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128 H. JeckLIN: Quasiarithmetische Mittelwerte

Punkt, Gerade, Ebene allgemein giiltig sind: Eine Ebene und eine ihr nicht ange-
hérende Gerade haben genau einen gemeinsamen Punkt. Drei nicht in derselben Ge-
raden liegende Punkte bestimmen genau eine sie enthaltende Ebene, usw.

Ferner lassen sich nun die imagindren Elemente, die z. B. in einer Fliche zweiten
Grades enthalten sind, anschaulich darstellen. Auf den ovalen Flichen zweiten
Grades liegen zwei Scharen von speziellen imaginiren Geraden, hingegen keine
reelle und keine allgemeine imaginire Geraden. Das einschalige Hyperboloid trigt
auBer zwei Scharen von reellen Geraden auch allgemeine imagindre Geraden. Fig. 13
zeigt die Verhiltnisse bei der Kugel, deren simtliche Punkte wir iiberschauen wollen.
Eine Ebene «; durch den Mittelpunkt schneidet in einem GroBkreis, dessen Pfeil-
feld (vgl. hierzu S.104) in der Figur angedeutet ist. Verschieben wir die Schnittebene
in die Tangentialebene a,, so ergibt sich als Schnitt das Pfeilfeld von zwei konju-
gierten isotropen Geraden. In der Lage «, hat die Ebene nur noch die imagindren
Punkte eines imagindren Kreises mit der Kugel gemeinsam. (Um die simtlichen
Punkte des jeweiligen Schnittgebildes zu erhalten, hat man Fig. 13 natiirlich um die
Achse a zu drehen.)

Es sei auch noch die Frage beantwortet, wie sich die iibliche Darstellung der kom-
plexen Zahlen in einem rechtwinkligen (x, y)-System in die allgemeine geometrische
Imaginirtheorie einordnet. Es sei I derjenige imaginire Punkt der unendlichfernen
Geraden, der aus dieser von jeder im positiven Drehsinn gerichteten Rechtwinkel-
Strahleninvolution der (x, y)-Ebene ausgeschnitten wird. Verbindet man I mit allen
Punkten der x-Achse, so hat der reelle Punkt der Geraden, die I mit dem Punkte
x = a + 1a’ der x-Achse verbindet, offenbar die Koordinaten x = a, y = a’.

Durch unsere Ausfithrungen hoffen wir gezeigt zu haben, daB die hier verwendete
Pfeil-Darstellung mindestens im linearen und quadratischen Gebiet einige Vorteile
bietet. L. LocHER-ERNsT, Winterthur.

Quasiarithmetische Mittelwerte’)

IV. Die Jensensche Ungleichung erlaubt — wie gesagt —, eine quasiarithmetische
Mittelbildung nach konvexer (oder konkaver) Funktion mit dem entsprechenden
arithmetischen Mittel zu vergleichen.

Setzen wir z. B. f(x) = x?, so fithrt uns dies zum Potenzmittel

_(Z R aP\UP
m= (%3 By )"
Hier sind verschiedene Fille zu unterscheiden beziiglich p, welches + 0 uhd ganz
vorausgesetzt sei (was nicht notwendig wire). Man kann zeigen, daB der Fall p =0
mit dem geometrischen Mittel identisch ist?); p = 1 ergibt das arithmetische Mittel. —

Betrachten wir vorerst das Intervall — oo < x < 4+ oo, so ist x? fiir gerades, posi-
tives oder negatives p eine konvexe oder konkave, aber nicht monotone Funktion; ist

