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30 H. Jeckiin: Hyperbolische Interpolation

Mobiussche Tetraeder stets nur dreifach hyperboloidisch liegen, so erkennen wir von
neuem, daB die hier behandelten gleich grolen reguliren Mobiusschen Tetraeder
nicht nur einen metrisch, sondern zugleich auch einen projektiv speziellen Fall von
Mobiusschen Tetraedern darstellen?). ARNULF REUscHEL, Wien.

Hyperbolische Interpolation

Sind y, = f(x;) und y, = f(x,) zwei Werte einer reellen Funktion in einem Stetig-
keitsintervall, so kann die auf der Proportionengleichung

el (1)
Yo — 1 g — ¥
basierende lineare Interpolation

Xy — ¥ ¥ —

y=Y2— (Ya— 1) =, oder y=p+ (y2— )

¥y — %1
auch gedeutet werden als gewichtete arithmetische Mittelbildung aus y; und y,,
wobei die Abszissenabschnitte (x — #,) und (x,— %) als Gewichte dienen, also

1w — %) + e (x — xy)
N A T N @

Nehmen wir nun zu y; und y, noch einen dritten bekannten Wert y, = f(x,), so
kénnen wir die Mittelbildung verbessern, indem wir die Steigungen (v, — ¥,) /(% — %)
und (Y, — ¥e)/ (%2 — %,) als weitere Gewichte multiplikativ anfiigen:

Y2 —x) 217 Yo
y— y1(%p — %) e — %o + (% — 7)) P
RN Tk NN PRRN 2 St M
(%, — %) Xy %y + (# — %) %, — %,

V1 (%3 — %) (%1 — %) (Yo — Vo) + Valx — #y) (% — %) (Y1 — Vo) (3)
(%3 — %) (%1 — %g) (y2 — Vo) + (¥ — x;) (¥ — %) (¥1— ¥0) )

oder Y=
Man ersieht ohne weiteres, daB die zusitzliche Gewichtung ohne EinfluB ist, wenn
die zu interpolierende Funktion eine Gerade ist, denn dann ist

Ya—Yo _ Y1 Yo
Xy — %, x — %

= const.

Wir konnen die Interpolationsformel (3) auch anders kombinieren. Kehren wir
zurtiick zur linearen Interpolation und bestimmen y einmal durch Interpolation aus
y, und y,, d. h. aus dem Verhiltnis

Yo—Vo _ X% ¥ — %,

Vo — ¥ - Xy — X ’ woraus y::y0+(y2—y0) x2___xo’
sodann durch Extrapolation aus y, und y, d.h. aus dem Verhiltnis

Yy—¥ _ x—x x— %,

Vi— Yo % — %y’ woraus Y = Yo+ (¥1— %) *— %

1) Anmerkung der Redaktion: In dem Buche von W.BLASCHKE, Projektive Geometrie (Wolfenbiittel-
Hannover 1947), findet man eine ausfiihrliche Darstellung (S.138-149) der M&biusschen Tetraeder.
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Ist y zwischen x4 und x, eine nichtlineare monotone Funktion, so ist sicher der eine
Interpolationswert zu groB, der andere zu klein, und man kann eine Verbesserung
erwarten durch Verbindung der beiden Proportionen zur Doppelverhiltnisgleichung

Vo= Yo , V=1 _ F—H  KFH (4)
Yo=Y YV1— %o Hop— X ¥ — %

Bei Auflésung nach y resultiert hieraus wieder (3).

Bekanntlich ist ein Doppelverhiltnis invariant gegeniiber einer (ganzen oder ge-
brochenen) linearen Substitution. Ist also y;= (a x; + 8)/(c x;+ d), so ist (4) erfiillt.
In Umkehrung gilt: Wenn eine Kurve y = f(x) die Eigenschaft hat, daB das Doppel-
verhidltnis von vier Abszissenpunkten stets gleich ist dem Doppelverhiltnis der vier
zugehorigen Ordinatenpunkte, so ist die Gleichung der Kurve von der Gestalt
y = (a x+b)/(c y+d), d. h. wir haben eine gleichseitige Hyperbel mit zu den Achsen
des rechtwinkligen Koordinatensystems parallelen Asymptoten.

