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34 P Matthieu Über das Iterationsverfahren von Picard Lindelof

Als Beispiel sei eine Wurzel der Gleichung x2—4x~5 0 interpoliert1) Wir setzen
a 2,5, b =- 2,4, c 2,45, mithin f(a) - 0,776, f(b) 0,625, f(c) - - 0,093875,
und rechnen mit einer Rechenmaschine, welche fur Multiplikator oder Divisor bloß
acht Ziffern einzustellen erlaubt (also einem nicht sehr leistungsfähigen Instrument)

— 1 401 0 093875 0 05 2 5 — 0 682125 0 625 01 2 45
X —

1 401 0 093875 0 05 — 0 682125 0 625 0 1

012089025
0 049208757

2,45668

Man verifiziert mit der Rechenmaschine sofort, daß vier Kommastellen genau smd
und die fünfte aufgerundet ist Dieses in einem Schritt sich ergebende Resultat wird
bei anderen bekannten Naherungsverfahren erst durch wiederholte Anwendung
erreicht Die hyperbolische Näherung ist natürlich auch fortsetzbar

Abschließend sei darauf hingewiesen, daß die hyperbolische Interpolation nicht
nur praktische Vorteile besitzt, sondern auch in didaktischer Hinsicht em dankbares
Problem darstellt, indem sich hier zwangslos Fragen der projektiven Geometrie,
analytischen Geometrie, Funktionenlehre und Algebra verbinden lassen

H Jecklin

Über das Iterationsverfahren von
Picard-Lindelöf zur angenäherten Lösung gewöhnlicher

Differentialgleichungen
Unter allen Methoden zur naherungsweisen Losung gewöhnlicher Differentialgleichungen

nimmt das Iterationsverfahren von Picard-Lindelof2) eine besonders wichtige

Stellung ein Es ist außerdem so leicht zu verstehen, daß es m seinen einfacheren
Formen auch an Mittelschulen, an denen Differentialgleichungen behandelt werden,
ohne weiteres durchgenommen werden kann Im folgenden sollen deshalb die Grundzuge

dieses Verfahrens sowie einige der Praxis des Verfassers entstammende Gesichtspunkte

fur die Anwendung kurz zusammengestellt werden Fur em näheres Studium
vergleiche man die m den Noten 3 bis 7 genannten Werke

Das Iterationsverfahren findet in verschiedenen Gestalten Verwendung, vor allem
kann es m analytischer und in graphischer Form durchgeführt werden Die letztere ist
ganz besonders elegant und bequem im Gebrauch, jedoch ist sie wie alle graphischen
Methoden an die Grenzen der Zeichengenauigkeit gebunden Immerhin ist es m den
meisten Fallen ohne allzu große Muhe möglich, auf graphischem Wege eine Genauig-

*) Vgl L Locher Ernst, Differential und Integralrechnung (Birkhauser, Basel 1948) S 97
2) Es wird auch als Methode der sukzessiven Approximationen bezeichnet und neben dem hier verfolgten

praktischen Zwecke oft auch zum Beweise von Existenztheoremen verwendet
3) Kamke Differentialgleichungen, 2 Aufl (Leipzig 1943), S 4 und Teil A, § 8
4) Hörn, Gewöhnliche Differentialgleichungen, Goschens Lehrbucherei, Bd 10, 3 Aufl (Berlin und

Leipzig 1937), 2 und 3 Kap
5) Bieberbach, Theorie der Differentialgleichungen, 3 Aufl (Berlin 1930), 2 Kap
6) Runge und Konig, Numerisches Rechnen (Berlin 1924), 10 Kap
7) Picard, Traue" d Analyse, 3 Aufl (Paris 1925), Bd II, Kap 11



P Matthifu Über das Iterationsverfahren von Picard Lindelof 35

keit etwa bis zu einem Promille zu erreichen, was fur die Mehrzahl der praktisch sich
stellenden Aufgaben vollauf genügt Besonders wertvoll smd einige in neuerer Zeit
entstandene Weiterbildungen des Verfahrens, unter denen das sog Extrapolations-
verfahren von Adams besonders hervorzuheben ist Dieses letztere gilt heute
unbestritten als die wichtigste und praktischste Methode zur numerischen Integration
gewohnlicher Differentialgleichungen

