Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 5 (1950)

Heft: 3

Artikel: Die Steinersche Hypozykloide

Autor: Stoll, A.

DOI: https://doi.org/10.5169/seals-14907

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

betrachtet werden, sehr häufig vorkommt, unter sehr allgemeinen Voraussetzungen überhaupt die einzige mögliche Verteilung darstellt. Wenn sich beispielsweise ein Teilchen in aufeinanderfolgenden Schritten vom Nullpunkt aus längs einer Geraden bewegt und x_k den Zuwachs der Abszisse beim k-ten Schritt bedeutet, so stellt die totale Abszisse $x = x_1 + \cdots + x_n$ eine stetige stochastische Variable dar, und das Ganze wird als ein stetiger stochastischer Prozeß bezeichnet. Nach den vorausgegangenen Ausführungen ist es verständlich, daß x sehr häufig einer Normalverteilung gehorcht. Es sind vor allem russische Mathematiker, wie KHINTSCHINE und KOLMO-GOROFF, und daneben der Franzose P. Lévy, welche die stochastischen Prozesse untersuchten und auch enge Beziehungen mit der Theorie gewisser partieller Differentialgleichungen (parabolische und elliptische Typen) entdeckten. Nach der neuesten Entwicklung in den USA. versucht man umgekehrt, partielle Differentialgleichungen als einen stochastischen Prozeß zu interpretieren und mit den modernen Rechnungsmaschinen numerisch zu behandeln und zu lösen. Tatsächlich öffnen sich damit jetzt neue und vielleicht sehr fruchtbare Möglichkeiten der Anwendung der Wahrscheinlichkeitsrechnung auf die Analysis.

Nach Aussagen namhafter Biologen wäre es sehr wertvoll, wenn unsere schweizerischen Mittelschüler und insbesondere auch die Gymnasiasten eine bescheidene Einführung in die allerelementarsten Fragestellungen und Begriffe der Wahrscheinlichkeitsrechnung und mathematischen Statistik in ihrem Mathematikunterricht erhielten¹). Als Mathematiker kann ich mich diesem Standpunkt nur anschließen. Es ergibt sich hier eine neue Möglichkeit, die Mathematik mit andern Wissenschaften zu verknüpfen und die erkenntnistheoretische Tragweite ihrer Methoden von allgemeinen Gesichtspunkten aus zu beleuchten.

Zum Schlusse seien einige Bücher aus der überaus umfangreichen Literatur betreffend Wahrscheinlichkeitsrechnung und mathematische Statistik genannt:

- v. Mises, Wahrscheinlichkeitsrechnung (S. Rosenberg, Publishers, New York 1945).
- H. CRAMÉR, Mathematical Methods of Statistics (Princeton 1946).
- A. KHINTSCHINE, Asymptotische Gesetze der Wahrscheinlichkeitsrechnung (Springer, Berlin 1933).
- A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin 1933).

Walter Saxer, Zürich

Die Steinersche Hypozykloide

Vorbemerkung: Jakob Steiner hat die wichtigsten Eigenschaften dieser Kurve im Jahre 1856 bekanntgegeben, nach seiner Gewohnheit ohne Beweise (Ges. Werke, Bd. 2, S. 641-647). Clebsch, Cremona, Battaglini, Painvin, Laguerre u. a. haben das Thema aufgegriffen, zum Teil unter allgemeinen Gesichtspunkten. Eine reiche Fülle von Eigenschaften findet man in einer neueren Arbeit von J. Lemaire²). Die vorliegende Arbeit schöpft aus diesen Quellen, geht aber zum Teil eigene Wege. Sie will auf den schönen und so leicht erreichbaren Garten hinweisen, indem sie eine Aus-

¹) Siehe z.B. H. Stohler, *Algebra*, Leitfaden dritter Teil (Unterrichtswerk des Vereins Schweizerischer Mathematiklehrer) (Orell Füßli Verlag, Zürich 1938).

²⁾ J. LEMAIRE, Hypocycloïdes et Epicycloïdes (Vuibert, Paris 1929).

wahl von Eigenschaften, ausgehend von den besonderen Gegebenheiten der Kurve und unter Verzicht auf Verallgemeinerungen, in elementargeometrischer Weise entwickelt und zeigt, wie sich in ihnen allgemeine Eigenschaften des Dreiecks widerspiegeln. Solche werden daher in einem ersten Abschnitt zusammengestellt. Ein paar naheliegende und einfache Grenzübergänge werden nicht verschmäht. Dagegen fallen, aus Raummangel und um den elementaren Charakter der Arbeit nicht zu stören, alle Eigenschaften weg, bei denen Kegelschnitte eine Rolle spielen. Da man wohl die Trauben genießt, aber nicht die Winzer, werden keine Autornamen genannt, ausgenommen dort, wo solche als Sachbezeichnung dienen.

