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34 P. Mattuiev: Uber das Iterationsverfahren von PICARD-LINDELSF

Als Beispiel sei eine Wurzel der Gleichung x3— 4 x — 5= 0 interpoliert?). Wir setzen
a=25 b=24, c=245, mithin f(a) = — 0,776, f(b) = 0,625, f(c) = — 0,093875,
und rechnen mit einer Rechenmaschine, welche fiir Multiplikator oder Divisor blo
acht Ziffern einzustellen erlaubt (also einem nicht sehr leistungsfiahigen Instrument):

—1,401.0,093875-0,05-2,5 — 0,682125-0,625.0,1-2,45
—1,401.0,093875.0,05 — 0,682125.0,625-0,1

0,12089025

= 5.049208757 — 245008.

Man verifiziert mit der Rechenmaschine sofort, da vier Kommastellen genau sind
und die fiinfte aufgerundet ist. Dieses in einem Schritt sich ergebende Resultat wird
bei anderen bekannten Ndherungsverfahren erst durch wiederholte Anwendung er-
reicht. Die hyperbolische Ndherung ist natiirlich auch fortsetzbar.

AbschlieBend sei darauf hingewiesen, daB8 die hyperbolische Interpolation nicht
nur praktische Vorteile besitzt, sondern auch in didaktischer Hinsicht ein dankbares
Problem darstellt, indem sich hier zwangslos Fragen der projektiven Geometrie,
analytischen Geometrie, Funktionenlehre und Algebra verbinden lassen.

H. JECKLIN.

Uber das Iterationsverfahren von
Picard-Lindelsf zur angeniherten Losung gewohnlicher
Differentialgleichungen

Unter allen Methoden zur niherungsweisen Losung gewéhnlicher Differentialglei-
chungen nimmt das Iterationsverfahren von PICARD-LINDELOF?) eine besonders wich-
tige Stellung ein. Es ist auBerdem so leicht zu verstehen, daB es in seinen einfacheren
Formen auch an Mittelschulen, an denen Differentialgleichungen behandelt werden,
ohne weiteres durchgenommen werden kann. Im folgenden sollen deshalb die Grund-
ziige dieses Verfahrens sowie einige der Praxis des Verfassers entstammende Gesichts-
punkte fiir die Anwendung kurz zusammengestellt werden. Fiir ein ndheres Studium
vergleiche man die in den Noten 3 bis 7 genannten Werke.

Das Iterationsverfahren findet in verschiedenen Gestalten Verwendung; vor allem
kann es in analytischer und in graphischer Form durchgefiihrt werden. Die letztere ist
ganz besonders elegant und bequem im Gebrauch, jedoch ist sie wie alle graphischen
Methoden an die Grenzen der Zeichengenauigkeit gebunden. Immerhin ist es in den
meisten Fillen ohne allzu groBe Miihe moglich, auf graphischem Wege eine Genauig-

1y Vgl. L. LocHER-ERNST, Differential- und Integralrechnung (Birkhiuser, Basel 1948), S. 97.

2) Es wird auch als Methode der sukzessiven Approximationen bezeichnet und neben dem hier verfolgten
praktischen Zwecke oft auch zum Beweise von Existenztheoremen verwendet.

3} KAMKE, Differentialgleichungen, 2. Aufl. (Leipzig 1943), S. 4 und Teil A, § 8.

4) Horn, Gewdhnliche Differentialgleichungen, Goschens Lehrbiicherei, Bd. 10, 3. Aufl. (Berlin und
Leipzig 1937), 2. und 3. Kap.

5) BieBerBACH, Theorie der Differentialgleichungen, 3. Aufl. (Berlin 1930), 2. Kap.

8) RunGEe und Ko6niG, Numerisches Rechnen (Berlin 1924), 10. Kap.

%) PicArD, Traité 4’ Analyse, 3. Aufl, (Paris 1925), Bd. 11, Kap. 11.
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keit etwa bis zu einem Promille zu erreichen, was fiir die Mehrzahl der praktisch sich
stellenden Aufgaben vollauf geniigt. Besonders wertvoll sind einige in neuerer Zeit
entstandene Weiterbildungen des Verfahrens, unter denen das sog. Extrapolations-
verfahren von ApAMs besonders hervorzuheben ist. Dieses letztere gilt heute unbe-
stritten als die wichtigste und praktischste Methode zur numerischen Integration
gewohnlicher Differentialgleichungen.

