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112 H. JeckrLIN: Quasiarithmetische Mittelwerte

Quasiarithmetische Mittelwerte

I. Sind x; < %, < --- < x,, reelle GroBen, so ist bekanntlich ihr arithmetisches
Mittel definiert als "
Y X;

Unter einem einfachen quasiarithmetischen Mittel versteht man sodann eine Mit-
telbildung, welche sich aus der Gleichsetzung

n fim) = f(x) (2)

ergibt, also von der Gestalt ist

worin ¢ die Umkehrfunktion von f(x) bedeutet, d. h. ¢ [f(x)] = x. Damit die Mittel-
bildung eindeutig durchfiihrbar ist, muB f(x) in dem zu mittelnden Intervall not-
wendigerweise reell, eindeutig, stetig, endlich und streng monoton sein?). Die ein-
fachen quasiarithmetischen Mittel sind symmetrische Funktionen der ;.

Wir nennen vorerst drei Eigenschaften der quasiarithmetischen Mittel, die wir im
folgenden bendtigen:

a) Haben wir einen Mittelwert gemiB (2) und sind %; ({ =1, 2, ..., n) positive
Konstanten, so ist auch

e 3)

ein Mittelwert, und zwar ein gewogenes quasiarithmetisches Mittel. Denn ist f(x)
monoton steigend, so ist

flx)) 2 by < Z ks () < f(%0) 2k
Aber ist f(x) monoton fallend, so ist
fx)) Z ks = Z ki f(x5) = [(%0) 2 ki

In beiden Fillen aber ist 2)

o (Zkif(”i))

2 kz' f (x1)
n = p( S5 ) < .
Die gewogenen Mittel sind nicht mehr symmetrische Funktionen der x;.
b) Die quasiarithmetische Mittelbildung ist gegeniiber linearer Transformation von
/() invariant, d. h. wenn in (3) die Funktion f(x) durch a f(x) 4+ b, wobei a und &
konstant, ersetzt wird, so dndert sich der Wert des Mittels nicht. Denn aus

[f(m) a + ) 2 k; = Z{k; [{(%,) a + b]}

1) G. AuMANN, Aufbau von Mittelwerien mehverer Argumente, Math. Ann. 109 (1933).

2) H. JeckLIN, Der Begriff des mathematischen Mittelwertes und die Mittelweriformeln, Vischr. naturf.
Ges. Ziirich 93, 1 (1948).
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folgt unmittelbar m = (p(—%'fk(—x’)—) .

c) Bei der Bildung quasiarithmetischer Mittel darf eine Anzahl der zu mittelnden
Gré6Ben x; durch ihren Teilmittelwert ersetzt werden, d. h. es ist

n h n
1 1 h+1
m = QU n = (p ”n ’ (4)
2k 2k
1 1
h
2 R f(xy)
wobei X=¢ ——1—7‘“—“ <,
2k

was sofort evident ist.
II. Nach der von JENSEN?!) gegebenen Definition nennt man eine Funktion f(x)
in einem Intervall konvex, wenn im ganzen Intervall fiir x;+ %, die Ungleichung

1) + f(x) %, +
=75
erfiillt ist. Gilt die Ungleichung in umgekehrtem Sinne, so ist f(x¥) konkav. Kommt
das Gleichheitszeichen nicht in Frage, so ist die Funktion streng konvex bzw. streng
konkav.

Hat eine Funktion f(x) auBer den eingangs fiir die Mittelbildung geforderten Eigen-

schaften noch die Besonderheit, konvex oder konkav zu sein, so konnen wir vier
Fille unterscheiden:

konvex steigend, konvex fallend, konkav steigend, konkav fallend.

JENSEN hat folgende Ungleichung bewiesen: Sind #; (1 =1, 2, ..., n) reelle GroBen,
ki(i=1,2,...,n) beliebige positive Konstanten, f(x) eine Funktion mit den gefor-
derten Eigenschaften, ¢ deren Umkehrfunktion, dann ist

f(Ek % ) = 2 Rkif(x)

et =T
wenn f(x) konvex, bzw. f( Zf;kx ) > Eﬂgll;(al,

wenn f(x) konkav, woraus folgt

Zkix ® ( 2 ;,2 J ) , wenn f(x) konvex steigend oder

konkav fallend

(5)

PALIIES @ (;7.;32 ixi) ) , wenn f(x) konkav steigend oder

konvex fallend

Diese Jensensche Ungleichung gibt die Moglichkeit, zu entscheiden, ob die quasi-
arithmetische Mittelbildung nach einer konvexen oder konkaven Funktion gréBere

1) V. JENSEN, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta mathematica 30
(1905).

El. Math.8
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oder kleinere Werte als das arithmetische Mittel liefert, wofiir wir im folgenden
einige Beispiele anfithren werden.

