
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 4 (1949)

Heft: 2

Artikel: Hyperbolische Interpolation

Autor: Jecklin, H.

DOI: https://doi.org/10.5169/seals-14317

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-14317
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


30 H. Jecklin: Hyperbolische Interpolation

Mobiussche Tetraeder stets nur dreifach hyperboloidisch liegen, so erkennen wir von
neuem, daß die hier behandelten gleich großen regulären Mobiusschen Tetraeder
nicht nur einen metrisch, sondern zugleich auch einen projektiv speziellen Fall von
Mobiusschen Tetraedern darstellen1). Arnulf Reuschel, Wien.

Hyperbolische Interpolation
Sind yx f(xx) und y2 f(x2) zwei Werte einer reellen Funktion in einem Stetig-

keitsintervall, so kann die auf der Proportionengleichung

y — vi (1)
^2 - Vi H — xi

basierende lineare Interpolation

y y.-(y.-yi)^=^- oder y yx + (y2-y1)-^^
auch gedeutet werden als gewichtete arithmetische Mittelbildung aus yx und y2,
wobei die Abszissenabschnitte (%— xx) und (x2— x) als Gewichte dienen, also

yx (*,--*) + y^x-~xx)

Nehmen wir nun zu yx und y2 noch einen dritten bekannten Wert y0 f(x0), so
können wir die Mittelbildung verbessern, indem wir die Steigungen (yx— y0)/(% — #o)

und (y2— yo)/(^2~~ xo) a*s weitere Gewichte multiplikativ anfügen:

x2 xQ xx x0

(*, *)y>-y»+(x Xl)yi-y°
'

X2 ~ X0 Xl~ X0

yx(x2 — x) (xx — x0) (y2 — y0) + y2(x — xx) (x2 — x0) (yx -~yQ)oder y nl 2"~ } K x ~~ o) [y* ~~n) ^ y%yx ~~ l} [ 2 ~ o) (y*~~ y°} (3)
(x2 — x) (x1 — x0) (y2 — y0) + (x — xx) (x2 — xQ) {yx — y0) * '

Man ersieht ohne weiteres, daß die zusätzliche Gewichtung ohne Einfluß ist, wenn
die zu interpolierende Funktion eine Gerade ist, denn dann ist

X2 X0 Xl — X0

Wir können die Interpolationsformel (3) auch anders kombinieren. Kehren wir
zurück zur linearen Interpolation und bestimmen y einmal durch Interpolation aus
y2 und yQ, d. h. aus dem Verhältnis

y% ^0 X2 X0 r \ x — xo-^j -^=T' woraus y yo+(ya-yo)-^rr^-.
sodann durch Extrapolation aus yx und y0 d. h. aus dem Verhältnis

*=* *=^' woraus y yo+(yi-yo)^r^-
*) Anmerkung der Redaktion: In dem Buche von W. Blaschke, Projektive Geometrie (Wolfenbuttel-

Hannover 1947), findet man eine ausfuhrliche Darstellung (S. 138-149) der Mobiusschen Tetraeder.
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Ist y zwischen xQ und x2 eine nichthneare monotone Funktion, so ist sicher der eine
Interpolationswert zu groß, der andere zu klein, und man kann eine Verbesserung
erwarten durch Verbindung der beiden Proportionen zur Doppelverhaltnisgleichung

y2-~y0
y2~y

-y\
yi~yo

(4)

Bei Auflosung nach y resultiert hieraus wieder (3)
Bekanntlich ist em Doppelverhaltnis invariant gegenüber einer (ganzen oder

gebrochenen) linearen Substitution Ist also yz (a xt + b)/(c xt + d), so ist (4) erfüllt
In Umkehrung gilt Wenn eine Kurve y f(x) die Eigenschaft hat, daß das
Doppelverhaltnis von vier Abszissenpunkten stets gleich ist dem Doppelverhaltnis der vier
zugehörigen Ordmatenpunkte, so ist die Gleichung der Kurve von der Gestalt
y =- (a x -h b)/(c y + d), d h wir haben eine gleichseitige Hyperbel mit zu den Achsen
des rechtwinkligen Koordinatensystems parallelen Asymptoten