Das Verfahren kann auf alle gewhnlichen Differentialgleichungen angewandt wer-
den, die nur gewissen Stetigkeitsbedingungen geniigen miissen. Es soll aber zunéchst
fir den Fall der Gleichungen erster Ordnung beschrieben werden. Es sei eine solche
Gleichung in der Form Y — Hx, 3) 1)

gegeben, und es soll diejenige Losung y (x) gefunden werden, die fiir das Argument
x = %, den Funktionswert y = y, annimmt. Die Gleichung (1) kann auch einschlieB-
lich der Randbedingungen in Form der Integralgleichung

Y= yo+ /'f(x, y) dx (2)

geschrieben werden. Den Kern des Iterationsverfahrens bildet dann der folgende Satz:
Die Funktion f(x, v) set im Rechteck |x — xy| < a, |y — yo| = b (wobei a und b auch
unendlich sein kRonnen) stetig und geniige dort den Ungleichungen

fayl st | T <, ®)

wobet L und M positive Konstanten sind. Ferner ser etne im obigen Rechteck verlaufende,
stetige und stiickweise stetig differenzierbare Ausgangsfunkiion y,(x) gegeben, die nur
durch den Anfangspunkt P(x,; v,) gehen und der Ungleichung

[yi(®)] =N (4)

gendigen soll. Bezeichnet dann o die kleinere der Zahlen a und b/L, so konvergiert die in
Analogie zur rechten Seite von (2) gebildete Funktionenfolge

yl(x)J

ya(%) = Yo +/f(x, y1)4ax,

Ya(¥) = Yo +//(x, Vn-1) 4%

fiir |x — x| < o stets absolut und gleichmdfrg gegen die wirkliche Losung y(x). Die
Konvergenz erfolgt gemdaf den Ungleichungen?)

[¥ — "ol_’i

| Vni1(#) — Ya(2)| = (L + N) Mt . (6)

1) Der Satz kann noch unter etwas allgemeineren Voraussetzungen bewiesen und auch noch etwas
verschirft werden. Man vergleiche dazu die auf S. 34 in den Noten 3 bis 7 genannten Werke. Im folgen-
den halten wir uns jedoch an die obige Formulierung, die praktisch immer geniigt.
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Die Reihe (5) konvergiert gemaf (6) dhnlich wie eine Exponentialreihe, also sehr
gut. Geometrisch hat die Bildung der Funktionenfolge (5) die folgende Bedeutung:
Wenn man in dem zu f(#, y) gehorenden Richtungsfeld (Fig. 1) die Kurve v,(x) ge-
zogen denkt, so bedeutet der Ubergang zu y,_ (%), daB man die auf der Kurve v,(x)
liegenden Linienelemente in vertikaler Richtung so verschiebt, daf3 sie sich zu einer
Kurve zusammentiigen. Es ist-nun unmittelbar einleuchtend, daB die so entstehende
Kurve y, (%) sich bedeutend besser an die wirkliche Losung y(x) anschmiegt als

L4

A
/Qynn (X)

Plxo. 4) 4/7p7/4’

Yo

Xo

Fig. 1

y.(x) und daf man mit wachsendem # beliebig nahe an y(x) herankommt. Fiir die
Mittelschulstufe kann wohl diese Plausibilitdtsbetrachtung gentigen. Sie kann iibri-
gens insofern als vollig streng gelten, als man die Konvergenz der Reihe (5) gar nicht
notwendigerweise zu beweisen braucht, indem das Verfahren, wie sich nichstens zei-
gen wird, von sich aus die Probe dafiir liefert, wie genau jede der Nédherungsfunk-
tionen (5) die wirkliche Losung tatsichlich approximiert. Aber auch der strenge Be-
weis des Satzes ist in keiner Weise schwierig. Er ist vollstindig durchgefiihrt in den
auf S. 34 in den Noten 3 bis 7 genannten Werken und soll deshalb hier nicht wieder-
holt werden. GemaB (6) findet man weiterhin durch Vergleich mit der Exponential-
reihe die leicht durch Ausrechnung zu bestitigende Fehlerabschidtzung:

¥ — 2" —
| Ynea(#) — 9(0)] = (L + N) M-t B arismsnd gy, 7)

welche auch fiir die numerische Rechnung brauchbar ist.
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Praktisch geht man jedoch unter Umgehung der immerhin nicht ganz einfachen
Voraussetzungen und Aussagen des ausgesprochenen Satzes fast immer so vor, daB3
man nach Annahme einer mdéglichst guten Ausgangsfunktion y,(x) die Reihe (5) so
weit fortsetzt, bis sich die neu entstehenden Funktionen innerhalb der zugelassenen
Fehlergrenze nicht mehr dndern. Falls dies wirklich eintritt (was praktisch immer der
Fall ist), folgt dann gemdB (2), daB man die gesuchte Funktion y(x) tatsidchlich mit
der geforderten Genauigkeit gefunden hat. Das Verfahren liefert also bei jedem Schritt
von sich aus gleichzeitig eine Probe fiir die Genauigkeit der errechneten Niherungs-
funktion. Dieser Umstand sowie die weitere Tatsache, daB etwaige wihrend der Rech-
nung unterlaufene Fehler mit der Zeit von selbst wieder korrigiert werden, sind zwei
weitere ausschlaggebende Vorteile, die das Iterationsverfahren in der Praxis so be-
liebt machen.

Diese einfachen Prinzipien kénnen nun in der mannigfachsten Weise weiterverwer-
tet werden. Zunéchst soll die analytische Form des Verfahrens an zwei Beispielen
erldutert werden:

1. Beisprel: Es soll diejenige Losung der Gleichung y’ = y gefunden werden, die
durch den Punkt P (0; 1) geht.

Nimmt man y,(x) =1 an, so folgt weiterhin

d x
2
yal) =1+ [dx=1+x  g@=1+[(+0dx=1+5+7%
0 0

usw. Die Losung der obigen Gleichung lautet bekanntlich y = ¢* und die Funktionen
va(%) sind also die Teilsummen der Taylorschen Reihenentwicklung der Losung.

2. Beisprel: Es soll die Losung der Gleichung y’ = y% + x gefunden werden, die
durch den Ursprung geht?).

Die Losung mull in der Nahe des Ursprungs parabelférmig verlaufen. Setzt man
also etwa y,(x) = x2/2, so ergibt sich gemdf (5) durch leichte Rechnung

e %2 211 %8 %5 22

v =gtz W= Gt i Tty

usw. Fiir |x| = 1 unterscheiden sich y,(x) und ys(x) bereits um weniger als 1%,.
Wenn also z.B. die obige Gleichung im Intervall —1 < x <1 auf 19, genau
integriert werden soll, kann y,(x) als Losung bereits geniigen.

Die analytische Form diirfte damit klargestellt sein. Bei der Verwendung des Itera-
tionsverfahrens in graphischer Form miissen einfach die bisher analytisch durchge-
fiihrten Operationen ins graphische Gebiet umgesetzt werden, wobei praktisch noch
viele Hilfsmittel (Rechenschieber und -maschinen, Nomogramme, Tabellen usw.) mit
groBem Vorteil verwendet werden kénnen. Vor allem ist es wichtig, eine geeignete
Methode der graphischen Integration zu kennen. Als solche hat sich das Integrations-
verfahren von MAssau?) seiner enormen Einfachheit wegen weitaus am besten be-
wihrt. Der Grundgedanke und die Anwendung des Verfahrens kénnen unmittelbar

aus Fig. 2 und dem dritten der durchgerechneten Beispiele ersehen werden. Im iibri-

1y Es ist dies eine Riccatische Gleichung, die sich auf eine Besselsche zuriickfithren 14Bt.

2) Vgl. das in Note 3, S. 34 genannte Werk, S. 157; ferner Hess, Praktische Mathematik (Ziirich 1947),
§ 3, LocHER, Differential- und Integralvechnung (Birkhduser, Basel 1948), S. 411-426, und Enzyklopddie
der mathematischen Wissenschaften, Bd. 2, 3. Teil, 1. Hilfte, Abschn. C, Kap. 2, Nr. 12.
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gen geniigt es wohl, das Iterationsverfahren in graphischer Form an einem Beispiel
durchzufiihren:

3. Beispiel: Die Gleichung y’ = y2+ (x/4) — 1 soll im Intervall 0 < x <1 gelost
werden fiir den Fall, daB die Lésungskurve durch den Punkt P (0; 1) geht?).