Eine gleichseitige Hyperbel in dieser Lage ist — wegen der a priors bekannten
Asymptotenrichtungen — durch drei Punkte bestimmt. Wenn also drei Punkte der
Hyperbel bekannt sind, so kann man zu einer beliebigen Abszisse x nach dem Doppel-
verhiltnis (4) die zugehorige Ordinate bestimmen, und in Fortsetzung des Verfahrens
beliebig viele weitere Kurvenpunkte. Die besprochene Interpolationsmethode kommt
also darauf hinaus, daB8 durch drei gegebene Werte der zu interpolierenden Funktion
in Nidherung ein Hyperbelstiick genannter Art gelegt wird. In der Tat kann Formel (3)
durch Ausmultiplizieren und- Ordnen nach x ganz einfach auf die Gestalt
y = (ax+ b)/(c x + d) gebracht werden. Hieraus folgt auch, daB die Interpolations-
methode nur fiir monotone Funktionsintervalle anwendbar ist. Anderseits ist anzu-
nehmen, daB eine in einem Intervall monotone Funktion auf einem kurzen Abschnitt
sich meistens durch ein Kurvenstiick einer gleichseitigen Hyperbel mit zu den Koor-
dinatenachsen parallelen Asymptoten ndherungsweise ersetzen lassen wird. Die
Eignung eines Funktionsintervalls fiir die Interpolationsmethode ldsst sich einfach
nachpriifen, indem fiir vier x-Werte und die zugehoérigen y-Werte je das Doppelver-
hiltnis gebildet wird, wobei sich nahe Ubereinstimmung ergeben sollte. Es zeigt sich,
daB Abweichungen bis zu 209, in den Werten der beiden Doppelverhdltnisse immer
noch gute Interpolationsresultate gewdhrleisten. Die Interpolationsmethode eignet
sich insbesondere fiir finanz- und versicherungstechnische Funktionen?).

Sind beidseitig der zu interpolierenden Stelle je zwei nahe Werte bekannt, so kann
unter Umstinden durch einfache Mittelung der Interpolation von links und rechts

1) Vgl. H. Jeckrin und H. ZIMMERMANN, Eine praktische Interpolationsformel, Mitt. Vereinig. schweiz.
Versicherungsmathematiker 48, 2 (1948).
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ein wesentlich verbessertes Resultat erreicht werden. Wir geben ein Beispiel: Von
y = f(x) sind bekannt die Werte

x: 3 35 4 45
f(x): 6 19,375 38 62,625

Zu interpolieren sei f(x) fiir x = 3,8. Vorerst priifen wir die Eignung der Methode.
Es ist

Ky Xy Mg — Xy 1,;’:0,5 — 3
- ’

Xg— Xy Ky — "’3_ = 0,5.0,5

Ya—¥1 Y3~ ¥y 56,625.18,625

Vo v1 vy, 1337524625 — 2202

Es sind also ordentliche Interpolationsresultate zu erwarten. Interpolation von

links: (4—3)(38—35)  (38—6) (y —19,375)

(3,5—3) (4 —3,8) (19,375 —6) (38 — ) *

woraus y = 29,7365.

Interpolation von rechts:

(4,5 — 3,5) (4 — 3.8) (62,625 — 19,375) (38 — ¥)

(45 _4) 3835 _ (62,625 —38) (y —19,375) » woraus y = 29,9625.

Arithmetisches Mittel
y = 5 (29,7365 + 29,9625) — 20,8495.

Der genaue Wert (es handelt sich um die Funktion y = x3— 5 x — 6) ist 29,872, der
Fehler betrigt demnach — 0,75%,,. Mittels einer Rechenmaschine ist diese Inter-
polation sehr rasch durchgefiihrt.

Neben der numerischen Anwendung eignet sich die hyperbolische Interpolation
auch zur graphischen Anwendung. Nach dem Satz von PAscAL liegen die Schnitt-
punkte von je zwei Gegenseiten eines einem Kegelschnitt eingeschriebenen Sechsecks
auf einer Geraden. Seien uns nun im rechtwinkligen Koordinatensystem drei Punkte
P,, P,, P, gegeben, die nach ihrer Anordnung auf einer monotonen Kurve liegen
konnen, und es soll fiir die Abszisse x ein weiterer Punkt hyperbolisch interpoliert
werden. Die beiden Schnittpunkte der Hyperbelasymptoten mit der unendlichfernen
Geraden seien die Eckpunkte P, und P; des Sechsecks, und der zu interpolierende
Punkt sei Py (Fig. 2).