1) Erster Teil in Heft 5 (1949) dieser Zeitschrift.
2) H. JeckLix und M. Ei1seNRING, Die elementaren Mittelwerte, Mitt. Ver. schweiz. Vers.-Math. 47,
1 (1947).
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aber p ungerade, so haben wir eine monotone, aber nicht im ganzen Intervall konvexe
(oder konkave) Funktion. Nur im zweiten Falle, d. h. nur fiir ungerades ¢, ist also die
Bildung von Potenzmitteln fiir beliebige endliche positive oder negative GroBen zu-
lassig, wobei eine Aussage iiber das GroBenverhiltnis zum arithmetischen Mittel
nicht gemacht werden kann. Beschrinken wir uns dagegen auf das Intervall
0 < x < oo, wobei weiterhin p + 0 und ganz vorausgesetzt sei, so ist x fiir positives p
konvex steigend, fiir negatives p dagegen konvex fallend. Im ersten Falle ist demnach
das Potenzmittel gréBer als das arithmetische Mittel, im zweiten Falle aber kleiner.
So ist bekanntlich das quadratische Mittel (p = 2) gr6Ber, das harmonische Mittel
(p = —1) kleiner als das arithmetische Mittel.

Oder setzen wir f(x) = c%, ¢ eine positive Konstante # 1, so erhalten wir das ex-
ponentielle Mittel

log (X k;c®/3 k)  log X k;c% — log }' k;
- loge o loge ’

Je nachdem ¢ groBer oder kleiner als 1, ist ¢® konvex steigend oder konvex fallend,
und zwar fiir das Intervall —oco < x < + oco. Das exponentielle Mittel ist daher
im ersten Falle groBer, im zweiten Falle kleiner als das arithmetische Mittel.
Oder sei f(x) = log x. Dann haben wir das logarithmisch-arithmetische bzw. geo-
metrische Mittel
2 k;log 7,
2k

log m = bzw. m = (IT £Fi)H&E*,

Der Logarithmus ist nur fiir positive x erklart und im Intervall 0 < x < oo eine
endliche, konkav steigende Funktion. Das geometrische Mittel ist daher kleiner als
das arithmetische Mittel.

SchlieBlich seien noch die trigonometrischen Mittelwerte erwdhnt?), wobel wir als
Beispiel lediglich das Sinusmittel nennen. Ist f(x) = sin x, so ergibt sich aus der
Gleichsetzung

(X k) sinm = X k;sin x;,

. 2 k;sinx;
m = arc Sin — —,
2k

Nachdem sin x eine periodische Funktion ist, erhellt von vornherein, daB die Mittel-
bildung auf gewisse Intervalle beschrinkt sein muB.

Wir betrachten daher Teilintervalle des Intervalls (—x, +x), das als Ganzes zur
Mittelbildung offensichtlich nicht zulissig ist:

Intervall (— z, 0): sinx ist konvex, aber nicht monoton, also Mittelbildung nicht
moglich,

Intervall (—-7—23, + %) : sin x ist monoton steigend, aber nicht durchwegs konvex oder
konkav; Mittelbildung mdoglich, aber ohne Vergleichsmoglich-
keit mit arithmetischem Mittel,

Intervall (0, +):  sin x ist konkav, aber nicht monoton, also Mittelbildung nicht
moglich,

1) A.PRATELLI, Sulle medie trigonometriche, Atti I.a riunione sci. Soc. ital. statistica (Pisa 9. 10. 1939).

El. Math. 9
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Intervall | —m, — ) sin ¥ monoton fallend konvex, also Sinusmittel < arithme-

tisches Mittel,

Nl(:]

sin x monoton steigend konvex, also Sinusmittel > arithme-
tisches Mittel,

Intervall {0, + - ) sin x monoton steigend konkav, also Sinusmittel < arithme-
tisches Mittel,

Intervall +~27£ —Ht) sin x monoton fallend konkav, also Sinusmittel > arithme-
tisches Mittel.

