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Das ergibt sich daraus, daB die Affinitit in bezug auf die Hauptachse, welche vom
Hauptkreis zur Ellipse fiihrt, kombiniert mit einer Affinitit in bezug auf die kleine
Achse mit demselben Affinititsverhiltnis b/a eine Ahnlichkeitstransformation er-
geben muB, die Ellipse also durch die zweite Affinitit in den Kreis vom Radius &
iibergefiihrt wird. Damit ist C bewiesen.

Der Spezialfall 1 = 1 (die Ellipse ein Kreis) entspricht, wie schon erwihnt, einem
Grenzfall bei 4 und B.

Wiinscht man den Satz C auf roch elementarerem Weg, ohne Beniitzung der har-
monischen Eigenschaft von Pol und Polare in bezug auf den Kreis, zu beweisen, so
fihrt, auBer dem unter III angegebenen kurzen Beweis (siche unten), auch der fol-
gende Weg in einfacher Weise zum Ziel (Fig. 10):

Es sei F} das Spiegelbild von F, in bezug auf die Tangente ¢, »; das Lot von F,
auf ¢, vy, v, die Abschnitte auf der Tangente von P bis zum Hauptkreis, y und y’ die
Abstinde der entsprechenden Punkte P und P’ von der Hauptachse. Dann gilt

7, re=FF{P:AF,F,P= AF,F,P: \F,F¥P
(v €)% = (uyvy) (upy)
v; v, ist der absolute Betrag der Potenz von P in bezug auf den Hauptkreis, also
n= %" -9 +9)
und uy 4y = b2

Hieraus (ye)? = 6% (y'? — y?), also y’/y konstant.

IT1. Direkter Ubergang von A zu C

Da der Hauptkreis ein Apollonischer Kreis beziiglich der Strecke FF, ist, so folgt
in Verbindung mit Definition A, wenn die Strecken PF, P'F mit s, s’, und die Strecken
1—3—13,— , PF ; mit #, v bezeichnet werden (Fig. 11):

82 _ 5’2 . 32 _ 8’2_82 y’2~ y2

2 - u? v2 — y? y'2

und hieraus die Konstanz von y/y’. Hiebei bedeuten y und y’ wieder die Abstinde
entsprechender Punkte von der Hauptachse.
C. BINDSCHEDLER, Kiisnacht-Ziirich.

Kleine Mitteilungen

1. Kurzer Beweis der isopevimetrischen Ungleichung fiir konvexe Beveiche

Die bekannte verschirfte isoperimetrische Ungleichung von T. BONNESEN?) fiir einen
konvexen Bereich K heift L' 4nF>(L—2ans, i

1) Vgl. hieriiber weiteres in T. BoNNESEN und W. FENcHEL, Theorie der konvexen Korper, Verlag
J. Springer, Berlin 1934 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 8) insbesondere
S. 112/113.: -
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wobei F und L den Flicheninhalt und den Umfang, » den Inkreisradius von K be-
zeichnen. Ein kurz zusammenfaBbarer Beweis ist der folgende:
Zunichst verifiziere man die Flachenformel

7

F = / L(A) dA (2)
0 .

fir konvexe Polygone K, wobei L(4) den Umfang des inneren Parallelbereiches K(4)
von K im Abstand A bedeutet. — Aus der leicht zu verifizierenden Tatsache, daB der
duBere Parallelbereich von K(4) im Abstand A seinerseits ein Teilbereich von K sein
muB, ergibt sich nach der Steinerschen Formel, welche fiir konvexe Polygone durchaus

elementar ist, die Ungleichung
LA +2m2< L. (3)

Durch Integration nach A von 0 bis » folgt hieraus
F+ mv2 < Ly. (4)

Dies ist aber nur eine andere Schreibweise der Bonnesenschen Ungleichung (1) fiir
Polygone. Die allgemeine Giiltigkeit gewinnt man durch Approximation in der iiblichen
Weise. H. HADWIGER, Bern.

I1. Notiz zur fehlenden Ungleichung in dev Theorie der konvexen Korper

Ein in dieser Zeitschrift (Bd. 1I, Nr. 3, S. 51—54) erschienener Artikel befaBBte sich
mit einem im Titel dieser Mitteilung angedeuteten Problem. Es handelt sich darum, der
klassischen Ungleichung von MINKOWSKI

F2—-3MV =0 (1)

eine sicher vorhandene, aber noch nicht bekannte Ungleichung gegeniiberzustellen.
Hier bedeuten V, F und M das Volumen, die Oberfliche und das Kriimmungsintegral

Y

eines konvexen Korpers. — Es soll hier kurz mitgeteilt werden, daB diese bisher fehlende
Ungleichung, allerdings vorliufig noch unter Beschrinkung auf konvexe Rotations-
kérper, nach einldBlicheren Studien von P. GLUR, H. Bier1r und dem Unterzeichneten
aufgefunden werden konnte. Sie ist indessen transzendent und recht kompliziert und
kann an dieser Stelle nicht niher erértert werden. Wihrend in der Minkowskischen Un-
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gleichung (1) das Gleichheitszeichen fiir die Kappenkérper der Kugel steht, ist dies bei
der neuen Ungleichung fiir die symmetrischen Kugelzonen der Fall. Die letztgenannte
Korperschar ist vermutlich auch dann extremal, wenn man sich von der Voraussetzung
der Rotationssymmetrie freimacht.