Dreieckseigenschaften

Bezeichnet man im Dreieck ABC (Figur 1) den Höhenschnittpunkt mit H, die Seitenmitten mit A_1 , B_1 , C_1 , die Höhenfußpunkte mit A_2 , B_2 , C_2 und die Mitten der

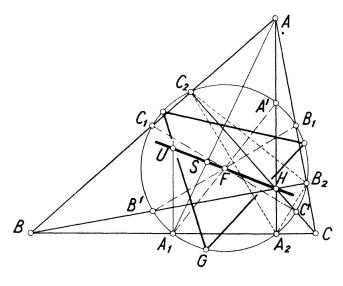


Fig. 1

oberen Höhenabschnitte mit A^1 , B^1 , C^1 , dann sind A_1B^1 und B_1A^1 zu CH parallel und je halb so lang, und außerdem ist A_1B_1 zu CH normal. A_1A^1 und B_1B^1 sind daher Rechtecksdiagonalen, halbieren sich somit und sind gleich lang. Dasselbe gilt von B_1B^1 und C_1C^1 . Alle drei sind daher Durchmesser desselben Kreises, und die Höhenfußpunkte liegen als Scheitel rechter Winkel über Durchmessern ebenfalls auf ihm. Dieser «Feuerbach-Kreis» ist in bezug auf H zum Umkreis von ABC homothetisch und also halb so groß wie dieser.

Der Mittelpunkt F des Feuerbach-Kreises halbiert somit die Verbindung von H mit dem Umkreismittelpunkt U, und es ist HA^1 so lang wie UA_1 . Deshalb teilen sich HU und AA_1 im Verhältnis 2:1, so daß ihr Schnittpunkt S Schwerpunkt von ABC ist. Die vier Punkte U, S, F, H liegen in dieser Reihenfolge auf der «Euler-Geraden» und haben das Abstandsverhältnis 2:1:3.

Auf dem Feuerbach-Kreis liegen die Bögen $\widehat{A^1B_2}$ und $\widehat{B_1C^1}$ zwischen Parallelen und sind also gleich lang, ebenso $\widehat{A^1C_2}$ und $\widehat{B_1C^1}$. $\widehat{A^1}$ halbiert daher den Bogen $\widehat{B_2C_2}$, und $\widehat{A_1A^1}$ ist Mittelsenkrechte zu $\widehat{B_2C_2}$; entsprechend die beiden andern Durchmesser. Ferner gilt nach Größe und Sinn bis auf ganze Vielfache des Umfangs $\widehat{A_2B_1} \equiv \widehat{C_1A_1}$,

oder für irgendeinen Punkt G der Kreislinie $\widehat{GB_1} - \widehat{GA_2} \equiv \widehat{GA_1} - \widehat{GC_1}$. Bestimmt man nun G auf dem äußeren Bogen A_1A_2 so, daß

$$\widehat{GA}_2 \equiv -2 \ \widehat{GA}_1 \tag{1}$$

ist, dann folgt

$$\widehat{GA}_1 + \widehat{GB}_1 + \widehat{GC}_1 = 0. \tag{2}$$

Diese Kongruenz ist in A, B, C symmetrisch und gilt daher ebenso für die entsprechenden Teilpunkte auf den Bögen $\widehat{B_1B_2}$ und $\widehat{C_1C_2}$. Die drei Teilpunkte bilden ein gleichseitiges Dreieck, entsprechend dem Umstand, daß mit einer seiner Ecken auch die andern beiden die Kongruenz (1) erfüllen: ich nenne sie «Grundpunkte» des Feuerbach-Kreises bzw. des Dreiecks.

Da \widehat{GA}^1 und \widehat{GA}_1 sich um einen halben Umfang unterscheiden, so gilt mit (1) auch

$$\widehat{GA}_2 \equiv -2 \, \widehat{GA}^1$$
.