Als Ausgangskurve verwenden wir die in Fig. 2 dargestellte, nach Gutdiinken
angenommene Kurve y,(x). Davon ausgehend, muB nun zunichst die Funktion
f(%, y1) = v, + (x/4) — 1 bestimmt werden (Fig.2), was vermittels Rechenschieber,

Y
4
Yo (%)
y"gyz*_;‘(__j 7 Yy (%)
$% =7
F, 4)=g% -7
77 7y ¥
N
—
//
e
A
=
// //( = X
X 7
Konstruktron von ﬁ[wl )
o
Fig. 2

Quadratzahlentabelle oder einem Nomogramm geschehen kann. Weiterhin handelt es
sich darum, diese Kurve zu integrieren. Nach dem Verfahren von MAssAU teilt man
das Integrationsintervall in eine Anzahl beliebiger Teilintervalle, ersetzt in jedem die-
ser letzteren die zu integrierende Funktion nach AugenmaB durch einen geeigneten
Mittelwert. Wie durch Versuche bestitigt wurde,’ kann das mit auBerordentlicher
Genauigkeit geschehen, da das Auge fiir solche Flichenabschitzungen sehr empfindlich
ist. Die Integration ist nun in einfachster Weise auf die Konstruktion eines Polygon-
zuges zuriickgefiihrt, den man am besten unter Verwendung eines Pols und der zu-
gehorigen Polstrahlen konstruiert (Fig. 2). Fiir ein genaueres Studium dieses prak-
tisch auBerordentlich wichtigen Verfahrens vergleiche man die in Note 2, S. 37, ge-
nannten Werke, wo auch einige weitere Varianten angegeben sind. In Fig. 2 sind fiinf

1) Es ist dies eine Riccatische Gleichung, die sich auf eine Besselsche zuriickfiihren 148t.
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x
Teilintervalle angenommen, und auf Grund von diesen ist der das Integral / f(x,y)dx
0

approximierende Polygonzug gezeichnet, der in den Teilpunkten der Intervalle genau
mit diesem Integral ibereinstimmt. Durch Addition von 1 erhilt man daraus fiir die
Teilpunkte die Werte von y,(x) und kann diese Funktion zeichnen. Die Ubereinstim-
mung mit y,(x) ist noch nicht gut, und das Verfahren muB also fortgesetzt werden.
Etwa von # = 4 an unterscheiden sich die Kurven y,(x) innerhalb der Zeichengenauig-
keit nicht mehr voneinander, so dal man dann also am Ziel ist. Durch geschicktere
Wahl von y,(x) hédtte man eine bedeutend raschere Konvergenz erreichen konnen.
Um bereits y,(x) moglichst geeignet anzunehmen, gibt es spezielle Methoden, die in
den auf S. 34 in den Noten 3 bis 7 genannten Werken angegeben sind. Man vergleiche
dazu auch das unten zu besprechende Verfahren von Apams.

Nach den genau gleichen Prinzipien kénnen auch Systeme von Differentialgleichun-
gen erster Ordnung und Differentialgleichungen héherer Ordnung behandelt werden,
wobei der letztere Fall im ersteren inbegriffen ist, da sich bekanntlich jede Gleichung
hoéherer Ordnung in einfachster Weise auf ein System von Gleichungen erster Ord-
nung zuriickfithren 148t. Sind z.B. die beiden Gleichungen

y"—‘fl(xl Y, 2’), z’=f2(x, Y, Z) (8)

gegeben und sollen diejenigen Losungen y(x) und 2(x) gefunden werden, die fiir x= x,,
die Werte y = y, und z = 2z, annehmen, so kann man wieder zwei Ausgangsfunk-
tionen y,(x) und 2,(x) annehmen, die nur den Anfangsbedingungen geniigen miissen,
und ausgehend von diesen die Funktionenfolgen

