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56 W. Prokor: Zum Drallsatz fiir den starren Korper

durch x geteilt und x = 0 gesetzt:

1 —1 1 —1
2t (2a) * 2yt (2g) = 4
2
also Al = mf .
Gleichung (4) lautet jetzt
(Zq + 1) - (2 g f1) T 24+ 1 (’16) = Ay qa X2+ Ay y 22974 - A 2P,
Wird ¥ =1, 2, ..., » eingesetzt und summiert, so ergibt sich wegen (2):
n41 — 2 +1
(Zq + 2) + (Zq »IZL 2) T 2¢4+1 (n 2 ): Aggi1 Spqpa(m) + oo+ Ay Sg(n).  (5)

Die linke Seite von Gleichung (5) ist aber gleich

n(n+4 1) n—1 —_n—2

(29+1)(2g +2) [( 29 )+( 2¢q )“29"2]'

Durch die Substitution #» — 1 = (£ — 3)/2, also ¢ = 2# + 1, nimmt der Klammeraus-
druck folgende Form an:

t—3 —t—3
( g ) + <~~7"—w> — 2 ¢ — 2 = gerade Funktion von ¢£.
2q 2q

Diese gerade Funktion verschwindet aber fiir £ = - 1, denn

)+ () -20-2-1 212020

2q
Der Ausdruck ist deshalb durch #2 — 1 =4 (n? 4 n) teilbar, so daB Gleichung (5)
wird :
w2+ 1)2F, 1 [(2n+ 1)%] = Ayqyy Spqpa(®) + -+ + Az Sy(n). (6)

Indem man in Gleichung (6) nacheinander 2¢ + 1= 3,5, 7, ... einsetzt, ergibt sich
die Richtigkeit der Formel b).

Die Berechnung der Koeffizienten von S,(n) wird erleichtert, wenn man sich der
Identitdt bedient: S, (1) — S,(n— 1) = m.

H. KrEeis, Winterthur.

Zum Drallsatz fiir den starren Korper')

1. Zum Drallsatz bei ebener Bewegung

Fiir die Rotation eines starren Koérpers um eine raum- und korperfeste Achse gilt
bekanntlich der Drallsatz in der Form:

@‘Z{[ZM, (1)

1) Dieser Artikel ist ein Auszug aus einem vom Verfasser bearbeiteten Paragraphen des demnichst
im Reinhardt-Verlag, Basel, erscheinenden Buches Grundrif der Physik von Prof. Dr. P. HUBER und
Prof. P. FRAUENFELDER.
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worin ¢ die Zeit, @ das Tragheitsmoment des Korpers fiir die Drehachse, o die Winkel-
geschwindigkeit und M die Summe der Drehmomente aller am Kérper angreifenden
Krifte beziiglich der Drehachse bedeuten. Bewegt sich ein starrer Korper ebewn (d. h.
bewegen sich alle seine Teilchen parallel zu einer festen Ebene E, der Bewegungs-
ebene) und bedeuten @, M, die zu @, M analogen GroBen in bezug auf die Schwer-
achse normal zur Bewegungsebene, so gilt weiter:

dwm
0, ~ u,. @)

o ist darin die Winkelgeschwindigkeit in bezug auf ein System, das mit dem Schwer-
punkt verbunden ist und sich translatorisch bewegt. Ein Index eriibrigt sich insofern,
als die Winkelgeschwindigkeit beziiglich aller translatorisch bewegten Systeme, die
mit irgendeinem Korperpunkt verbunden sind, die gleiche ist.

Fig.1. Die Momentanachse d steht in 4 senkrecht zur Zeichenebene.

Nun kann jede ebene Bewegung eines starren Kérpers momentan als Rotation um
_ eine bestimmte Gerade normal zur Bewegungsebene, die Momentanachse, aufgefal3t
werden. So rotiert etwa ein Rad, das auf einer Ebene geradlinig rollt ohne zu gleiten,
momentan um die Beriihrungsmantellinie. Man kann sich nun fragen, unter welchen
Bedingungen der Drallsatz in der Form (1) auch beziiglich dieser Momentanachse
gelte. Die Antwort lautet: Dies ist der Fall, wenn der Abstand des Schwerpunktes
von der Momentanachse zeitunabhingig ist (wie etwa beim rollenden Rad).