Jeder der vier Punkte A,B,C,H ist Höhenschnittpunkt des Dreiecks der drei andern. Die vier Dreiecke haben die Höhenfußpunkte und die Grundpunkte des Feuerbach-Kreises gemeinsam. A,B,C und H sind die Berührungskreismittelpunkte des Höhenfußpunktsdreiecks und Ecken eines vollständigen orthogonalen Vierecks, dessen Gegenseiten konstante Quadratsumme haben, nämlich $16 \ r^2, r = \text{Radius des}$ Feuerbach-Kreises, weil $HA^1 = \overline{UA}_1$ und $\overline{UA}_1^2 + \overline{A}_1\overline{B}^2 = 4 \ r^2$ ist.

Drehen sich drei Gerade a, b, c mit gleicher Winkelgeschwindigkeit beziehlich um die Punkte A_1 , B_1 , C_1 , dann bleiben die von ihnen in jedem Moment gebildeten Dreiecke ABC ähnlich. A, B und C bewegen sich je auf einem von drei Kreisen, die einen Punkt D gemeinsam haben, und fallen gleichzeitig mit D zusammen. Wegen der Konstanz der Winkel DBA_1 und A_1CD ist auch Winkel BDC konstant, ebenso die Winkel CDA und ADB, d. h. D hat in bezug auf alle Dreiecke ABC ähnliche Lage.

Wird a normal zu DA_1 , so fallen B und C in die Gegenpunkte \overline{B} und \overline{C} von D auf ihren Kreisen, so daß auch b und c normal werden zu DB_1 bzw. DC_1 . $D\overline{A}$ und damit $\overline{A}\overline{B}\overline{C}$ haben maximale Größe.

Die Schar der S-Geraden

Auf einem festen Kreis (K) sei ein Grundpunkt G gegeben. Jedem Punkt A_1 von (K) werde durch die Kongruenz (1) des vorigen Abschnittes ein Punkt A_2 auf (K) zugeordnet. Die Zuordnung ist eindeutig. Jedem Punkt A_1 von (K) entspricht genau eine Gerade $a = A_1A_2$; ich nenne sie S-Gerade, um an STEINER zu erinnern. A_1 heißt Primärpunkt, A_2 Sekundärpunkt von a.

Bedeutet α den Neigungswinkel von a gegen die Kreistangente g in G, dann ist α nach Größe und Sinn bis auf ganze Vielfache von π dem Peripheriewinkel über \widehat{GA}_1 entgegengesetzt gleich. Zu jeder Richtung gehört genau eine S-Gerade.

Von den beiden Schnittpunkten einer S-Geraden mit (K) ist der eine primär und der andere sekundär. Zu einem Sekundärpunkt gehören aber kraft (1) zwei diametral

gegenüberliegende Primärpunkte. Die zugehörigen S-Geraden heißen ein Paar oder konjugiert. Sie sind normal zueinander, und wenn zwei S-Gerade zueinander normal sind, dann haben sie den Sekundärpunkt gemeinsam, weil keine zwei endlichen S-Geraden die gleiche Richtung haben.

Durch einen Punkt von (K) gehen also primär eine und sekundär zwei, im ganzen genau drei S-Gerade. Die Hüllkurve (S) — «Steiner-Kurve» — ihrer einparametrigen Schar ist eine Kurve dritter Klasse. Durch jeden Punkt der Ebene gehen drei S-Gerade, von denen wenigstens eine reell ist. Liegt der Punkt unendlich fern, so ist nur eine S-Gerade endlich, die andern beiden fallen mit der unendlich fernen Geraden zusammen.

Die S-Schar kann erzeugt werden durch zwei Punkte, die sich auf (K) gegenläufig bewegen, der eine doppelt so schnell wie der andere, und die sich in G begegnen und folglich auch in G' und G'', die mit G ein gleichseitiges Dreieck bilden. Sie kann aber auch dadurch erzeugt werden, daß sich ein Punkt A_1 auf (K) bewegt, während sich eine Gerade a im Gegensinn und mit halber Winkelgeschwindigkeit um A_1 dreht und (K) in G und folglich auch in G' und G'' berührt, wenn A_1 mit diesen Punkten zusammenfällt.

Sind A_1A_2 und B_1B_2 zwei S-Gerade mit ihren Primär- und Sekundärpunkten und schneiden sie sich in C, so ist zufolge der Definition $\widehat{A_2B_2} \equiv -2\,\widehat{A_1B_1}$. Daraus folgt, daß der Winkel A_2CB_2 ebenso groß ist wie jeder der Winkel CA_2B_1 und CB_2A_1 , d.h. von den Primärpunkten zweier S-Geraden hat jeder den gleichen Abstand vom Sekundärpunkt der andern und vom Schnittpunkt beider. Dies ist die grundlegende Eigenschaft.