9al) = Yo+ [ F5, Vs, at) 43 2a(8) = 20+ | fol%, Yz, 2an)dx (9)

bilden. In gleicher Weise kann man nach der obigen Bemerkung auch bei Gleichun-
gen hoherer Ordnung (oder Systemen von solchen) vorgehen. Einfacher ist aber im
allgemeinen bei diesen letzteren die folgende einfache Modifikation dieser Methode:
Wenn z.B. die Losung der Gleichung

y' =% (10)

gefunden werden soll, die fiir x = x, die Anfangswerte y = y, und y'= y; annimmt,
kann man wieder von einer Ausgangsfunktion y,(x) und ihrer Ableitung y;(x) aus-
gehen, wobei diese Funktionen nur den Anfangsbedingungen geniigen miissen und
dann die Folge

yol%) = o+ Yo x+ [ [ 15 Yus, Vi) d? (1)

%o %o

bilden. Ahnlich wie dies fiir die Gleichung (1) durch den oben ausgesprochenen Haupt-
satz geschah, 148t sich nun auch durch analoge Sitze fiir die Folgen (9) und (11) bzw.
fiir die entsprechenden Folgen im allgemeinsten Fall beweisen, daf diese imnter ge-
wissen (praktisch immer erfiillten) Stetigkeitsvoraussetzungen stets gegen die wirk-
liche Losung konvergieren.
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Praktisch ist es jedoch wie frither nicht nétig, diese verhdltnisméBig komplizierten
Konvergenzbetrachtungen anzustellen, da das Iterationsverfahren auch hier von sich
aus bei jedem Schritt die Probe dafiir liefert, wie genau die betreffende Niaherungs-
funktion an die wirkliche Lésung herankommt. Man kann also auch bei Gleichungs-
systemen und Gleichungen héherer Ordnung rein formal die zugehoérigen Funktionen-
folgen bilden und dann aus diesen selbst die Konvergenzverhiltnisse ersehen. Es be-
darf wohl keiner besonderen Erwahnung, daB auch hier die graphische Form des Ver-
fahrens besonders praktisch ist. Es soll nun noch ein Beispiel fiir die Integration einer
Gleichung hoherer Ordnung gegeben werden:

4. Beispiel: Die Gleichung "’ = x y soll fiir die Anfangsbedingungen y(0) = 1 und
y’(0) = O integriert werden?).

Wenn man y,(x) = 1 setzt, so ergibt sich gemaB (11):

x x 3
yz(x)=1+//xdx2:1+%~,
00

46

x X xa xa
00

usw. Die Funktionen y,(x) sind wieder die Teilsummen der Reihenentwicklung der
Losung, wie man dies durch Integration vermittels Potenzreihen leicht bestitigt.
Aus den vorstehenden Entwicklungen geht hervor; da3 das Iterationsverfahren in
der Nihe des Ausgangspunktes stets auBerordentlich rasch konvergiert, in groerer
Entfernung dagegen etwas weniger gut. Auf dieser Tatsache beruht das sogenannte
Extrapolationsverfahren von Apawms, welches eine einfache Weiterbildung des Itera-
tionsverfahrens ist und ohne Zweifel sowohl analytisch wie graphisch die heute ge-
brauchlichste Methode zur Losung gewdhnlicher Differentialgleichungen darstellt. Der
einfache Grundgedanke dieses Verfahrens ist der, dal man eine gegebene Gleichung
(oder ein Gleichungssystem), ausgehend vom Anfangspunkt, nach den bisherigen Me-
thoden nicht iiber die ganze verlangte Intervallinge integriert, sondern nur iiber ein
verhidltnismiBig kleines (je nach dem Fall anzunehmendes) Teilstiick dieser letzteren.
In diesem konvergieren nach der obigen Bemerkung die zu bildenden Funktionen-
folgen sehr rasch. Statt mit dem Iterationsverfahren zu operieren, kann man die ge-
gebene Gleichung in diesem ersten Teilstiick auch nach einer andern Methode inte-
grieren. Im vierten Beispiel kommt man z.B. fiir kleine Werte von x sehr rasch ver-
mittels Potenzreihen zum Ziel. Nachdem nun also der Verlauf der Lésung im ersten
Teilintervall auf irgendeine Weise moglichst genau bestimmt ist, kann man jetzt durch
Extrapolation den Verlauf fiir ein zweites Teilintervall bestimmen und dann die so
extrapolierte Losung, ausgehend vom Endpunkt des ersten Intervalls, durch Iteration
verbessern. In dhnlicher Weise kann man weitere Teilintervalle verwenden bis das
Gesamtintervall, in dem die Gleichung gelost werden soll, erschopft ist. Das ist der
einfache Grundgedanke dieses Verfahrens. Gegeniiber dem bisherigen Vorgehen be-
sitzt es zwei wesentliche Vorteile. Erstens wird durch Verwendung kleiner Intervalle,
wie bereits bemerkt, die Konvergenz beschleunigt, und zweitens wird die gleiche Wir-

