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112 H Jecklin Quasiarithmetische Mittelwerte

Quasiarithmetische Mittelwerte
I. Sind xx ^ x2 ___

• • •
___ xn reelle Größen, so ist bekanntlich ihr arithmetisches

Mittel definiert als „

*=_£-?• (i)

Unter einem einfachen quasiarithmetischen Mittel versteht man sodann eine
Mittelbildung, welche sich aus der Gleichsetzung

*/M=if/(*.) (2)
l

ergibt, also von der Gestalt ist

„__„(£_£>
worin cp die Umkehrfunktion von f(x) bedeutet, d. h. cp[f(x)] x. Damit die
Mittelbildung eindeutig durchführbar ist, muß f(x) in dem zu mittelnden Intervall
notwendigerweise reell, eindeutig, stetig, endlich und streng monoton sein1). Die
einfachen quasiarithmetischen Mittel sind symmetrische Funktionen der x%.

Wir nennen vorerst drei Eigenschaften der quasiarithmetischen Mittel, die wir im
folgenden benötigen:

a) Haben wir einen Mittelwert gemäß (2) und sind k% (i — 1, 2, n) positive
Konstanten, so ist auch

m ¦¦

ein Mittelwert, und zwar ein gewogenes quasiarithmetisches Mittel. Denn ist f(x)
monoton steigend, so ist

f{xJZkt£Zktf{x,)£f(xJZkt.
Aber ist f(x) monoton fallend, so ist

f{xj£kt^2kj(x,)^f(xn)i:kt.
In beiden Fällen aber ist 2)

' _?*,/(*,)'*,_,(^)_*,.
Die gewogenen Mittel sind nicht mehr symmetrische Funktionen der xt.

b) Die quasiarithmetische Mittelbildung ist gegenüber linearer Transformation von
f(x) invariant, d. h. wenn in (3) die Funktion f(x) durch a f(x) + b, wobei a und b

konstant, ersetzt wird, so ändert sich der Wert des Mittels nicht. Denn aus

[f(m) a+b]Zkt Z{kt [f(xt) a + b]}

x) G. Aumann, Aufbau von Mittelwerten mehrerer Argumente, Math Ann. 109 (1933).
2) H. Jecklin, Der Begriff des mathematischen Mittelwertes und du Mittelwertformeln, Vjschr naturf.

Ges. Zürich 93, 1 (1948)
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folgt unmittelbar m cp(^j^)
c) Bei der Bildung quasiarithmetischer Mittel darf eine Anzahl der zu mittelnden

Größen xt durch ihren Teilmittelwert ersetzt werden, d. h. es ist

£k /w \ / /(*) £ k +£k /wN
™ <p\ -i-^ ^ |, (4)

wobei x cp [ -h I, h < n,
EK

EKf{xx

was sofort evident ist.
II. Nach der von Jensen1) gegebenen Definition nennt man eine Funktion f(x)

in einem Intervall konvex, wenn im ganzen Intervall für xt 4= xk die Ungleichung

/(*») + H*k) > /(^)
erfüllt ist. Gilt die Ungleichung in umgekehrtem Sinne, so ist f(x) konkav. Kommt
das Gleichheitszeichen nicht in Frage, so ist die Funktion streng konvex bzw. streng
konkav.

Hat eine Funktion f(x) außer den eingangs für die Mittelbildung geforderten
Eigenschaften noch die Besonderheit, konvex oder konkav zu sein, so können wir vier
Fälle unterscheiden:

konvex steigend, konvex fallend, konkav steigend, konkav fallend.

Jensen hat folgende Ungleichung bewiesen: Sind xt (i 1, 2, n) reelle Größen,
kt (i — 1, 2, n) beliebige positive Konstanten, f(x) eine Funktion mit den
geforderten Eigenschaften, cp deren Umkehrfunktion, dann ist

' ZK*%\ < ZKtWi
EK EK

'EK*%\ > EKf(*i)wenn /(*) konvex, bzw. / ~£~) S_ -£{— >

wenn f(x) konkav, woraus folgt

— j—*- __5 <P ~y r1) > wenn f{%) konvex steigend oder
konkav fallend

—=_ tr-L ^ cp y }-*-) > wenn f(x) konkav steigend oder

konvex fallend

(5)

Diese Jensensche Ungleichung gibt die Möglichkeit, zu entscheiden, ob die
quasiarithmetische Mittelbildung nach einer konvexen oder konkaven Funktion größere

*) V. Jensen, Sur les fonctions convexes et les inigalites entre les valeurs moyennes, Acta mathematica 30
(1905).

El. Math 8
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oder kleinere Werte als das arithmetische Mittel liefert, wofür wir im folgenden
einige Beispiele anführen werden.