-
Intervall (—-
(
(

V. Die von uns zur Herleitung des Satzes von JENSEN benutzte geometrische
Methode gibt auch die Moglichkeit, das quasiarithmetische Mittel von » Werten x,

Fig. 4

nach einer gezeichnet vorliegenden Kurve, die nicht eine analytische Funktion zu sein
braucht, graphisch zu bestimmen. Bezeichnen wir den dem Abszissenwert x, entspre-
chenden Kurvenpunkt mit P;. Dann geht man zur Bestimmung des ungewogenen
quasiarithmetischen Mittels in folgender, ohne weiteres evidenter Weise vor: die

Halbierung der Verbindungsstrecke PP, ergibt den Punkt P, (siche Fig. 5); die
Teilung der Strecke PP3 im Verhiltnis 1:2 ergibt P2, die Teilung der Strecke PzP
im Verhaltnis 1:3 ergibt B;; usw. SchlieBlich erhilt man durch Teilung der Strecke
P,,,.2 P, im Verhiltnis 1:(» — 1) den Punkt Pn——l' Die Waagrechte durch letzteren
bestimmt auf der Kurve einen Punkt P,,, dessen Abszisse m der gesuchte Mittelwert
ist. Bei der Verdeutlichung in Fig. 5 wurde als einfaches Beispiel f(x) = 2% und
% =1, %= 2, %3 = 3,5, x, = 4 gewihlt. RechnungsmiBig ergibt sich
_ log ) z® —logn log 33,31 — log 4

logec - log 2 = 3,06.

Das Verfahren ist natiirlich, in sinngeméaBer Anpassung der Streckenteilung, auch
zur graphischen Bestimmung gewogener Mittel anwendbar.
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VI. Eine Verallgemeinerung des Satzes von JENSEN zwecks Vergleich von quasi-
arithmetischen Mitteln miteinander ist sehr wohl denkbar und sei kurz skizziert: Die
quasiarithmetische Mittelbildung gemif} (2)

=X fx

ist das diskrete Analogon zum Mittelwertsatz der Integralrechnung

(@a—0)f /f

Seien nun f(x) und A(x) zwei verschiedene, im Intervall (x,, x,) reelle, stetige, end-
liche, monotone Funktionen und zudem konvex oder konkav. Dann koénnen wir

Fig. 5

durch lineare Transformation von A(#) in A(x) = h(x) @ + b stets erreichen, daB die

transformierte Funktion fiir x; den Wert f(x;) und fiir x, den Wert f(%,) annimmt.
Zu diesem Zwecke ist lediglich zu setzen:

H(#) — f(x,) b — f(%1) A(xp) — f(%5) h(%y)

T oh(xy) — h(xy) a h(xy) — h(%g)

Sind nun z. B. A(x) und f(x) beide konvex steigend und ist

/x’i;(x) dx < /x}(x) dx

so ist das quasiarithmetische Mittel nach A(x) groBer als jenes nach f(x), und umge-
kehrt. Wir méchten jedoch im Rahmen dieser Arbeit auf Details dieses theoretisch
interessanten Problems nicht niher eintreten.

VILI. Fiir die Praxis kommen im allgemeinen auBBer dem arithmetischen Mittel selbst
und dem exponentiellen Mittel, das in Finanz- und Versicherungsmathematik eine
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groBe Rolle spielt, von den quasiarithmetischen Mitteln nur die sog. klassischen Mit-
telwerte in Frage. Wenn wir unter letzteren iiblicherweise das kontraharmonische
Mittel (K), das quadratische Mittel (Q), das arithmetische Mittel (M), das geome-
trische Mittel (G) und das harmonische Mittel (H) verstehen, so gilt bekanntlich

Kz2Q=zM=G=H

oder formelmaBig fiir ungewogene Mittel,

2 ¥ P pARS Y n
‘Zv—xgl/nzg ” :>;Vﬂx7;22xi_1-.