1) Esist dies im wesentlichen eine Besselsche Gleichung.
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kung dadurch erzielt, daBl auf Grund der Extrapolation bereits die Ausgangskurve in
jedem Teilintervall gut gewahlt wurde. Das Verfahren konvergiert also duBBerst rasch.
Meist kommt man mit einer Iteration aus.

Die Extrapolation kann in verschiedener Weise bewerkstelligt werden. Es sei etwa
eine Gleichung der Form (1) zu integrieren und es bezeichne y*(x) eine lings einem
oder mehreren Intervallen bereits bekannte, geniigend genaue Niherung fiir die Lo-
sung. Fiir das erste Intervall wird ja von Anfang an eine solche sehr genau bestimmt.
Bei der Durchfiihrung in graphischer Form kann man nun einfach die Kurve y*(x)
nach Gutdiinken zeichnerisch ins nichste Intervall fortsetzen, was in den meisten
Fallen mit groBer Genauigkeit geschehen kann, und dann diese Fortsetzung, aus-
gehend vom Anfangspunkt des Intervalls, durch Iteration verbessern. Man wird da-
bei mit sehr wenigen Iterationen, sehr oft mit einer einzigen auskommen. Diese gra-
phische Form ist speziell fiir technische Zwecke auBerordentlich geeignet. Um z.B.
die Gleichung des dritten Beispiels nach dem Extrapolationsverfahren zu 16sen, kann
man das Intervall 0 < x =< 1 etwa in vier Teilintervalle zerlegen und dann fiir diese
auf die angegebene Weise sukzessive die Integralkurve bestimmen.

Zur Durchfithrung in analytischer Form kann man entweder die gleichen Operatio-
nen in analytischer Gestalt durchfithren. Eine viel groBere Genauigkeit erreicht man
aber, wenn man, ausgehend von der Naherung y*(x), zunédchst die Funktion f(x, y*)
fir eine Reihe dquidistanter Abszissen berechnet, welch letztere man in geeigneter
Weise in den Intervallen annimmt, in denen y*(x) bekannt ist. Stellt man dann fiir
diese Werte das Interpolationspolynom P(x) nach LAGRANGE, NEWTON, STIRLING
oder BEssEL auf, so wird dieses die zur Losung y(x) gehérende Funktion f(x, y) auch
im nichsten Intervall sehr gut approximieren. Auflerdem ist es, was fiir die Iteration
wichtig ist, sehr leicht zu integrieren. Bildet man also, falls etwa x, die Anfangs-
abszisse des nichsten Intervalls bezeichnet, entsprechend (5) den Ausdruck

yH(e) + [ P() dx, (12)

so stellt dieser im nichsten Intervall die wirkliche Lésung mit auBerordentlicher An-
niherung dar. In gleicher Weise kann man weiterfahren und die Losungskurve in
weitere Intervalle fortsetzen. Nach dieser Methode wird also unmittelbar nicht y*(x),
sondern f(x, ¥*) extrapoliert.

Die systematische Durchfithrung dieses Gedankens 1at sich weitaus am besten
durch die Mittel der Differenzenrechnung bewerkstelligen und fithrt auf wunderbar
einfache Losungsformeln. Ein nidheres Eintreten auf diese ziemlich ausgedehnten Ent-
wicklungen wiirde jedoch den Rahmen dieses Aufsatzes {iberschreiten. Sie finden sich
schoén dargestellt in dem auf S. 34 in Note 3 genannten Werk, wo auch noch ver-
schiedene Ergianzungen und weitere Literaturangaben zum Extrapolationsverfahren
zu finden sind.