Das Verfahren kann auf alle gewöhnlichen Differentialgleichungen angewandt werden,

die nur gewissen Stetigkeitsbedingungen genügen müssen Es soll aber zunächst
fur den Fall der Gleichungen erster Ordnung beschrieben werden Es sei eine solche
Gleichung in der Form

y f(x> y) (1)

gegeben, und es soll diejenige Losung y(x) gefunden werden, die fur das Argument
x x0 den Funktionswert y y0 annimmt Die Gleichung (1) kann auch einschließlich

der Randbedingungen m Form der Integralgleichung
X

y yoJrjf(%,y)dx (2)
x0

geschrieben werden Den Kern des Iterationsverfahrens bildet dann der folgende Satz
Die Funktion f(x, y) sei im Rechteck | x — x01 ^ a, \ y — y01 ^b (wobei a und b auch

unendlich sein können) stetig und genüge dort den Ungleichungen

\f(x,y)\^L,
df(x y)

dy ä M, (3)

wobei L und M positive Konstanten sind Ferner sei eine im obigen Rechteck verlaufende,
stetige und stuckweise stetig differenzierbare Ausgangsfunktion yx(x) gegeben, die nur
durch den Anfangspunkt P(x0, y0) gehen und der Ungleichung

\yi(*)\£N (4)

genügen soll Bezeichnet dann q die kleinere der Zahlen a und b/L, so konvergiert die in
Analogie zur rechten Seite von (2) gebildete Funktionenfolge

X

y2W yo+j f(x>yi)dx>

(5)

X

yn(x) yo+jf(x>yn-i)dx
Xo

für | x — x0\ ^ q stets absolut und gleichmäßig gegen die wirkliche Losung y(x) Die
Konvergenz erfolgt gemäß den Ungleichungen1)

| yM W - Vn (x) \£[L + N) M-i^t- (6)

x) Der Satz kann noch unter etwas allgemeineren Voraussetzungen bewiesen und auch noch etwas
verschärft werden Man vergleiche dazu die auf S 34 in den Noten 3 bis 7 genannten Werke Im folgen
den halten wir uns jedoch an die obige Formulierung, die praktisch immer genügt
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Die Reihe (5) konvergiert gemäß (6) ähnlich wie eine Exponentialreihe, also sehr

gut. Geometrisch hat die Bildung der Funktionen folge (5) die folgende Bedeutung:
Wenn man in dem zu f(x, y) gehörenden Richtungsfeld (Fig. 1) die Kurve yn(x)
gezogen denkt, so bedeutet der Übergang zu yn+1(x), daß man die auf der Kurve yn(x)
liegenden Linienelemente in vertikaler Richtung so verschiebt, daß sie sich zu einer
Kurve zusammenlügen. Es ist nun unmittelbar einleuchtend, daß die so entstehende
Kurve yn+x(x) sich bedeutend besser an die wirkliche Lösung y(x) anschmiegt als

Wxo.yo)
</<

yn+1 (x)

y»(x)

~- X

Fig. 1

yn(x) und daß man mit wachsendem n beliebig nahe an y(x) herankommt. Für die
Mittelschulstufe kann wohl diese Plausibüitätsbetrachtung genügen. Sie kann übrigens

insofern als völlig streng gelten, als man die Konvergenz der Reihe (5) gar nicht
notwendigerweise zu beweisen braucht, indem das Verfahren, wie sich nächstens zeigen

wird, von sich aus die Probe dafür liefert, wie genau jede der Näherungsfunktionen

(5) die wirkliche Lösung tatsächlich approximiert. Aber auch der strenge
Beweis des Satzes ist in keiner Weise schwierig. Er ist vollständig durchgeführt in den
auf S. 34 in den Noten 3 bis 7 genannten Werken und soll deshalb hier nicht wiederholt

werden. Gemäß (6) findet man weiterhin durch Vergleich mit der Exponentialreihe

die leicht durch Ausrechnung zu bestätigende Fehlerabschätzung:

\yn+i(x)-y(x)\^(L + N)M"-* (e* -1). (7)

welche auch für die numerische Rechnung brauchbar ist.
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Praktisch geht man jedoch unter Umgehung der immerhin nicht ganz einfachen
Voraussetzungen und Aussagen des ausgesprochenen Satzes fast immer so vor, daß
man nach Annahme einer möglichst guten Ausgangsfunktion yx(x) die Reihe (5) so
weit fortsetzt, bis sich die neu entstehenden Funktionen innerhalb der zugelassenen
Fehlergrenze nicht mehr ändern. Falls dies wirklich eintritt (was praktisch immer der
Fall ist), folgt dann gemäß (2), daß man die gesuchte Funktion y(x) tatsächlich mit
der geforderten Genauigkeit gefunden hat. Das Verfahren liefert also bei jedem Schritt
von sich aus gleichzeitig eine Probe für die Genauigkeit der errechneten Näherungsfunktion.

Dieser Umstand sowie die weitere Tatsache, daß etwaige während der Rechnung

unterlaufene Fehler mit der Zeit von selbst wieder korrigiert werden, sind zwei
weitere ausschlaggebende Vorteile, die das Iterationsverfahren in der Praxis so
beliebt machen.

Diese einfachen Prinzipien können nun in der mannigfachsten Weise weiterverwertet
werden. Zunächst soll die analytische Form des Verfahrens an zwei Beispielen

erläutert werden:
1. Beispiel: Es soll diejenige Lösung der Gleichung y' y gefunden werden, die

durch den Punkt P(0; 1) geht.
Nimmt man yx(x) 1 an, so folgt weiterhin

X X

y2(x) 1+ dx=l + x, ys(x) l+l(l + x)dx=l + x+^-
0 0

usw. Die Lösung der obigen Gleichung lautet bekanntlich y ex und die Funktionen
yn(x) sind also die Teilsummen der Taylorschen Reihenentwicklung der Lösung.

2. Beispiel: Es soll die Lösung der Gleichung y' y2 + x gefunden werden, die
durch den Ursprung geht1).

Die Lösung muß in der Nähe des Ursprungs parabelförmig verlaufen. Setzt man
also etwa yx(x) x2/2, so ergibt sich gemäß (5) durch leichte Rechnung

X5 X2 X11 X8 X5 X2

VM "20" + T ' y*W ^ 44ÖÖ" + T6Ö" + 1ÖT + ~2

usw. Für \x\ < 1 unterscheiden sich y2(x) und y3(x) bereits um weniger als 1%.
Wenn also z.B. die obige Gleichung im Intervall -l^^^l auf 1% genau
integriert werden soll, kann y2(x) als Lösung bereits genügen.

Die analytische Form dürfte damit klargestellt sein. Bei der Verwendung des
Iterationsverfahrens in graphischer Form müssen einfach die bisher analytisch durchgeführten

Operationen ins graphische Gebiet umgesetzt werden, wobei praktisch noch
viele Hilfsmittel (Rechenschieber und -maschinen, Nomogramme, Tabellen usw.) mit
großem Vorteil verwendet werden können. Vor allem ist es wichtig, eine geeignete
Methode der graphischen Integration zu kennen. Als solche hat sich das Integrationsverfahren

von Massau2) seiner enormen Einfachheit wegen weitaus am besten
bewährt. Der Grundgedanke und die Anwendung des Verfahrens können unmittelbar
aus Fig. 2 und dem dritten der durchgerechneten Beispiele ersehen werden. Im übri-

*) Es ist dies eine Riccatische Gleichung, die sich auf eine Besselsche zurückfuhren laßt.
2) Vgl. das in Note 3, S 34 genannte Werk, S. 157; ferner Hess, Praktische Mathematik (Zürich 1947),

§ 3, Locher, Differential- und Integralrechnung (Birkhauser, Basel 1948), S. 411-426, und Enzyklopädie
der mathematischen Wissenschaften, Bd 2, 3. Teil, 1. Hälfte, Abschn. C, Kap. 2, Nr. 12.
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gen genügt es wohl, das Iterationsverfahren in graphischer Form an einem Beispiel
durchzuführen:

3. Beispiel: Die Gleichung y' y2 + (x/4) — 1 soll im Intervall 0 ^ x ^ 1 gelöst
werden für den Fall, daß die Lösungskurve durch den Punkt P(0; 1) geht1).