Fig 1

Eine gleichseitige Hyperbel in dieser Lage ist — wegen der a priori bekannten
Asymptotenrichtungen — durch drei Punkte bestimmt Wenn also drei Punkte der
Hyperbel bekannt smd, so kann man zu einer behebigen Abszisse x nach dem
Doppelverhaltnis (4) die zugehörige Ordinate bestimmen, und in Fortsetzung des Verfahrens
beliebig viele weitere Kurvenpunkte Die besprochene Interpolationsmethode kommt
also darauf hinaus, daß durch drei gegebene Werte der zu interpolierenden Funktion
in Näherung ein Hyperbelstuck genannter Art gelegt wird In der Tat kann Formel (3)

durch Ausmultiphzieren und Ordnen nach x ganz einfach auf die Gestalt
y (a x + b)/(c x -f d) gebracht werden Hieraus folgt auch, daß die Interpolationsmethode

nur fur monotone Funktionsintervalle anwendbar ist Anderseits ist
anzunehmen, daß eine m einem Intervall monotone Funktion auf einem kurzen Abschnitt
sich meistens durch ein Kurvenstuck einer gleichseitigen Hyperbel mit zu den
Koordinatenachsen parallelen Asymptoten naherungsweise ersetzen lassen wird. Die
Eignung eines Funktionsintervalls fur die Interpolationsmethode lasst sich einfach
nachprüfen, indem fur vier x-Werte und die zugehörigen y-Werte je das Doppelverhaltnis

gebildet wird, wobei sich nahe Übereinstimmung ergeben sollte Es zeigt sich,
daß Abweichungen bis zu 20% in den Werten der beiden Doppelverhaltnisse immer
noch gute Interpolationsresultate gewährleisten Die Interpolationsmethode eignet
sich insbesondere fur finanz- und versicherungstechnische Funktionen1)

Sind beidseitig der zu interpolierenden Stelle je zwei nahe Werte bekannt, so kann
unter Umstanden durch einfache Mittelung der Interpolation von links und rechts

*) Vgl H Jecklin und H Zimmermann, Eine praktische Interpolationsformel, Mitt Vereinig scnweiz
Versicherungsmathematiker 48, 2 (1948)
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em wesentlich verbessertes Resultat erreicht werden Wir geben em Beispiel Von
y f(x) smd bekannt die Werte

x 3 3,5 4 4,5

f(x) 6 19,375 38 62,625

Zu interpolieren sei f(x) fur x 3,8 Vorerst prüfen wir die Eignung der Methode
Es ist

Xm X-i % q Xn

x2 xx X^ x^

15 05
3,05 05

56 625 18 625

Vi — Vi n~^3 13375 24 625 - 3,202

Es sind also ordentliche Interpolationsresultate zu erwarten Interpolation von
lmkS

(4-3) (38-35) (38 - 6) (y -19 375)
_(3 5 - 3) (4 — 3 8) (19 375 - 6) (38 — y) > woraus V ~ ^>'^3

Interpolation von rechts

(4 5 __ 3 5) (4 — 3 8) (62 625 — 19 375) (38 - y)

(4 5 — 4) (3 8 — 3 5) (62 625 — 38) (y — 19 375)

Arithmetisches Mittel

woraus y 29,9625

y \ (29,7365 + 29,9625) 29,8495

Der genaue Wert (es handelt sich um die Funktion y x3 — 5 x — 6) ist 29,872, der
Fehler betragt demnach — 0,75 °/0o Mittels einer Rechenmaschine ist diese
Interpolation sehr rasch durchgeführt

Neben der numerischen Anwendung eignet sich die hyperbolische Interpolation
auch zur graphischen Anwendung Nach dem Satz von Pascal liegen die Schnittpunkte

von je zwei Gegenseiten eines einem Kegelschnitt eingeschriebenen Sechsecks

auf einer Geraden Seien uns nun im rechtwinkligen Koordinatensystem drei Punkte
PX,P2,P3 gegeben, die nach ihrer Anordnung auf einer monotonen Kurve liegen
können, und es soll fur die Abszisse x em weiterer Punkt hyperbolisch interpoliert
werden Die beiden Schnittpunkte der Hyperbelasymptoten mit der unendhchfernen
Geraden seien die Eckpunkte P4 und P5 des Sechsecks, und der zu interpolierende
Punkt sei P6 (Fig 2)