ITI. Vorerst geben wir eine einfache und anschauliche Herleitung des Satzes von
JENSEN (5), wobei wir uns auf den Fall steigender Konvexitit beschrinken: die
tibrigen drei Fille lassen sich einfach in sinngemiBer Abwandlung erledigen. Der
Beweisgang stiitzt sich auf folgenden Hilfssatz:

Ist f(x) eine steigende konvexe Funktion, g(§) = a £ + 6 ecine Gerade, und ist
weiter fiir & < x, und &, < «,

g(6) = f(x) und  g(&) = f(x,),

so ist fiir g(p) = Fr g5 + Ry 8(55) = f(m) = Ry 1(%1) + kg [(%)

kl + k2 k]_ ot kz ’
1= ylgw)] = m= g[f(m)], (6)
wobei y die Umkehrfunktion von g(£), ¢ jene von f(x) bedeutet (Fig. 1).
)
92) 91&:)| - Te)
g\ =trm)
1Y)\ =m)
9&) Nida70n 9 iﬁ/x’)
,_T - -———H,I, -

Seien nun zwei reelle GréBen x; < x, gegeben und eine steigende konvexe Funktion
f(x) sowie deren Umkehrfunktion ¢. Weiter sei g(%) = a & + b die Gerade dunch die
Punkte P, und P, mit den Koordinaten [x;, f(x;)] und [%,, f(#5)], und y sei die
Umkehrfunktion von y(&) (Fig.2).

Es ist also & = x,, & = x, und g(§;) = f(x1), g(&) = f(x,). Bezeichnen wir mit
ky, ky zwei positive Konstanten, so ist gemal3 (6)

ky g(&) + Ry g(&y) ky f(xy) + By f(2,)
g({u): : k11+k: 2 :f(m): ! ;:1+k: : ’

also u="y[gp] =m=gp[fm)].

Nachdem aber &, = x,, & = #,, ist offenbar, in Anwendung von Ib,

, By(@axy+b)+ky(axy+0)—(Ry+ k)b kywy+Eky 2y
um= y[g(l’l’)] = (k1+k2)a - k1+k2

Das heiBt es ist u das mit den gleichen Gewichten wie das quasiarithmetische Mittel
m gebildete arithmetische Mittel, womit (5) fiir » = 2 bewiesen ist.

Seien nun drei reelle Gréen x; < x, < x; gegeben und eine steigende konvexe
Funktion f(x) mit der Umkehrfunktion ¢@; k; seien die zu x; gehdrigen positiven
Gewichte (1 = 1, 2, 3).
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Nun bilden wir vorerst fiir x; und «x, die beiden Teilmittelwerte x und  in der
soeben beschriebenen Weise. Es ist also ¢ < m, und g(u) = f(m). — Wir bezeichnen
sodann die Gerade durch die Punkte P’ und P; mit den Koordinaten [u, f(m)] und
[#3, f(%5)] mit g(§) = a &+ b. Wenden wir nun Hilfssatz (6) in bezug auf die Abszissen
u = m, & = x3 und die zugehdrigen Funktionswerte g(u) = f(m) und g(&) = /(%,)
an, so folgt:

= (k1 + ko) E(p) + k3 B(&3) — (k1 + Ry) f(m) + kg f(x5)
g(p) = ‘_I—E;%Tk%??ef_ T o= fm) = Ry + Fy £ k: =

also p=ygu)] =m=@fim)].

Nun ist einerseits nach Ib:

_ Rixm Ry _ (klg(x1)+k2g(x2)) _ —(k1§(x;)+k2§(”2))
=R+ hy + Py by + Fy

und anderseits nach Ic:

- —( (ky + ko) E(p) + k3§(§3)) . —-(klé?(’ﬁ) + kg g(%,) + kag(xa))
By + kg + kg =7 ky + by + kg ’

— (Ry + ko) f(m) + k3 f(%3) \ _ Ry f(x1) + ko F(%g) + k3 /(%)
"= ( Fy+ ky + Fg )“¢( byt kg + Fg y

Sodann gilt, wiederum nach Ib:

- (klg(xl)+k2g"(x2)+k3g(x3)) _ Rixmit hyxp+ kg 7y
r=7 ky+ kg + kg ky+ kg + kg ’

so daB3 wir haben:

—  hyx Ry xp+ kg ag < = (klf(xl)+k2f(x2)+k3f(x3))
#= ky+ kg + kg = 4 ky+ kg + kg ’

Damit ist (5) fiir » = 3 bewiesen. Der Beweisgang ist evidenterweise, immer unter
Verwendung der gleichen Hilfssitze, fortsetzbar, so daB (5) bei den gemachten
Voraussetzungen iiber f(x) fiir beliebiges # gilt. (SchluB folgt.) H. JECKLIN, Ziirich.
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