Als Ausgangskurve verwenden wir die in Fig. 2 dargestellte, nach Gutdünken
angenommene Kurve yx(x). Davon ausgehend, muß nun zunächst die Funktion
f(xt yx) yx-\- (x/4) — 1 bestimmt werden (Fig. 2), was vermittels Rechenschieber,

y

y'«y'*£-/

</2 (*)

W

K,y,)=y/+$-r

Konstruktion vo/>JF{k yf)dx

Fig. 2

Quadratzahlentabelle oder einem Nomogramm geschehen kann. Weiterhin handelt es
sich darum, diese Kurve zu integrieren. Nach dem Verfahren von Massau teilt man
das Integrationsintervall in eine Anzahl beliebiger Teilintervalle, ersetzt in jedem dieser

letzteren die zu integrierende Funktion nach Augenmaß durch einen geeigneten
Mittelwert. Wie durch Versuche bestätigt wurde,'kann das mit außerordentlicher
Genauigkeit geschehen, da das Auge für solche Flächenabschätzungen sehr empfindlich
ist. Die Integration ist nun in einfachster Weise auf die Konstruktion eines Polygonzuges

zurückgeführt, den man am besten unter Verwendung eines Pols und der
zugehörigen Polstrahlen konstruiert (Fig. 2). Für ein genaueres Studium dieses praktisch

außerordentlich wichtigen Verfahrens vergleiche man die in Note 2, S. 37,
genannten Werke, wo auch einige weitere Varianten angegeben sind. In Fig. 2 sind fünf

*) Es ist dies eine Riccatische Gleichung, die sich auf eine Besselsche zurückführen läßt.
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x

Teilintervalle angenommen, und auf Grund von diesen ist der das Integral [ f(x, y) dx
o

approximierende Polygonzug gezeichnet, der in den Teilpunkten der Intervalle genau
mit diesem Integral übereinstimmt. Durch Addition von 1 erhält man daraus für die
Teilpunkte die Werte von y2(x) und kann diese Funktion zeichnen. Die Übereinstimmung

mit yx(x) ist noch nicht gut, und das Verfahren muß also fortgesetzt werden.
Etwa von n 4 an unterscheiden sich die Kurven yn(x) innerhalb der Zeichengenauigkeit

nicht mehr voneinander, so daß man dann also am Ziel ist. Durch geschicktere
Wahl von yx(x) hätte man eine bedeutend raschere Konvergenz erreichen können.
Um bereits yx(x) möglichst geeignet anzunehmen, gibt es spezielle Methoden, die in
den auf S. 34 in den Noten 3 bis 7 genannten Werken angegeben sind. Man vergleiche
dazu auch das unten zu besprechende Verfahren von Adams.

Nach den genau gleichen Prinzipien können auch Systeme von Differentialgleichungen
erster Ordnung und Differentialgleichungen höherer Ordnung behandelt werden,

wobei der letztere Fall im ersteren inbegriffen ist, da sich bekanntlich jede Gleichung
höherer Ordnung in einfachster Weise auf ein System von Gleichungen erster
Ordnung zurückführen läßt. Sind z.B. die beiden Gleichungen

y'= f1(x,y,z), z'^f2(x,y,z) (8)

gegeben und sollen diejenigen Lösungen y(x) und z(x) gefunden werden, die für x= x0
die Werte y y0 und z z0 annehmen, so kann man wieder zwei Ausgangsfunktionen

yx(x) und zx(x) annehmen, die nur den Anfangsbedingungen genügen müssen,
und ausgehend von diesen die Funktionenfolgen