Läßt man die beiden Geraden unbegrenzt zusammenrücken, so erkennt man insbesondere: Der Berührungspunkt einer S-Geraden mit (S) liegt ebensoweit diesseits ihres Primärpunktes wie ihr Sekundärpunkt jenseits. (S) verläuft also außerhalb (K) und innerhalb eines konzentrischen und dreimal so großen Kreises.

Ferner folgt: Die Berührungspunkte eines Paares haben einen Abstand, welcher doppelt so groß ist wie der Durchmesser von (K); denn die Primärpunkte eines Paares sind Gegenpunkte auf (K).

Auch die folgenden Eigenschaften ergeben sich fast unmittelbar aus der grundlegenden Eigenschaft:

Die Schnittpunkte einer S-Geraden x mit einem festen Paar haben vom Primärpunkt X_1 von x denselben Abstand wie der Sekundärpunkt A_2 des Paares. Wird X_1 Gegenpunkt von A_2 , dann geht x durch die Berührungspunkte des Paares mit (S), und die Konjugierte von x geht durch A_2 .

Für die drei S-Geraden durch einen Punkt P gilt: Die Primärpunkte von je zweien liegen auf der Mittelsenkrechten zu P und dem Sekundärpunkt der dritten. Die Sekundärpunkte von je zweien liegen mit P auf einem Kreis um den Primärpunkt der dritten. Die Konjugierten von je zweien schneiden sich auf der dritten, und der Schnittpunkt ist in bezug auf den Primärpunkt symmetrisch zu P.

Die drei S-Geraden durch einen Punkt bilden mit ihren drei Konjugierten ein vollständiges orthogonales Viereck. Zu jedem Punkt gehören drei weitere, die mit ihm ein solches Viereck bilden. Umgekehrt sind die Seiten und Höhen jedes Dreiecks, das (K) zum Feuerbach-Kreis und G zum Grundpunkt hat, S-Gerade zu G0 und G0.

Die durch den Berührungspunkt A_0 einer S-Geraden A_1A_2 gehende, von ihr verschiedene S-Gerade heißt zu ihr adjungiert. Sie ist parallel zu OA_1 , O Mittelpunkt von (K). Sie ist aber auch adjungiert zur Konjugierten A^1A_2 von A_1A_2 ; denn sie ist parallel zu OA^1 . Ein Paar bildet mit seiner Adjungierten die bereits beschriebene Figur.

Bewegt sich X auf der S-Geraden A_1A_2 , dann sind die Primärpunkte der beiden andern S-Geraden durch X bestimmt als Schnittpunkte der Mittelsenkrechten von A_2X mit (K). Die beiden fallen für genau zwei Lagen von X zusammen, und X wird dann Punkt von (S). A_1A_2 hat also mit (S) außer dem Berührungspunkt zwei Schnittpunkte gemein, d. h. (S) ist von der vierten Ordnung.

Gestalt und Größe von (S)

Der Kreis (K) und die Grundpunkte G, G', G'' seien gegeben (Figur 2). Die Kreistangente g in G ist S-Gerade, ihr Primär-, Sekundär- und Berührungspunkt fallen mit G zusammen, und (S) berührt (K) in G. Bewegt sich nun der Primärpunkt A_1 von a von G aus auf (K), dann bewegt sich der Sekundärpunkt A_2 im Gegensinn doppelt so weit, während der Berührungspunkt A_0 von (K) nach außen abrückt, wobei stets $A_0A_1 = A_1A_2$ ist. Die Bahn von A_0 wird nun mehr und mehr radial, und A_0 erreicht die größte Entfernung vom Mittelpunkt O, wenn A_0 durch A_0 geht. Dies tritt erstmals ein, wenn A_1 einen Sechstel des Umfanges zurückgelegt hat. Darnach nähert sich A_0 wieder dem Kreis, so daß in der Extremlage \mathfrak{G}'' eine Spitze entsteht, und erreicht (K) wieder in G'. Es ist $O\mathfrak{G}'' = 3 OG$, und die Kurvenbögen $\mathfrak{G}''G$ und $\mathfrak{G}''G'$ sind symmetrisch in bezug auf $O\mathfrak{G}''$. Nun wiederholt sich das Spiel noch zweimal.