Vorerst zeichnen wir die beiden Sechseckseiten P, P, und P,P;. Die Seite P, P,
ist offenbar die Parallele zur x-Achse durch P;. Die Seite P, P; liegt im Unendlichen.
Die Seite P, Py muB parallel zur y-Achse verlaufen, ist also die Senkrechte im Abszis-
senpunkt x. Damit haben wir bereits den Schnittpunkt S, der Seiten P,P; und
P, P;. Die Pascal-Gerade muf} durch S, gehen und muB ferner parallel zur Seite P, P,
sein, da der Schnittpunkt S; der letzteren mit P, P, im Unendlichen liegt. Der
Schnittpunkt S, der Pascal-Geraden mit der Seite P, P, mul3 auch der Schnittpunkt
von Py P, mit P, P, sein. Also schneidet die Gerade P,S; auf der Senkrechten durch
S, den gesuchten Punkt P; aus. (Auf Grund analoger Uberlegungen kann man {ibrigens
auch nach Parabeln mit den Achsen x = const. oder y= const. graphisch interpolieren.)

Die hyperbolische Interpolation 148t sich ferner mit einem einfachen Nomogramm
vornehmen. Nach einem bekannten Satz der projektiven Geometrie wird das Dop-
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pelverhiltnis der Schnittpunkte von vier gegebenen Strahlen eines Biischels mit
einer Geraden durch Verschiebung dieser Geraden nicht geindert. Nun ist aber ein
Doppelverhiltnis — wie bereits erwdhnt — invariant gegeniiber einer linearen gebro-
chenen Substitution. Wenn wir daher bei zwei verschiedenen Lagen der Geraden die
Schnittpunkte der einen Lage mit dem Biischel als Abszissen eines rechtwinkligen
Koordinatensystems deuten, so liegen die entsprechenden Schnittpunkte der andern
Lage, als zugehorige Ordinaten gedeutet, auf einer gleichseitigen Hyperbel. Als nomo-
graphisches Hilfsmittel zeichnet man daher auf Pauspapier eine die Abszissenachse
reprasentierende Gerade g, und ein Strahlenbiischel, indem man dquidistante Punkte
von g, mit einem auBerhalb liegenden Punkt verbindet. Auf einer auf anderem
Papier (am besten Millimeterpapier) aufgezeichneten Geraden g, trigt man sodann

Fig. 2 Fig. 3

in einem geeigneten MaBstab die als Basis der Interpolation dienenden Werte y,, ;, ¥,
auf, legt das durchsichtige Papier mit dem Strahlenbiischel darauf und verschiebt,
bis die Punkte y,, v;, ¥, von g, auf die durch die Punkte x,, x,, x, von g, gehenden
Strahlen zu liegen kommen. Dann ist der zu einer Abszisse x; gehdrende Funktions-
wert y; ablesbar als Schnittpunkt des Strahles aus x; mit der Geraden g, (Fig. 3).

Die Umkehrung einer linearen gebrochenen Funktion ist wieder eine Funktion
dieser Art. Die hyperbolische Interpolation ist also zum Interpolieren von Funk-
tionswerten gleichermaBen anwendbar wie zur Interpolation von Abszissenwerten.
Damit ist uns auch ein rasches Verfahren zur ndherungsweisen Losung von Glei-
chungen gegeben. Das Vorgehen ist vorerst analog wie bei Anwendung der regula
falsi. Sei eine Wurzel von f(x) =0 zu ermitteln, so bestimmt man zuerst in bekannter
Weise zwei Werte a und b moglichst kleiner Differenz, derart, da3 f(a) 2 0, f(b) S 0.
Als dritten Basiswert der Interpolation nimmt man nun am besten f(c), wobei
¢= (@ + b)/2 und der vierte fiir die Interpolation benétigte Funktionswert ist f(0) = 0.
Die geniherte Wurzel x bestimmt sich nun aus