Diese unseres Wissens wenig bekannte Beziehung erlaubt bei manchen Problemen
eine Vereinfachung der Rechnungen, wie an Beispielen gezeigt werden wird.

Zum Beweis des Satzes denken wir uns zuerst alle am Korper angreifenden Krifte

dquivalent ersetzt durch die Einzelkraft Rim Schwerpunkt und das Drehmoment M
um die Schwerachse normal zur Bewegungsebene. Der Schwerpunktsatz liefert

dann einen Zusammenhang zwischen R und der Schwerpunktsbeschleunigung.
Ist » der Abstand des Schwerpunktes S von der Momentanachse d (Fig. 1) und ist die-
ser Abstand zeitunabhdingig, so hat die Tangentialkomponente der Schwerpunktsbe-
schleunigung den Betrag r (dw/dt). Die Voraussetzung der zeitlichen Konstanz von r
ist dabei wesentlich; andernfalls tritt ein Zusatzglied infolge der Anderung von » auf!

Fiir die Tangentialkomponente der Kraft R ergibt sich also, wenn m die Masse des

Korpers bedeutet :
dw

Riyg=mr —-.
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Damit konnen wir die Summe M, der Drehmomente aller Krifte beziiglich der
Momentanachse d berechnen. Sie ist:

dw

My=M,+7r-mvr TR

Addieren wir jetzt auf beiden Seiten der Gleichung (2) den Ausdruck mr%dw/dt,
so erhalten wir auf der rechten Seite gerade M, . Die linke Seite wird
da
(O, + mr?) 7(;1 .
Nach dem Satz von STEINER ist der Ausdruck in der Klammer das Tragheitsmoment
des Korpers beziiglich d. Daher gilt:

d
0, 5 = M. (3)

Ist bei ebener Bewegung eines starren Korpers der Abstand des Schwerpunktes von
der Momentanachse zeitunabhingig, so kann der Drallsatz so formuliert werden, wie
wenn die Momentanachse raumfeste Drehachse ware.

Beispiel 7: Auf einer horizontalen, rauhen, aber undeformierbaren Ebene rolle ein

Rad ohne zu gleiten unter dem EinfluB einer horizontalen Zugkraft Z normal zur Rad-
achse geradeaus (Fig.2). Nach (3) gilt dann: :

woraus sich die Bewegung berechnen laBt.
Mit dem Drallsatz beziiglich der Schwerachse dagegen erhilt man

dw
O, 5 = ak

und muB noch den Schwerpunktsatz
d%x dw .
m “‘aﬁ‘z's‘ = ma - =7Z — R
zu Hilfe nehmen, um R zu eliminieren.

Beispiel 2: An einer vertikalen Mauer lehne eine Leiter mit der Lange 2 a (Fig. 3).
Die Reibung werde vernachldssigt. Die Leiter wird dann gleiten, und solange ihr
oberes Ende die Wand noch beriihrt, geht die Momentanachse durch den Schnitt-
punkt der Wirkungslinien der Auflagerkrdfte. Ihr Abstand vom Schwerpunkt ist
dann a und daher zeitlich konstant. Die Bewegung wird durch den Winkel ¢ voll-
standig beschrieben, und fiir ihn gilt nach (3):

d?*g
(O, +ma?) —5 = — mgacosg. (4)
Daraus 1dBt sich die Funktion ¢ (#) bestimmen.

Ohne Beniitzung von (4) wird die Rechnung bedeutend umstandlicher:

Drallsatz fiir die Schwerachse:

d2p .
O, ;» =Hasing —V acose. (5)
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a2
Schwerpunktsatz: m "‘d}zs“ = I, (6)
dzy,
m—s-=V—0. (7)
Geometrische Bedingungen:
Xg=acosQ; Y,=asing. (8)

Nun hitte man mit Hilfe von (8) aus (6) und (7) H und 1" als Funktionen von ¢ zu
berechnen und in (5) einzufiihren.

