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128 H. Jecklin : Quasiarithmetische Mittelwerte

Punkt, Gerade, Ebene allgemein gültig sind: Eine Ebene und eine ihr nicht
angehörende Gerade haben genau einen gemeinsamen Punkt. Drei nicht in derselben
Geraden liegende Punkte bestimmen genau eine sie enthaltende Ebene, usw.

Ferner lassen sich nun die imaginären Elemente, die z. B. in einer Fläche zweiten
Grades enthalten sind, anschaulich darstellen. Auf den ovalen Flächen zweiten
Grades liegen zwei Scharen von speziellen imaginären Geraden, hingegen keine
reelle und keine allgemeine imaginäre Geraden. Das einschalige Hyperboloid trägt
außer zwei Scharen von reellen Geraden auch allgemeine imaginäre Geraden. Fig. 13

zeigt die Verhältnisse bei der Kugel, deren sämtliche Punkte wir überschauen wollen.
Eine Ebene ax durch den Mittelpunkt schneidet in einem Großkreis, dessen Pfeilfeld

(vgl. hierzu S. 104) in der Figur angedeutet ist. Verschieben wir die Schnittebene
in die Tangentialebene a3, so ergibt sich als Schnitt das Pfeilfeld von zwei
konjugierten isotropen Geraden. In der Lage oc4 hat die Ebene nur noch die imaginären
Punkte eines imaginären Kreises mit der Kugel gemeinsam. (Um die sämtlichen
Punkte des jeweiligen Schnittgebildes zu erhalten, hat man Fig. 13 natürlich um die
Achse a zu drehen.)

Es sei auch noch die Frage beantwortet, wie sich die übliche Darstellung der
komplexen Zahlen in einem rechtwinkligen (x, y)-System in die allgemeine geometrische
Imaginärtheorie einordnet. Es sei / derjenige imaginäre Punkt der unendlichfernen
Geraden, der aus dieser von jeder im positiven Drehsinn gerichteten Rechtwinkel-
Strahleninvolution der (x, y)-Ebene ausgeschnitten wird. Verbindet man / mit allen
Punkten der x-Achse, so hat der reelle Punkt der Geraden, die I mit dem Punkte
x a + ia' der #-Achse verbindet, offenbar die Koordinaten x a, y a'.

Durch unsere Ausführungen hoffen wir gezeigt zu haben, daß die hier verwendete
Pfeil-Darstellung mindestens im linearen und quadratischen Gebiet einige Vorteile
bietet. L. Locher-Ernst, Winterthur.

Quasiarithmetische Mittelwerte1)

IV. Die Jensensche Ungleichung erlaubt — wie gesagt —, eine quasiarithmetische
Mittelbildung nach konvexer (oder konkaver) Funktion mit dem entsprechenden
arithmetischen Mittel zu vergleichen.

Setzen wir z. B. f(x) xp, so führt uns dies zum Potenzmittel

Hier sind verschiedene Fälle zu unterscheiden bezüglich p, welches 4= 0 und ganz
vorausgesetzt sei (was nicht notwendig wäre). Man kann zeigen, daß der Fall p 0

mit dem geometrischen Mittel identisch ist2); p 1 ergibt das arithmetische Mittel. —

Betrachten wir vorerst das Intervall — oo < x < -f oo, so ist xp für gerades,
positives oder negatives p eine konvexe oder konkave, aber nicht monotone Funktion; ist

x) Erster Teil in Heft 5 (1949) dieser Zeitschrift.
2) H. Jecklin und M. Eisenring, Die elementaren Mittelwerte, Mitt. Ver. Schweiz. Vers.-Math. 47,

1 (1947).
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aber p ungerade, so haben wir eine monotone, aber nicht im ganzen Intervall konvexe
(oder konkave) Funktion. Nur im zweiten Falle, d. h. nur für ungerades p, ist also die
Bildung von Potenzmitteln für beliebige endliche positive oder negative Größen
zulässig, wobei eine Aussage über das Größenverhältnis zum arithmetischen Mittel
nicht gemacht werden kann. Beschränken wir uns dagegen auf das Intervall
0 fg x < oo, wobei weiterhin p 4= 0 und ganz vorausgesetzt sei, so ist x für positives p
konvex steigend, für negatives p dagegen konvex fallend. Im ersten Falle ist demnach
das Potenzmittel größer als das arithmetische Mittel, im zweiten Falle aber kleiner.
So ist bekanntlich das quadratische Mittel (p 2) größer, das harmonische Mittel
(p — 1) kleiner als das arithmetische Mittel.

Oder setzen wir f(x) cx, c eine positive Konstante 4= 1, so erhalten wir das

exponentielle Mittel

m ; i —log c log c

Je nachdem c größer oder kleiner als 1, ist cx konvex steigend oder konvex fallend,
und zwar für das Intervall — ooK x < + oo. Das exponentielle Mittel ist daher
im ersten Falle größer, im zweiten Falle kleiner als das arithmetische Mittel.