X x

yn{%) yo+J fi(x> Vn-i > zn~i) dx, zn(x) zQ + J f2(x, yn_x, zn_x) dx (9)

bilden. In gleicher Weise kann man nach der obigen Bemerkung auch bei Gleichungen

höherer Ordnung (oder Systemen von solchen) vorgehen. Einfacher ist aber im
allgemeinen bei diesen letzteren die folgende einfache Modifikation dieser Methode:
Wenn z.B. die Lösung der Gleichung

y" - /(*, y, y') (10)

gefunden werden soll, die für x x0 die Anfangswerte y yQ und y' y£ annimmt,
kann man wieder von einer Ausgangsfunktion yx(x) und ihrer Ableitung y'x(x)

ausgehen, wobei diese Funktionen nur den Anfangsbedingungen genügen müssen und
dann die Folge

Vn(x) y0 + yi * +/ //(*> Vn-i > y'n-i) dx1 (11)
x0 x0

bilden. Ähnlich wie dies für die Gleichung (1) durch den oben ausgesprochenen Hauptsatz

geschah, läßt sich nun auch durch analoge Sätze für die Folgen (9) und (11) bzw.
für die entsprechenden Folgen im allgemeinsten Fall beweisen, daß diese Unter
gewissen (praktisch immer erfüllten) Stetigkeitsvoraussetzungen stets gegen die wirkliche

Lösung konvergieren.
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Praktisch ist es jedoch wie früher nicht notig, diese verhältnismäßig komplizierten
Konvergenzbetrachtungen anzustellen, da das Iterationsverfahren auch hier von sich
aus bei jedem Schritt die Probe dafür liefert, wie genau die betreffende Naherungs-
funktion an die wirkliche Losung herankommt Man kann also auch bei Gleichungs-
systemen und Gleichungen höherer Ordnung rem formal die zugehörigen Funktionen-
folgen bilden und dann aus diesen selbst die Konvergenzverhaltnisse ersehen Es
bedarf wohl keiner besonderen Erwähnung, daß auch hier die graphische Form des
Verfahrens besonders praktisch ist Es soll nun noch em Beispiel fur die Integration einer
Gleichung höherer Ordnung gegeben werden

4 Beispiel Die Gleichung y" xy soll fur die Anfangsbedingungen y(0) 1 und
y'(0) 0 integriert werden1)

Wenn man yx(x) 1 setzt, so ergibt sich gemäß (11)

X X

y2(x) 1 + ffx dx2=l + ^-,
0 0

x x

ya(x) l+ffx(l + ^)dx*=l X* Xv

~6~ + 180
0 0

usw Die Funktionen yn(x) smd wieder die Teilsummen der Reihenentwicklung der
Losung, wie man dies durch Integration vermittels Potenzreihen leicht bestätigt

Aus den vorstehenden Entwicklungen geht hervor, daß das Iterationsverfahren m
der Nahe des Ausgangspunktes stets außerordentlich rasch konvergiert, in größerer
Entfernung dagegen etwas weniger gut Auf dieser Tatsache beruht das sogenannte
Extrapolationsverfahren von Adams, welches eine einfache Weiterbildung des
Iterationsverfahrens ist und ohne Zweifel sowohl analytisch wie graphisch die heute
gebräuchlichste Methode zur Losung gewöhnlicher Differentialgleichungen darstellt Der
einfache Grundgedanke dieses Verfahrens ist der, daß man eine gegebene Gleichung
(oder ein Gleichungssystem), ausgehend vom Anfangspunkt, nach den bisherigen
Methoden nicht über die ganze verlangte Intervallange integriert, sondern nur über ein
verhältnismäßig kleines (je nach dem Fall anzunehmendes) Teilstuck dieser letzteren
In diesem konvergieren nach der obigen Bemerkung die zu bildenden Funktionenfolgen

sehr rasch Statt mit dem Iterationsverfahren zu operieren, kann man die
gegebene Gleichung in diesem ersten Teilstuck auch nach einer andern Methode

integrieren Im vierten Beispiel kommt man z B fur kleine Werte von x sehr rasch
vermittels Potenzreihen zum Ziel Nachdem nun also der Verlauf der Losung im ersten
Teilmtervall auf irgendeine Weise möglichst genau bestimmt ist, kann man jetzt durch
Extrapolation den Verlauf fur em zweites Teilmtervall bestimmen und dann die so

extrapolierte Losung, ausgehend vom Endpunkt des ersten Intervalls, durch Iteration
verbessern In ähnlicher Weise kann man weitere Teilintervalle verwenden bis das