VA
A Vi
&
pd S
/ o\
7
AN
7 I A
Fig. 3

2. Zum allgemeinen Drallsatz

Bekanntlich ist das resultierende (vektorielle) Moment aller an einem Massen-
punkthaufen angreifenden Krifte in bezug auf einen Punkt 4 dann gleich der zeit-
lichen Ableitung des Dralls des Punkthaufens beziiglich des gleichen Punktes, wenn 4
entweder raumfest oder der Systemschwerpunkt ist. Gewohnlich wird zuerst die erste

Fig. t

Aussage bewiesen und dann daraus die zweite gefolgertl). Durch Spezialisierung
erhidlt man weiter die Gleichungen (1) und (2). Im folgenden sei noch gezeigt, wie
man alle diese Aussagen und ferner noch Gleichung (3) als Spezialfille einer etwas
allgemeineren Beziehung erhalten kann.

1) Vgl. etwa: E. MeissNert und H. ZIEGLER, Mechanik, Bd. 11: Dynamik der starren Kérper (Birk-
hduser, Basel 1947).
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Ein Massenpunkt m bewege sich beliebig. Seine Lage in einem raumfesten Koor-
dinatensystem sei durch den Ortsvektor 7 gegeben (Fig. 4). Seine Geschwindigkeit
ist dann 7 = d7/dt, sein Impuls [ = m 3. Ferner sei A ein beliebig bewegter Raum-
punkt, dessen Lage durch den Ortsvektor @ beschrieben werde. Der Vektor von 4
nach  sei mit § bezeichnet, so daB

S=7-—a. (9)
Der Drall von m beziiglich 4 ist das Vektorprodukt
EA == [E, f] .

Diese definierende Gleichung gilt fiir jede Zeit £ und darf daher nach ¢ differenziert
werden : b a5 i
4 _ |x af a5 =
Cdt [S’ dt]+ [dt’]]'

Hierin ersetzen wir im zweiten Glied der rechten Seite nach (9) § durch 7 — z und

erhalten: dﬁA I- dj P a5 .
@ =S a +[E¢”]]“[ET'1]'

Nach dem Impulssatz ist f gleich der Resultierenden aller an m angreifenden Kriifte,
und daher bedeutet das erste Glied der rechten Seite das Moment M, aller Krifte
beziiglich 4. Das zweite Glied verschwindet, da d7/dt = v parallel zu | = m ¥ ist.
Im letzten Glied ist da/dt die Geschwindigkeit v, von 4, so daB wir erhalten:

ab, . . =
th :%“[UA:]]' (10)

Dies ist der Drallsatz fiir einen Massenpunkt beziiglich eines bewegten Raumpunkies A.
Fiir ein ganzes System von Massenpunkten sind Drall, resultierendes Moment und
Impuls die Summen der betreffenden GréBen fiir die Einzelteilchen. Stellt man also

(10) fiir alle Einzelteilchen auf und summiert dann, so erhilt man, da Summation
und Differentiation vertauschbar sind und das Vektorprodukt distributiv ist, eine

Gleichung von derselben Form, in der nun DA, M 4> ] die totalen GréBen fiir das
ganze System bedeuten. In diesem Sinne gilt also (10) auch fiir ein System von Mas-
senpunkten.

Aus (10) erhdlt man nun einerseits den Drallsatz beziiglich eines raumfesten Punk-
tes, wenn man 7, = 0 setzt, andererseits den Drallsatz in bezug auf den Schwerpunkt,
indem man v, mit der Geschwindigkeit 75 des Schwerpunktes identifiziert. Das Vek-
torprodukt in (10) verschwindet auch im zweiten Fall, da der Impuls des Systems
proportional zu g ist.

Aus diesen beiden Sdtzen erhdlt man die Gesetze (1) und (2), indem man nur die
Orthogonalprojektionen der auftretenden Vektoren auf die raumfeste Drehachse bzw.
die Schwerachse normal zur Bewegungsebene betrachtet. Wir verzichten darauf,
diese bekannten Uberlegungen hier zu wiederholen, sondern wollen nur noch zeigen,
wie man auf analoge Weise das Gesetz (3) aus (10) erhilt.