Oder sei f(x) log x. Dann haben wir das logarithmisch-arithmetische bzw.
geometrische Mittel

iogw J_^i__ bzw. « (/r«jo1/2;**-
___ ™i

Der Logarithmus ist nur für positive x erklärt und im Intervall 0 < x < oo eine

endliche, konkav steigende Funktion. Das geometrische Mittel ist daher kleiner als
das arithmetische Mittel.

Schließlich seien noch die trigonometrischen Mittelwerte erwähnt1), wobei wir als

Beispiel lediglich das Sinusmittel nennen. Ist f(x) sin x, so ergibt sich aus der
Gleichsetzung

(E kt) sin m E k% sin xt,

2J k. sin x
m are sm EK '

Nachdem sin x eine periodische Funktion ist, erhellt von vornherein, daß die
Mittelbildung auf gewisse Intervalle beschränkt sein muß.

Wir betrachten daher Teilintervalle des Intervalls (—tz, -{-tz), das als Ganzes zur
Mittelbildung offensichtlich nicht zulässig ist:

Intervall (—tz, 0): sin x ist konvex, aber nicht monoton, also Mittelbildung nicht
möglich,

Intervall (—y, + y): SU1 x ist monoton steigend, aber nicht durchwegs konvex oder

konkav; Mittelbildung möglich, aber ohne Vergleichsmöglichkeit

mit arithmetischem Mittel,
Intervall (0, + tz) : sin x ist konkav, aber nicht monoton, also Mittelbildung nicht

möglich,

x) A. Pratelli, Sulle medie trigonometriche, Atti La riunione sei. Soc. ital. statistica (Pisa 9. 10. 1939).

El. Math. 9
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Intervall I— tz, — yj: sin x monoton fallend konvex, also Sinusmittel < arithme¬
tisches Mittel,

Intervall I—w> Ol : sin x monoton steigend konvex, also Sinusmittel > arithme¬
tisches Mittel,

Intervall 10, -f ^r): sin a; monoton steigend konkav, also Sinusmittel < arithme¬
tisches Mittel,

Intervall + y, 4-Tr j: sin x monoton fallend konkav, also Sinusmittel > arithme¬
tisches Mittel.

V. Die von uns zur Herleitung des Satzes von Jensen benutzte geometrische
Methode gibt auch die Möglichkeit, das quasiarithmetische Mittel von n Werten x{

Fig. 4

nach einer gezeichnet vorliegenden Kurve, die nicht eine analytische Funktion zu sein

braucht, graphisch zu bestimmen. Bezeichnen wir den dem Abszissenwert xt
entsprechenden Kurvenpunkt mit P4. Dann geht man zur Bestimmung des ungewogenen
quasiarithmetischen Mittels in folgender, ohne weiteres evidenter Weise vor: die

Halbierung der Verbindungsstrecke PXP2 ergibt den Punkt Px (siehe Fig. 5); die

Teilung der Strecke PXPZ im Verhältnis 1:2 ergibt P2; die Teilung der Strecke P2P^

im Verhältnis 1:3 ergibt P3; usw. Schließlich erhält man durch Teilung der Strecke

Pw_2 Pn im Verhältnis 1: (n — 1) den Punkt Pw_x. Die Waagrechte durch letzteren
bestimmt auf der Kurve einen Punkt Pm, dessen Abszisse m der gesuchte Mittelwert
ist. Bei der Verdeutlichung in Fig. 5 wurde als einfaches Beispiel f(x) 2X und
xx 1, x2 2, xz 3,5, #4 4 gewählt. Rechnungsmäßig ergibt sich

m ¦¦

log E Zx - log n _ log 33,31 - log 4

log c log 2
3,06.

Das Verfahren ist natürlich, in sinngemäßer Anpassung der Streckenteilung, auch
zur graphischen Bestimmung gewogener Mittel anwendbar.



H. Jecklin: Quasianthmetische Mittelwerte 131

VI. Eine Verallgemeinerung des Satzes von Jensen zwecks Vergleich von
quasiarithmetischen Mitteln miteinander ist sehr wohl denkbar und sei kurz skizziert: Die
quasiarithmetische Mittelbildung gemäß (2)

n

n f(m) ]£ f(xt)
i

ist das diskrete Analogon zum Mittelwertsatz der Integralrechnung

b

(a — b) f(m) / f(x) dx.
a

Seien nun f(x) und h(x) zwei verschiedene, im Intervall (xx, x2) reelle, stetige,
endliche, monotone Funktionen und zudem konvex oder konkav. Dann können wir

'p.

n

P'S

p'/^-
•_

^

flj^"ß

"""1^""
—

2 m 3,5 4

Fig 5

durch lineare Transformation von h(x) in h(x) h(x) a+b stets erreichen, daß die
transformierte Funktion für xx den Wert f(xx) und für x2 den Wert f(x2) annimmt.