(@a—0)(c—2») _ [fa) —1()] ()
(@—c) (x—b)  [fe) —Ha)lf(b)

__ [fla) —f(B)] f(c) (a —c) b + [flc) — f(a)] (b) (@ —b) ¢
Y E @ — 1001 e) (@ — <) + [fe) — Ha)I fB) (a =)

als

El. Math. 3
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Als Beispiel sei eine Wurzel der Gleichung x3— 4 x — 5= 0 interpoliert?). Wir setzen
a=25 b=24, c=245, mithin f(a) = — 0,776, f(b) = 0,625, f(c) = — 0,093875,
und rechnen mit einer Rechenmaschine, welche fiir Multiplikator oder Divisor blo
acht Ziffern einzustellen erlaubt (also einem nicht sehr leistungsfiahigen Instrument):

—1,401.0,093875-0,05-2,5 — 0,682125-0,625.0,1-2,45
—1,401.0,093875.0,05 — 0,682125.0,625-0,1

0,12089025

= 5.049208757 — 245008.

Man verifiziert mit der Rechenmaschine sofort, da vier Kommastellen genau sind
und die fiinfte aufgerundet ist. Dieses in einem Schritt sich ergebende Resultat wird
bei anderen bekannten Ndherungsverfahren erst durch wiederholte Anwendung er-
reicht. Die hyperbolische Ndherung ist natiirlich auch fortsetzbar.

AbschlieBend sei darauf hingewiesen, daB8 die hyperbolische Interpolation nicht
nur praktische Vorteile besitzt, sondern auch in didaktischer Hinsicht ein dankbares
Problem darstellt, indem sich hier zwangslos Fragen der projektiven Geometrie,
analytischen Geometrie, Funktionenlehre und Algebra verbinden lassen.

H. JECKLIN.

Uber das Iterationsverfahren von
Picard-Lindelsf zur angeniherten Losung gewohnlicher
Differentialgleichungen

Unter allen Methoden zur niherungsweisen Losung gewéhnlicher Differentialglei-
chungen nimmt das Iterationsverfahren von PICARD-LINDELOF?) eine besonders wich-
tige Stellung ein. Es ist auBerdem so leicht zu verstehen, daB es in seinen einfacheren
Formen auch an Mittelschulen, an denen Differentialgleichungen behandelt werden,
ohne weiteres durchgenommen werden kann. Im folgenden sollen deshalb die Grund-
ziige dieses Verfahrens sowie einige der Praxis des Verfassers entstammende Gesichts-
punkte fiir die Anwendung kurz zusammengestellt werden. Fiir ein ndheres Studium
vergleiche man die in den Noten 3 bis 7 genannten Werke.

Das Iterationsverfahren findet in verschiedenen Gestalten Verwendung; vor allem
kann es in analytischer und in graphischer Form durchgefiihrt werden. Die letztere ist
ganz besonders elegant und bequem im Gebrauch, jedoch ist sie wie alle graphischen
Methoden an die Grenzen der Zeichengenauigkeit gebunden. Immerhin ist es in den
meisten Fillen ohne allzu groBe Miihe moglich, auf graphischem Wege eine Genauig-

1y Vgl. L. LocHER-ERNST, Differential- und Integralrechnung (Birkhiuser, Basel 1948), S. 97.

2) Es wird auch als Methode der sukzessiven Approximationen bezeichnet und neben dem hier verfolgten
praktischen Zwecke oft auch zum Beweise von Existenztheoremen verwendet.

3} KAMKE, Differentialgleichungen, 2. Aufl. (Leipzig 1943), S. 4 und Teil A, § 8.

4) Horn, Gewdhnliche Differentialgleichungen, Goschens Lehrbiicherei, Bd. 10, 3. Aufl. (Berlin und
Leipzig 1937), 2. und 3. Kap.

5) BieBerBACH, Theorie der Differentialgleichungen, 3. Aufl. (Berlin 1930), 2. Kap.

8) RunGEe und Ko6niG, Numerisches Rechnen (Berlin 1924), 10. Kap.

%) PicArD, Traité 4’ Analyse, 3. Aufl, (Paris 1925), Bd. 11, Kap. 11.
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