitzt. Wegen sina = cos (90°— «) und
cosa = sin (90°— a«) und sin90° =1, folgt aus (1):

sina cos (90° — a) + cosa sin (90° — a) = sin 90°,

1) A.C. OEcONOMON (Sur une équation fonctionnelle, Actes Congr. Interbalkan. Math., Athénes, 1934,
S.215-218) hat u. a. gezeigt, daB die triviale Losung die einzige nichtkonkave Losung ist.

2) Siehe G.HESSENBERG, Ebene und sphdrische Trigonometrie (Sammlung Goschen, 4. Auflage, 1934),
S. 66.

3) Siehe meinen Aufsatz: Herleitung der Quadranienrelationen in der Goniometrie, diese Zeitschrift,
Heft 3 (1950).
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Und weil 90° = a 4+ (90°— a), ist es naheliegend, zu fragen, ob ganz allgemein
sina cos f§ -+ cosa sinf = sin (« + B) (2)
ist. Eine analoge Frage entsteht bei der Betrachtung der Identitit

cosa Sinea — sino coso = 0,

wenn man diese so anschreibt:
cosa cos (90° — &) — sina sin (90° — o) = cos 90°,
ndmlich, ob ganz allgemein gilt
cos a cos i — sina« sin B = cos (« + f). (3)

Zunichst sieht der Schiiler ein, da3, wenn man z. B. (2) als allgemeingiiltig annimmt,
(3) aus (2) unmittelbar folgt, denn

cos (o + B) = sin [(90° — o) + (— B)] = sin (90° — «) cos (— f) + sin (90° — a) sin (— f)
= cosa cosf} — sina sin f,

aber auch umgekehrt. Ferner ergdben sich aus der Annahme der Allgemeingiiltigkeit
von (2) die Entwicklungen (sogenannte «Subtraktionstheoreme»)

sin (e« — ) = sin[a + (— B)] = sina cos B — cosa sin g (4)
und cos (o — f) = cos[a + (— )] = cosa cosf + sina sin f. (5)

Der Schiiler gewinnt daher die Uberzeugung, daB es geniigt, die allgemeine Giiltigkeit
einer der vier Entwicklungen (2), (3), (4), (5) nachzuweisen, um die iibrigen sicherzu-
stellen. Ich beweise nun die Allgemeingiiltigkeit des Subtraktionstheorems (4).

Sei P der Einheitspunkt des Endschenkels des analytischen Winkels § = (a« — )
(gemeinsamer Endschenkel von « und $!) und seien P’ und P” die Normalprojektionen
von P auf die Anfangsschenkel von « und 8. Dann liegen die vier Punkte P, P’, P” und
O (gemeinsamer Scheitel von « und g) auf einer Kreislinie mit dem Durchmesser 1.
Denkt man sich auch noch die Verbindungsstrecke P’P” eingezeichnet, so kann man
die vier Punkte O, P, P’, P", abgesehen von Grenzfillen, fiir jede Winkelwahl in einer
passenden Reihenfolge als Ecken eines konvexen Sehnenvierecks betrachten und, unter
Beachtung, da3 die MafB3zahl einer Kreissehne gleich dem Produkt aus der MaBzahl des
Kreisdurchmessers und dem Sinus des iiber der Sehne stehenden Peripheriewinkels ist,
den Ptolemaiischen Lehrsatz auf dieses Sehnenviereck anwenden, woraus das in Rede
stehende Subtraktionstheorem sofort folgt.

Einige Zeichnungen moégen kommentarlos das Gesagte illustrieren. Es ist fiir den

Schiiler immer ein Vergniigen, die gleiche Methode allen denkbaren Fillen dienstbar zu
machen.

PP’ sin o
PP" sin f
MaBzahl von ¢ OP’ ist CoSs «
OP" cos f
PP sin (o — B)

1.sin (¢ — f) + cosa sinf = sina cosf,

sin (¢« — f) = sin a cos f — cosa sin f.
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PP’ |sina | = —sina«
PP sin
Maf3zahl von { OP’ ist cos o
op” cos f§
PP sin (¢« — 180° — f) = — sin (x — B)
1.[—sin (¢ — f)] = —sina cos B + cos« sin 3,

sin (x — ff) = sina cos f — cos « sin B.

pp’ sin o
pPp |sinfi| = —sinp
P MafBzahl von { OP’ ist |cosa|= —cosa
bet oP" | cosp| = — cosf
1% P’'P" sin(360° — o + B) = — sin(o — fB)

1.[—sin(ax — B)] = sina (— cosB) + (— cosa) (— sin B),

sin (« — B) = sina cos § — cosa sin f.

Viktor KRAKOWSKI, Ziirich,

Aufgaben

Aufgabe 67. Durch einen verdnderlichen Punkt P einer Parabel mit dem Scheitel S
ziehe man den Durchmesser, der die Scheiteltangente in 4 schneidet. Man bestimme
den geometrischen Ort des FuBpunktes des von 4 aus SP gefillten Lotes.

E. RotHMUND (Ziirich).

1. Losung: Die Verlingerung des Lotes aus 4 auf SP schneide die Parabelachse in
Q. Dann ist wegen SQ:SA4 = SA:AP SQ = SA®[AP — konstant. Der gesuchte geo-
metrische Ort ist also ein Kreis iiber SQ als Durchmesser. Da die Konstante gleich 2 p

ist (p Parameter der Parabel), so ist der Kreis der Scheitelkrimmungskreis.
F. GoLDNER (London).

2. Losung: Die Parabel mit dem Scheitel S und der Scheiteltangente s darf aufgefa3t
werden als zentralkollineares Bild eines Kreises &, welcher s in S beriihrt; mit S als
Kollineationszentrum, s als Kollineationsachse und der dazu parallelen Kreistangente ¢
in T als Verschwindungslinie. Die Symmetriegerade durch die Beriihrungspunkte S
und T wird dann Hauptachse der Bildparabel. Der Geraden TKA durch den be-
liebigen Kreispunkt K entspricht die zu ST parallele Bildgerade PA durch den zu-
geordneten Parabelpunkt P, und der Punkt K hat offenbar gerade die in der Aufgabe
geforderte FuBpunktseigenschaft. Der gesuchte geometrische Ort ist somit dev Kreis K.
Dieser Kreis ergibt sich auch als Grenzlage des Kreises, der s in S beriihrt und durch
P geht, wenn sich P unbegrenzt S ndhert. Er ist also der Kriimmungskreis in S.

P. GLur (Bern).

Weitere Losungen sandten A.BAGER (Hjerring, Dianemark), I. HESSELBERG (Noest-
ved, Ddnemark), S. Joss (Bern), L. Kierer (Luxemburg), A. ScHWARzZ (Seuzach) und
A. StoLL (Ziirich).
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