Gesamtintervall, m dem die Gleichung gelost werden soll, erschöpft ist Das ist der
einfache Grundgedanke dieses Verfahrens Gegenüber dem bisherigen Vorgehen
besitzt es zwei wesentliche Vorteile. Erstens wird durch Verwendung kiemer Intervalle,
wie bereits bemerkt, die Konvergenz beschleunigt, und zweitens wird die gleiche Wir-

*) Es ist dies im wesentlichen eine Besselsche Gleichung
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kung dadurch erzielt, daß auf Grund der Extrapolation bereits die Ausgangskurve in
jedem Teilintervall gut gewählt wurde. Das Verfahren konvergiert also äußerst rasch.
Meist kommt man mit einer Iteration aus.

Die Extrapolation kann in verschiedener Weise bewerkstelligt werden. Es sei etwa
eine Gleichung der Form (1) zu integrieren und es bezeichne y*(x) eine längs einem
oder mehreren Intervallen bereits bekannte, genügend genaue Näherung für die
Lösung. Für das erste Intervall wird ja von Anfang an eine solche sehr genau bestimmt.
Bei der Durchführung in graphischer Form kann man nun einfach die Kurve y*(x)
nach Gutdünken zeichnerisch ins nächste Intervall fortsetzen, was in den meisten
Fällen mit großer Genauigkeit geschehen kann, und dann diese Fortsetzung,
ausgehend vom Anfangspunkt des Intervalls, durch Iteration verbessern. Man wird dabei

mit sehr wenigen Iterationen, sehr oft mit einer einzigen auskommen. Diese
graphische Form ist speziell für technische Zwecke außerordentlich geeignet. Um z.B.
die Gleichung des dritten Beispiels nach dem Extrapolationsverfahren zu lösen, kann
man das Intervall O^^^l etwa in vier Teilintervalle zerlegen und dann für diese
auf die angegebene Weise sukzessive die Integralkurve bestimmen.

Zur Durchführung in analytischer Form kann man entweder die gleichen Operationen

in analytischer Gestalt durchführen. Eine viel größere Genauigkeit erreicht man
aber, wenn man, ausgehend von der Näherung y*(x), zunächst die Funktion f(x, y*)
für eine Reihe äquidistanter Abszissen berechnet, welch letztere man in geeigneter
Weise in den Intervallen annimmt, in denen y*(x) bekannt ist. Stellt man dann für
diese Werte das Interpolationspolynom P(x) nach Lagrange, Newton, Stirling
oder Bessel auf, so wird dieses die zur Lösung y(x) gehörende Funktion f(x, y) auch
im nächsten Intervall sehr gut approximieren. Außerdem ist es, was für die Iteration
wichtig ist, sehr leicht zu integrieren. Bildet man also, falls etwa xa die Anfangsabszisse

des nächsten Intervalls bezeichnet, entsprechend (5) den Ausdruck

X

y*(xa) +fP(x) dx, (12)

xa

so stellt dieser im nächsten Intervall die wirkliche Lösung mit außerordentlicher
Annäherung dar. In gleicher Weise kann man weiterfahren und die Lösungskurve in
weitere Intervalle fortsetzen. Nach dieser Methode wird also unmittelbar nicht y*(x),
sondern f(x, y*) extrapoliert.

Die systematische Durchführung dieses Gedankens läßt sich weitaus am besten
durch die Mittel der Differenzenrechnung bewerkstelligen und führt auf wunderbar
einfache Lösungsformeln. Ein näheres Eintreten auf diese ziemlich ausgedehnten
Entwicklungen würde jedoch den Rahmen dieses Aufsatzes überschreiten. Sie finden sich
schön dargestellt in dem auf S. 34 in Note 3 genannten Werk, wo auch noch
verschiedene Ergänzungen und weitere Literaturangaben zum Extrapolationsverfahren
zu finden sind.