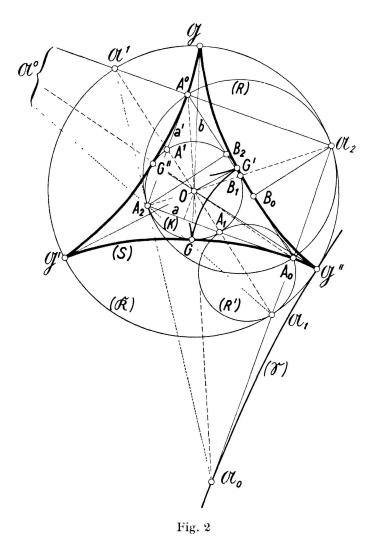
(S) besteht somit aus sechs kongruenten Bögen, die sich paarweise in G, G', G" und $\mathfrak{G}, \mathfrak{G}', \mathfrak{G}''$ zu einer geschlossenen Kurve aneinanderreihen, in den ersteren mit stetiger Krümmung, so da β Scheitelpunkte entstehen, in den letzteren mit Spitzen. Die drei Spitzentangenten sind zugleich Scheitelnormale und Symmetrieachsen von (S).

Die Normale von (S) im Berührungspunkt A_0 von a ist in bezug auf A_1 zentrischsymmetrisch zur Konjugierten a' von a und daher in bezug auf O zu dieser invers homothetisch im Verhältnis 3:1, d. h.: Die Evolute (\mathfrak{S}) von (S) ist eine mit (S) konzentrische und dreimal so große Steiner-Kurve; ihre Scheitelpunkte sind die Spitzen von (S). Umgekehrt ist die Evolvente von (S) eine dreimal kleinere Steiner-Kurve, deren Spitzen die Scheitelpunkte von (S) sind.

Gemäß dem vorigen Abschnitt schneidet (S) auf jeder seiner Tangenten b eine Strecke A_0A^0 ab, die doppelt so lang ist wie der Durchmesser des Scheitelkreises (K). Die Tangenten in A_0 und A^0 sind konjugiert, und ihr Schnittpunkt A_2 (Sekundärpunkt) und die Mitte B_1 von b (Primärpunkt) sind Gegenpunkte auf (K). Die dritte Tangente aus A_2 ist zu b normal (konjugiert) und ihr Schnittpunkt B_2 mit b ebenso weit diesseits von B_1 wie der Berührungspunkt B_0 jenseits. Nun entsprechen sich in der Homothetie zwischen (S) und ihrer Evolute die drei Normalen in A_0 , B_0 und A^0 und die drei Tangenten aus A_2 . Also: Die Normalen im Berührungspunkt und in den Schnittpunkten einer Tangente mit (S) schneiden sich auf dem Spitzenkreis.

 \mathfrak{A}_0 , \mathfrak{A}_1 , \mathfrak{A}_2 seien Berührungs-, Primär- und Sekundärpunkt der Evolutentangente durch A_0 . Wegen der Rechtecksfigur ist $A_0\mathfrak{A}_2$ so lang wie A_2A^0 , also doppelt so lang

wie A_2A^1 , und wegen der Homothetie ist $\mathfrak{A}_1\mathfrak{A}_2$ dreimal und $\mathfrak{A}_0\mathfrak{A}_2$ sechsmal so lang wie A^1A_2 . Dieses aber ist doppelt so lang wie der Abstand Oa. Daher: Die Sehnen, die der Spitzenkreis auf den Normalen von (S) abschneidet, werden durch deren Fußpunkte im Verhältnis 1:2 geteilt, kleinerer Teil auf der konkaven Seite, und die Krümmungsradien betragen 4/3 der entsprechenden Sehnen oder das achtfache des Abstandes der Tangente von O.



Die Länge des Kurvenbogens \widehat{GA}_0 beträgt demnach 4/3 von A_2A_1 und insbesondere die Länge von \widehat{GG}'' 4/3 des Durchmessers von (K), so daß die Totallänge von (S) das achtfache des Durchmessers ihres Scheitelkreises beträgt.

Zwischen zwei unendlich benachbarten Normalen werden vom Spitzenkreis und vom betreffenden Bogen von (S) Sektoren begrenzt, deren Flächenverhältnis bis auf unendlich Kleine 9:16:36 ist. Daher: Die Fläche, die vom Spitzenkreis und von zwei Normalen desselben Hauptbogens von (S) begrenzt ist, wird von dem betreffenden Bogen von (S) im Verhältnis 7:20 geteilt. Daraus ergibt sich: Die von (S) umschlossene Fläche beträgt 2/9 der Fläche des Spitzenkreises oder das Doppelte des Scheitelkreises. (Schluß folgt.)