Der Korper bewege sich eben, d sei die Momentanachse, und als Bezugspunkt 4
wihlen wir den FuBpunkt des Lotes vom Schwerpunkt auf 4. Die Orthogonalprojek-

tion von M 4 auf 4 ist die Summe M, der statischen Momente aller Krifte beziiglich
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d. Die Projektion von 5A hat den Wert 6, w, da die Geschwindigkeitsverteilung die
einer Rotation um 4 ist. Da sich d translatorisch verlagert, sind ferner Projektions-

bildung und Ableitung nach der Zeit vertauschbar, so daB3 die Projektion von d5A Jdt

auf d durch d(0, w)/dt gegeben wird. Das Vektorprodukt [v4, J ] steht normal zur
Bewegungsebene, ist also parallel zu d. Seine Projektion auf d verschwindet daher

genau dann, wenn es selbst 0 ist. Wenn wir von den trivialen Fillen 7, = 0 und f =0
absehen, ist das dann und nur dann der Fall, wenn v, und J dauernd parallel sind.

f = m g steht wegen der Rotation um d senkrecht zum Abstand » des Schwerpunktes
von der Momentanachse (Fig.1). Also muB dies auch fiir 7, der Fall sein. Dann sind
aber die Orthogonalprojektionen von 7, und vs auf  beide 0, und dies ist gleichbedeu-
tend damit, dal} die Lange von 7 sich nicht dndert. Diese Bedingung ist also notwen-

dig und hinreichend dafiir, daB die Projektion von [7,, J] auf d verschwindet. Ist sie

erfiillt, so wird wegen des Satzes von STEINER auch @), zeitunabhingig, und man
erhilt aus (10) das Gesetz (3):

dw

d
At (@d w) Od dt ZMd.
W. Prokor, Winterthur.

Kleine Mitteilungen

1. Dev Zusammenhang zwischen dem Beviihvungsproblem von Apollonius
und einer Aufgabe der darstellenden Geometriel)

Fiir das Beriihrungsproblem von ApoLLoONIUS, bei dem die Kreise gesucht werden, die
drei gegebene Kreise beriihren, ist von GERGONNE folgende LLosung angegeben worden:

Sind etwa diejenigen beiden Kreise gesucht, die alle drei gegebenen Kreise %, (i =1,
2, 3) von auBen bzw. umschlieBend beriihren, so suche man die Pole P; der dulleren
Ahnlichkeitsachse der k;. Verbindet man diese Pole mit dem Potenzzentrum P der k,,
so schneiden diese Geraden die k; in den sechs Beriihrungspunkten der beiden ge-
suchten Kreise.

Einen planimetrischen Beweis findet man etwa in DORRIE, Triumph der Mathe-
matik.

Es ist nun bemerkenswert, daB3 man diese Konstruktion zwangsldufig erhilt, wenn
man die Aufgabe 16st, die gemeinsamen Punkte S von drei Rotationskegeln mit par-
allelen Achsen und gleichen Offnungswinkeln mit den Methoden der darstellenden
Geometrie zu finden. Setzt man namlich einen Drehkegel mit demselben Offnungs-
winkel so in die andern hinein, da@ er sie beriihrt, so wird seine Spitze in den gemein-
samen Schnittpunkt S der drei gegebenen Kegel zu liegen kommen, und ein beliebiger
ebener Schnitt senkrecht zu den Kegelachsen zeigt, daB mit der Konstruktion dieses
Punktes S die Apolloniussche Kreisaufgabe gelost ist. Zu diesem Zwecke wird man nun,
da sich dhnliche Drehkegel mit parallelen Achsen bekanntlich in ebenen Kurven, Hyper-
beln,schneiden, die drei Hyperbelebenen zu schneiden versuchen und dabei feststellen,
daB sie eine Schnittgerade gemeinsam haben. Diese ist dann noch mit einem der Kegel zu
durchstoBen. Bei der Durchfuhrung der Konstruktion wird man gewahr, da@} sie sich

L)y Dieser /usammenh ang findet sich im Rahmen der Theorie de1 «/vklog,rdphlsc‘hcn Abbildungen», d. h.
einer Zuordnung der orientierten Kreise der Ebene zu den Punkten des Raumes, dargestellt bei E. MULLER,
Vorlesungen iiber darstellende Geometrie, Bd. 2: Zyklographie (Deuticke, Leipzig und Wien 1923), und bei
FIEDLER, Darstellende Geometrie, Bd. 1 (Teubner, Leipzig 1883). Zur weiteren Orientierung iiber derartige
Abbildungen vgl. etwa KLEIN, Hohere Geometrie (Springer, Berlin 1926).



	Zum Drallsatz für den starren Körper