Das Iterationsverfahren ist ohne weiteres auch auf das komplexe Zahlengebiet
übertragbar, jedoch werden die Berechnungen hier sofort viel komplizierter. Ferner
ergeben sich in praktischen Fällen noch mancherlei Vereinfachungen, die unter
Umständen für die Durchführung einer Rechnung von ausschlaggebendem Wert sein
können. Für den wichtigsten Fall der linearen Gleichung zweiter Ordnung sei z.B.
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erwähnt, daß sich jede solche Gleichung durch eine einfache Umformung auf eine
Riccatische Gleichung der ersten Ordnung zurückfuhren laßt1), welch letztere sich
außerordentlich gut zur Anwendung des Iterationsverfahrens eignet

P Matthieu, Zürich.

Kleine Mitteilungen

I Zur Prismatoidformel

In der Stereometrie definiert man das Pnsmatoid als em Vielflach, dessen Ecken
alle m zwei parallelen Ebenen liegen und dessen Seitenflachen im allgemeinen Dreiecke
smd Das Volumen hangt ab vom Abstand h der Parallelebenen, von der Grundflache G,
der Deckflache D und der Mittelschnittflache M

F=^(G|4M + D)

Der Nenner gehört eigentlich zur Klammer, denn die Hohe wird mit einem gewogenen
Mittel aus den drei Flachen multipliziert, wobei die sehr formbestimmende Mittelschnitt -
flache vierfaches Gewicht aufweist Die Herleitung durch Zerlegen in Pyramiden ist
bekannt2)

Eigenartig ist nun, daß diese Volumenformel fur eine viel allgemeinere Familie
von Korpern gilt, namhch fur die Simpsonschen Körper*), bei diesen ist die
Querschnittflache eine ganze rationale Funktion von höchstens dem 3 Grade in bezug
auf den Abstand von der einen Grundflache, diese kann auch auf einen Punkt
zusammenschrumpfen Der Abstand sei x, dann lautet die Behauptung, wenn
Q(x) *+ßx + yx2+öx*

n

a + ß x + y x2 -f <5 #3) dx
*

(G + 4 M + D),

worin G <2(0) a, M Q(h/2), D Q(h), der Beweis ist leicht zu fuhren Er laßt
sich aber auch auf einem lehrreichen, kleinen Umweg erlangen Das Integral ist additiv
Es laßt sich daher zerlegen in das Integral über einer Konstanten und die drei Integrale
über die Potenzen von x, diese und nur diese lassen sich zusammenfassen, weil ihnen
gemeinsam ist, daß fur sie die Grundflache verschwindet Der Zerlegung des ganzen
Integrals entspricht eine Aufspaltung des Simpsonschen Korpers in vier verschiedene
Teilkorper Der einfachste, der zur Konstanten a gehört, stellt ein Prisma oder einen
Zylinder dar, wobei nach dem Prinzip von Cavalieri die Querschnitte erst noch in
ihren Ebenen verschoben werden dürfen Fur diesen Korper ist also D M G a),
als gewogenes Mittel kommt z B G heraus, und es entsteht weiter nichts als die Volu
menformel des Prismas

Die übrigen Teilkorper ruhen auf der Grundebene nur mit einer Ecke (Spitze) oder
Linie, sie breiten sich nach oben je nach dem Exponenten linear aus (wie em Keil)
oder pyramidenförmig oder (bei der 3 Potenz) noch starker als eine Pyramide Ihre
Querschnittfunktion kann geschrieben werden

Q(x) kxn (mit n 1, 2 oder 3)

J) Vgl das in Note 3, S 34, genannte Werk, S 21-24
2) Zum Beispiel W Benz, Stereometrie Leitfaden (Orell Fußh, Zürich, 1938)
8) L Locher, Differential und Integralrechnung (Birkhauser, Basel 1948), S 382
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