Vorerst zeichnen wir die beiden Sechseckseiten PXP2 und P2P3 Die Seite P3P^

ist offenbar die Parallele zur #-Achse durch P3 Die Seite P4P5 liegt im Unendlichen
Die Seite P5P6 muß parallel zur y-Achse verlaufen, ist also die Senkrechte im
Abszissenpunkt x Damit haben wir bereits den Schnittpunkt S2 der Seiten P2P3 und
P5P6 Die Pascal-Gerade muß durch S2 gehen und muß ferner parallel zur Seite PXP2

sein, da der Schnittpunkt S3 der letzteren mit P±Pb im Unendlichen hegt Der
Schnittpunkt Sj der Pascal-Geraden mit der Seite PdP± muß auch der Schnittpunkt
von PQPX mit P^P^ sein Also schneidet die Gerade PXSX auf der Senkrechten durch
S2 den gesuchten Punkt P6 aus (Auf Grund analoger Überlegungen kann man übrigens
auch nach Parabeln mit den Achsen x const oder y const graphisch interpolieren

Die hyperbolische Interpolation laßt sich ferner mit einem einfachen Nomogramm
vornehmen Nach einem bekannten Satz der projektiven Geometrie wird das Dop-
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pelverhältnis der Schnittpunkte von vier gegebenen Strahlen eines Büschels mit
einer Geraden durch Verschiebung dieser Geraden nicht geändert. Nun ist aber ein
Doppelverhältnis - wie bereits erwähnt - invariant gegenüber einer linearen
gebrochenen Substitution. Wenn wir daher bei zwei verschiedenen Lagen der Geraden die
Schnittpunkte der einen Lage mit dem Büschel als Abszissen eines rechtwinkligen
Koordinatensystems deuten, so liegen die entsprechenden Schnittpunkte der andern
Lage, als zugehörige Ordinaten gedeutet, auf einer gleichseitigen Hyperbel. Als nomo-
graphisches Hilfsmittel zeichnet man daher auf Pauspapier eine die Abszissenachse
repräsentierende Gerade gx und ein Strahlenbüschel, indem man äquidistante Punkte
von gx mit einem außerhalb liegenden Punkt verbindet. Auf einer auf anderem
Papier (am besten Millimeterpapier) aufgezeichneten Geraden gy trägt man sodann

\5

2\ \

s,\

Fig 2 Fig 3

in einem geeigneten Maßstab die als Basis der Interpolation dienenden Werte y0, yx, y2

auf, legt das durchsichtige Papier mit dem Strahlenbüschel darauf und verschiebt,
bis die Punkte y0, yx, y2 von gy auf die durch die Punkte xQ, xx, x2 von gx gehenden
Strahlen zu liegen kommen. Dann ist der zu einer Abszisse xt gehörende Funktionswert

yt ablesbar als Schnittpunkt des Strahles aus xt mit der Geraden gy (Fig. 3).
Die Umkehrung einer linearen gebrochenen Funktion ist wieder eine Funktion

dieser Art. Die hyperbolische Interpolation ist also zum Interpolieren von
Funktionswerten gleichermaßen anwendbar wie zur Interpolation von Abszissenwerten.
Damit ist uns auch ein rasches Verfahren zur näherungsweisen Lösung von
Gleichungen gegeben. Das Vorgehen ist vorerst analog wie bei Anwendung der regula
falsi. Sei eine Wurzel von f(x) 0 zu ermitteln, so bestimmt man zuerst in bekannter
Weise zwei Werte a und b möglichst kleiner Differenz, derart, daß f(a) ^ 0, f(b) ^ 0.

Als dritten Basiswert der Interpolation nimmt man nun am besten f(c), wobei
c (a + b)/2 und der vierte für die Interpolation benötigte Funktionswert ist /(0) 0.