Das Iterationsverfahren ist ohne weiteres auch auf das komplexe Zahlengebiet tiber-
tragbar, jedoch werden die Berechnungen hier sofort viel komplizierter. Ferner er-
geben sich in praktischen Fillen noch mancherlei Vereinfachungen, die unter Um-
stinden fiir die Durchfithrung einer Rechnung von ausschlaggebendem Wert sein
kénnen. Fiir den wichtigsten Fall der linearen Gleichung zweiter Ordnung sei z.B.
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erwihnt, daB sich jede solche Gleichung durch eine einfache Umformung auf eine
Riccatische Gleichung der ersten Ordnung zuriickfiithren 14Bt?), welch letztere sich
auBerordentlich gut zur Anwendung des Iterationsverfahrens eignet.

P. MATTHIEU, Ziirich.

Kleine Mitteilungen

I. Zur Prismatoidformel

In der Stereometrie definiert man das Prismatoid als ein Vielflach, dessen Ecken
alle in zwei parallelen Ebenen liegen und dessen Seitenflichen im allgemeinen Dreiecke
sind. Das Volumen hidngt ab vom Abstand % der Parallelebenen, von der Grundfliche G,
der Deckfliche D und der Mittelschnittfliche M :

1
V=-ch(G+4M+D).

Der Nenner gehort eigentlich zur Klammer; denn die Hohe wird mit einem gewogenen
Mittel aus den drei Flachen multipliziert, wobei die sehr formbestimmende Mittelschnitt-
fliche vierfaches Gewicht aufweist. Die Herleitung durch Zerlegen in Pyramiden ist
bekannt?).

Eigenartig ist nun, daB diese Volumenformel fiir eine viel allgemeinere Familie
von Korpern gilt, ndmlich fiir die Simpsonschen Korperd); bei diesen ist die Quer-
schnittfliche eine ganze rationale Funktion von hochstens dem 3. Grade in bezug
auf den Abstand von der einen Grundfliche; diese kann auch auf einen Punkt
zusammenschrumpfen. Der Abstand sei x; dann lautet die Behauptung, wenn
Q) =a+ fxr+ypyx2+ a3

h

/(a+ﬂx+yx2+6x3)dx= - (G +4 M + D),
0

worin G = Q(0) = o, M = Q(h/2), D = Q(h); der Beweis ist leicht zu fiihren. Er 1483t
sich aber auch auf einem lehrreichen, kleinen Umweg erlangen. Das Integral ist additiv.
Es 1aBt sich daher zerlegen in das Integral iiber einer Konstanten und die drei Integrale
iiber die Potenzen von x; diese und nur diese lassen sich zusammenfassen, weil ihnen
gemeinsam ist, daB fiir sie die Grundfliche verschwindet. Der Zerlegung des ganzen
Integrals entspricht eine Aufspaltung des Simpsonschen Korpers in vier verschiedene
Teilkorper. Der einfachste, der zur Konstanten a gehort, stellt ein Prisma oder einen
Zylinder dar, wobei nach dem Prinzip von CAVALIERI die Querschnitte erst noch in
ihren Ebenen verschoben werden diirfen. Fiir diesen Korper ist also D= M = G (=a);
als gewogenes Mittel kommt z. B. G heraus; und es entsteht weiter nichts als die Volu-
menformel des Prismas.

Die iibrigen Teilkorper ruhen auf der Grundebene nur mit einer Ecke (Spitze) oder
Linie; sie breiten sich nach oben je nach dem Exponenten linear aus (wie ein Keil)
oder pyramidenformig oder (bei der 3.Potenz) noch stirker als eine Pyramide. Ihre
Querschnittfunktion kann geschrieben werden:

Q(x) =k a™. (mit #» =1, 2 oder 3)

1) Vgl. das in Note 3, S. 34, genannte Werk, S. 21-24.
?) Zum Beispiel W. BENz, Stereometrie-Leitfaden (Orell FiiBli, Zirich, 1938).
3) L. LoCHER, Differential- und Integralrechnung (Birkhiuser, Basel 1948), S. 382.
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