Wir geben im folgenden einen sehr einfachen Beweis fiir die Giiltigkeit dieser
GroBenordnung, der das Ergebnis eines brieflichen Gedankenaustausches mit Herrn
BENGT ACKERBERG, Stockholm, ist.

hix) p

ﬁ_ﬂ;} = f) 5

hi)

/7‘/”}

Fig. 6

Vorerst aber noch eine Bemerkung: Das kontraharmonische Mittel ist, als solches
betrachtet, kein quasiarithmetisches Mittel. Es ist nicht von der Gestalt (2) und
besitzt insbesondere auch Eigenschaft Ic nicht. Es ist auch im allgemeinen keine
in bezug auf das einzelne x; monotone Funktion, welche Eigenschaft fiir formelmaBige
Mittelwerte zumeist vorausgesetzt wird!). Das Dilemma verschwindet jedoch, wenn
wir das kontraharmonische Mittel lediglich als spezielle Position des gewogenen
arithmetischen Mittels m = 2k, x,/2 k, auffassen, wobei k; = x,, was im Intervall
0 < x < oo ohne weiteres zulissig ist. Ahnliche Vorbehalte und Uberlegungen gelten
beziiglich der verallgemeinerten Potenzmittel?) iiberhaupt, worauf wir in anderem
Zusammenhange zuriickzukommen uns vorbehalten.

Setzen wir nun x;, = M + 6;. Es folgt dann bekanntermaBen aus der Definition des
arithmetischen Mittels wegen X x, = n M, da8 2 §, = 0. AuBerdem ist X §% = 0,
und der Ausdruck o2 = X §%/n ist das auf M bezogene Streuungsquadrat der x;.

1) A. KoLMOGOROFF, Sur la notion de la moyenne, Atti Reale Acad. naz. Lincei, 6. Ser., 12 (1930). ~ M. Na-
cuMo, Uber eine Klasse der Mittelwerte, Jap. J. Math. 7 (1930).
2) C. GINi, Di una formola comprensive delle medie, Metron, Rev. int. Statistica 13, 2 (1938).
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Nunmehr haben wir (wenn einfachheitshalber der Index 7 weggelassen wird):

K — 2t M40 wMP+2MY 6+ Y60

Xx XYM+ nM+ 30
:.,ﬁﬁ%Eﬁi:M+%gM,
Weiter ist Kre (M4 5) = M2t 200+ 1
und Q2 = _;‘nﬂ - Z’(M;+ 9 _ "M2:262 = M2+ o2

Nun ist aber sicher o
M2+ 202+ WE = M2+ 0% = M?,
also K2=Q*=M?% d.h. K=Q = M.
Dabei haben sich als Nebenprodukt die einfachen Beziehungen zwischen K, Q
und M ergeben:
2 2
Q*=M2to, K=M+2o, 2 _K aso Q'=MK.
Nunmehr setzen wir x; = G ¢*. Es folgt dann aus der Definition des geometrischen
Mittels wegen /] x; = G", daB X o, = O sein muB}. Weiter ist stets e* = 1 + x, unge-
achtet des Vorzeichens von x. Fiir positive x folgt die Ungleichung sofort aus der
bekannten Reihendarstellung
%2 %3
e”=1—]—x—|——2~,+~3—;+ Tty
fiir negative x z.B. aus der Uberlegung, daB y = 1 + x die Tangente an ¢® im Punkte

(0, 1) ist. Also gilt:

M= “:‘xi:C;):,’gOtig GY(1+0y) =G+~C—;~2—ai=G,
n n n n
1 Xxt Yes Jl-o) 1 Yoy 1
tnd H= n =~ Gn = G6n TG G6m "G
d. h. M =G=H.

H. JECKLIN, Ziirich.

Eine einfache Berechnung der Mantelfliche
eines Drehkegelhufes’)

¢) Es soll nun der Mantelinhalt eines Drehkegelhufes berechnet werden, der zwi-
schen einem Hyperbelbogen und dem ihm in der Zentralprojektion aus S entsprechen-
den Bogen des Grundkieises gelegen ist. (Abb. 3 wurde fiir die Annahme ¢ < $ ent-
worfen.)

1) Erster Teil in Heft 4 (1949) dieser Zeitschrift.
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