III. Vorerst geben wir eine einfache und anschauliche Herleitung des Satzes von
Jensen (5), wobei wir uns auf den Fall steigender Konvexität beschränken; die
übrigen drei Fälle lassen sich einfach in sinngemäßer Abwandlung erledigen. Der
Beweisgang stützt sich auf folgenden Hilfssatz:

Ist f(x) eine steigende konvexe Funktion, g(f) a £ -f b eine Gerade, und ist
weiter für £x <g xx und f2 ^ x2

.&)=/(*_) ™d g(_2H/(*2),

so ist für g(v) *^±^> ___ f(m) __- M^LIMM
/" y „(/«)] __w 9>[/(w)],

wobei y die Umkehrfunktion von g(f), 9? jene von f(x) bedeutet (Fig. 1).

9(h)

SM
Sfo)

m)

tt
-rm
w,j

\, fi x, m £, x.

Fig. 1

(6)

tä,)"-fM

ffm)SM w

Sfo) fM P,

m m

Flg. 2

Seien nun zwei reelle Größen x1 < x2 gegeben und eine steigende konvexe Funktion
f(x) sowie deren Umkehrfunktion <p. Weiter sei g(f) a f + b die Gerade durch die
Punkte Px und P2 mit den Koordinaten [xlt /(%)] und [x2, /(-g)], und y sei die
Umkehrfunktion von y(|) (Fig. 2).

Es ist also £1 #1, l2 #2 un(i g(£i) fixi)> .(£_) /(^)- Bezeichnen wir mit
£1( £2 zwei positive Konstanten, so ist gemäß (6)

rC«)
*i g(li) + *2 ff(fs) » > *i /<*x) + *2 /(*.)

rt| -p /to *?i r" **2

also /i y [g(/i)] ^m cp [f(m)].

Nachdem aber fx %, f2 #2>1S* offenbar, in Anwendung von Ib,

K ia xi + b) + k2 (a x2 + b) — (kt + k2)b kt xt -f- k2 x%
/w y[g(^)] (Ä! + K) a fc\ 4" R%

Das heißt es ist jbt das mit den gleichen Gewichten wie das quasiarithmetische Mittel
m gebildete arithmetische Mittel, womit (5) für n 2 bewiesen ist.

Seien nun drei reelle Größen % < #2 < #3 gegeben und eine steigende konvexe
Funktion f(x) mit der Umkehrfunktion cp; kt seien die zu x{ gehörigen positiven
Gewichte (i 1, 2, 3).
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Nun bilden wir vorerst für xx und x2 die beiden Teilmittelwerte /x und m in der
soeben beschriebenen Weise. Es ist also fx ^ tn, und g(ju) f(m). — Wir bezeichnen
sodann die Gerade durch die Punkte P' und P3 mit den Koordinaten \p, f(m)] und
[xz> f(xz)\ mit g(?) 0 £ + 5. Wenden wir nun Hilfssatz (6) in bezug auf die Abszissen

li<Lm, £3 xz und die zugehörigen Funktionswerte g(/x) f(m) und g(f3) f(x3)
an, so folgt:

_M

also

(K + K)g(/*) + Kg(h)
/(w)

(K + h) /(*») + ä8 /(*_)

^ y[g(^)] ___ w y[/(w)].

-/%;_VsV

-/^y

_W

MJ

/jl m /ix2 m x3

Fig. 3

Nun ist einerseits nach Ib:

ii
/vi X-i -p /vo -^v«+ «2 *2 /

TAT"''!"
Äl_(^l) + Ä2^(^2) \ _ - / *1 g(*l) + *2 (*2> \

j -y\ k1+k2

und anderseits nach Ic:

'(K + K)g(p) + Ki(h)
ti y ((K + K)gW + Kg(h)\ -(\ kt+k2+k3 y\

k1g{x1) + k2g(x2) + kzg{xz)
&! + k2 + h

K /(%) + k2 f(x2) + kz f(xz)
™ m{(K + K)f('») + Kf(*z)\ __ „,/w== <P[— vT^T^ / " *T

Sodann gilt, wiederum nach Ib:

- __ (Kg(*i) + Kg(*%) + Kg(**)\ K xi + K*2-
p y\ kl + k2 + kz K + k2 +

so daß wir haben:

kt x1 + k2x2 + kzxz - t kt f(xx) + k2 f(x2) + kz f(xz)
"S m cp I

K + k2 + kz

R\ x\ -\r R><1 %<L"\- #3 #3
;

¦)•

)•

H
«j + **2 4~ "3 ^1 + ^2 + ^3 )¦

Damit ist (5) für n 3 bewiesen. Der Beweisgang ist evidenterweise, immer unter
Verwendung der gleichen Hilfssätze, fortsetzbar, so daß (5) bei den gemachten
Voraussetzungen über f(x) für beliebiges n gilt. (Schluß folgt.) H. Jecklin, Zürich.
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