Zu diesem Zwecke ist lediglich zu setzen:

/(*_) - /(*_) f(H) h(x%) - f(xt) h(Xl)

h(xx) - h(x2) ' " h{xx) - h(x2)

Sind nun z. B. h(x) und f(x) beide konvex steigend und ist

fh(x) dx < ff(x) dx,

so ist das quasiarithmetische Mittel nach h(x) größer als jenes nach f(x), und umgekehrt.

Wir möchten jedoch im Rahmen dieser Arbeit auf Details dieses theoretisch
interessanten Problems nicht näher eintreten.

VII. Für die Praxis kommen im allgemeinen außer dem arithmetischen Mittel selbst
und dem exponentiellen Mittel, das in Finanz- und Versicherungsmathematik eine
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große Rolle spielt, von den quasiarithmetischen Mitteln nur die sog. klassischen
Mittelwerte in Frage. Wenn wir unter letzteren üblicherweise das kontraharmonische
Mittel (K), das quadratische Mittel (Q), das arithmetische Mittel (M), das geometrische

Mittel (G) und das harmonische Mittel (H) verstehen, so gilt bekanntlich

oder formelmäßig für ungewogene Mittel,

E_
E x — \ n ~~ n — r l ~~ Z xi

Wir geben im folgenden einen sehr einfachen Beweis für die Gültigkeit dieser

Größenordnung, der das Ergebnis eines brieflichen Gedankenaustausches mit Herrn
Bengt Äckerberg, Stockholm, ist.

h(x2)

\t
-f(x2)

m m
W

-m)m)

Fig. 6

Vorerst aber noch eine Bemerkung: Das kontraharmonische Mittel ist, als solches

betrachtet, kein quasiarithmetisches Mittel. Es ist nicht von der Gestalt (2) und
besitzt insbesondere auch Eigenschaft Ic nicht. Es ist auch im allgemeinen keine
in bezug auf das einzelne x% monotone Funktion, welche Eigenschaft für formelmäßige
Mittelwerte zumeist vorausgesetzt wird1). Das Dilemma verschwindet jedoch, wenn
wir das kontraharmonische Mittel lediglich als spezielle Position des gewogenen
arithmetischen Mittels m E kt xJE kt auffassen, wobei kt xt, was im Intervall
0 :g x < oo ohne weiteres zulässig ist. Ähnliche Vorbehalte und Überlegungen gelten
bezüglich der verallgemeinerten Potenzmittel2) überhaupt, worauf wir in anderem
Zusammenhange zurückzukommen uns vorbehalten.

Setzen wir nun xt M + dt. Es folgt dann bekanntermaßen aus der Definition des

arithmetischen Mittels wegen E xt n M, daß E öt 0. Außerdem ist E d\ ^ 0,
und der Ausdruck o*2 E b\\n ist das auf M bezogene Streuungsquadrat der x%.

x) A. Kolmogoroff, Sur la notion de la moyenne, Atti Reale Acad. naz. Lincei, 6. Ser., 12 (1930). — M. Na-
gumo, Über eine Klasse der Mittelwerte, Jap. J. Math. 7 (1930).

2) C. Gini, Di una formola comprensive delle medie, Metron, Rev. int. Statistica 13, 2 (1938).
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Nunmehr haben wir (wenn emfachheitshalber der Index i weggelassen wird)

K ~ ^ x*
— EJM+ö)2 __

nM2 + 2M£ö + Eö2
~E*~E{M+ö)~~ nM + £ö

nM ^ M

Weiter ist K2 [m + ^)= M2 + 2 er2 + -^
und Q2 ^^^±^^^1±^ M,^ n n n

Nun ist aber sicher 4

M2 + 2 o-2 + am ^ M2 + a2 > M2,

also K2^Q2>M2,dh K^Q^M
Dabei haben sich als Nebenprodukt die einfachen Beziehungen zwischen K Q

und M ergeben

Q2=M2+o2, K M+^-, m=K> also Q2=MK

Nunmehr setzen wir xt G e*1 Es folgt dann aus der Definition des geometrischen
Mittels wegen JT xt= Gn, daß E ol% 0 sein muß Weiter ist stets ex ^ 1 + x,
ungeachtet des Vorzeichens von x Fur positive x folgt die Ungleichung sofort aus der
bekannten Reihendarstellung

fur negative x z B aus der Überlegung, daß y 1 + x die Tangente an £* im Punkte
(0, 1) ist Also gilt

M __ J>l _
_____>!___ > G2;(i + yJ G <*2X Gmm m M '

und 1 _ _____ ______ > i^1-**) x _£«.___ i
if m Gm ~ Gm G Gm G '

d h M^G^H
H Jecklin, Zürich

Eine einfache Berechnung der Mantelfläche
eines Drehkegelhufes1)

c) Es soll nun der Mantelinhalt eines Drehkegelhufes berechnet werden, der
zwischen einem Hyperbelbogen und dem ihm in der Zentralprojektion aus 5 entsprechenden

Bogen des Grundkieises gelegen ist (Abb 3 wurde fur die Annahme q < p
entworfen

*) Erster Teil in Heft 4 (1949) dieser Zeitschrift
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