Die genäherte Wurzel x bestimmt sich nun aus

(a-b)(c~x) U(a)~f(b)]f(c)

als x

(a_c)(*_ft) [/(,) -/(«)]/(&)

[/(«)-/(&)] /(*) (<*-c)b+ [f(c) - f(a)]f(b)(a-b)c
iM11^)} f(c) (a-c) + [WT^Ha)] f(b) (a - b)

El. Math. 3
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Als Beispiel sei eine Wurzel der Gleichung x2—4x~5 0 interpoliert1) Wir setzen
a 2,5, b =- 2,4, c 2,45, mithin f(a) - 0,776, f(b) 0,625, f(c) - - 0,093875,
und rechnen mit einer Rechenmaschine, welche fur Multiplikator oder Divisor bloß
acht Ziffern einzustellen erlaubt (also einem nicht sehr leistungsfähigen Instrument)

— 1 401 0 093875 0 05 2 5 — 0 682125 0 625 01 2 45
X —

1 401 0 093875 0 05 — 0 682125 0 625 0 1

012089025
0 049208757

2,45668

Man verifiziert mit der Rechenmaschine sofort, daß vier Kommastellen genau smd
und die fünfte aufgerundet ist Dieses in einem Schritt sich ergebende Resultat wird
bei anderen bekannten Naherungsverfahren erst durch wiederholte Anwendung
erreicht Die hyperbolische Näherung ist natürlich auch fortsetzbar

Abschließend sei darauf hingewiesen, daß die hyperbolische Interpolation nicht
nur praktische Vorteile besitzt, sondern auch in didaktischer Hinsicht em dankbares
Problem darstellt, indem sich hier zwangslos Fragen der projektiven Geometrie,
analytischen Geometrie, Funktionenlehre und Algebra verbinden lassen

H Jecklin

Über das Iterationsverfahren von
Picard-Lindelöf zur angenäherten Lösung gewöhnlicher

Differentialgleichungen
Unter allen Methoden zur naherungsweisen Losung gewöhnlicher Differentialgleichungen

nimmt das Iterationsverfahren von Picard-Lindelof2) eine besonders wichtige

Stellung ein Es ist außerdem so leicht zu verstehen, daß es m seinen einfacheren
Formen auch an Mittelschulen, an denen Differentialgleichungen behandelt werden,
ohne weiteres durchgenommen werden kann Im folgenden sollen deshalb die Grundzuge

dieses Verfahrens sowie einige der Praxis des Verfassers entstammende Gesichtspunkte

fur die Anwendung kurz zusammengestellt werden Fur em näheres Studium
vergleiche man die m den Noten 3 bis 7 genannten Werke

Das Iterationsverfahren findet in verschiedenen Gestalten Verwendung, vor allem
kann es m analytischer und in graphischer Form durchgeführt werden Die letztere ist
ganz besonders elegant und bequem im Gebrauch, jedoch ist sie wie alle graphischen
Methoden an die Grenzen der Zeichengenauigkeit gebunden Immerhin ist es m den
meisten Fallen ohne allzu große Muhe möglich, auf graphischem Wege eine Genauig-

*) Vgl L Locher Ernst, Differential und Integralrechnung (Birkhauser, Basel 1948) S 97
2) Es wird auch als Methode der sukzessiven Approximationen bezeichnet und neben dem hier verfolgten

praktischen Zwecke oft auch zum Beweise von Existenztheoremen verwendet
3) Kamke Differentialgleichungen, 2 Aufl (Leipzig 1943), S 4 und Teil A, § 8
4) Hörn, Gewöhnliche Differentialgleichungen, Goschens Lehrbucherei, Bd 10, 3 Aufl (Berlin und

Leipzig 1937), 2 und 3 Kap
5) Bieberbach, Theorie der Differentialgleichungen, 3 Aufl (Berlin 1930), 2 Kap
6) Runge und Konig, Numerisches Rechnen (Berlin 1924), 10 Kap
7) Picard, Traue" d Analyse, 3 Aufl (Paris 1925), Bd II, Kap 11
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