Ausgehend von der fiir Rotationskorper als giiltig nachgewiesenen exakten Unglei-
chung kann man auf schwichere, also nicht mehr scharfe, aber dafiir einfache und
explizite anschreibbare Ungleichungen schlieBen. So erreicht man

a2 M4 (M2 — 4 5 F) = (a® — 8) (M3 — 48 a2 V)2, (2)

Ubertragen wir (1) und (2) in das Blaschkesche Diagramm (vgl. den eingangs erwihn-
ten Artikel), indem man dem Wertetripel (V, F, M) das kartesische Paar (#, y) vermoge
des Ansatzes

= Ak, 4822 V

YT T

zuordnet, so ergeben sich die Ungleichungen
y = #3 (1a)
(L= 2) = (22— 8) (1 — )% (2a)

Diese beiden Relationen bedeuten, daB der Diagrammbereich (vgl. Figur), der den
Rotationskdrpern entspricht und der im positiven Quadranten ¥ = 0, y = 0 der Dia-
grammebene liegt, ganz von den zwei Parabelbégen 4 B und BD sowie vom Achsen-
stiick AD umschlossen ist (der Bereich selbst ist in der Figur schraffiert angedeutet).

H. HADWIGER, Bern.

111. Uber die mittlere Schuitipunkiszahl konvexer Kurven und Isoperimetrie

Wir geben hier eine Fassung bekannter integralgeometrischer Ergebnisse!), die sich
unmittelbar an Gedanken von POINCARE, SANTALY, BrascHKE und HADWIGER?) an-
schlieBt, wobei eine einfache, geometrisch-statistische Interpretation gewisser «isoperi-
metrischer Defizite» erzielt wird.

Wir werfen auf die (horizontale) Ebene eines festen konvexen Bereiches G, vom In-
halt F, und Umfang L, eine zweite konvexe Scheibe G vom Inhalt F und Umfang L
und beriicksichtigen nur die Fille, wo die Scheibe G den Bereich G, trifft. Nun bestim-
men wir nach einer groBen Zahl von Wiirfen den Mittelwert der Schnittpunktszahl der
Begrenzungskurven von G und G,. Bezeichnen wir diesen Mittelwert mit #(G, G), so
werden wir Ubereinstimmung mit der Relation

LL,—2n(F+Fy) 1 _ _
LI, 722 (FfF) 2z "6 Gl —1
konstatieren kénnen. Die angeschriebene Relation ist in der Tat exakt richtig, wenn
man fiir #(G, Gy) den mathematischen Mittelwert

nG

7 (G, Go) = 2
G

GGo*+ 0

im Sinne der ebenen Integralgeometrie einsetzt. In der obenstehenden Formel bedeutet
G die kinematische Dichte des beweglichen Bereiches G, und die Integration hat sich,

1) Vgl. W. BLascHKE, Vorlesungen iiber Integralgeometrie, I. Heft, 2. erweiterte Aufl. (Leipzig und Ber-
lin 1938). , :

) H. HapwiGER, Uber Mittelwerte im Figurengitter, Comm. Math. Helv. 11, 221-283 (1938/89);
Uberdeckung ebener Bereiche durch Kreise und Quadrate, Comm. Math. Helv. 13, 195-200 (1940/41).

EL Math. 8
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wie angedeutet, iiber alle Lagen von G zu erstrecken, fiir welche G G, + 0 ist. ~ Nach
der Formel von POINCARE bzw. SANTALO ergibt sich nimlich

B 4LL,
T LLy+2n(F+Fy) °

Nun beachten wir noch die Sonderfille, in denen fiir G, ein mit G kongruenter Be-
reich bzw. ein flichengleicher Kreis K gewdhlt wird.

Wir erhalten so die Beziehungen

L*—4mgF 1 _ . L—Vy4aF 1 _
WF—TW(G,GO)—I, m—*—é'n(G,K)“l.

Hierbei kénnen die linken Seiten als isoperimetrische Defizite, welche gegeniiber Ahn-
lichkeitstransformationen invariant sind, betrachtet werden. DaB die rechten Seiten
nicht negativ sein konnen, ist unmittelbar einleuchtend, da in den beiden betrachteten
Sonderfillen (fast) immer »(G, Gy) = 2 ist, falls die beiden Bereiche sich treffen. ’

Es sei noch darauf hingewiesen, da3, obwohl #(G, G,) belicbig gro8 sein kann, der
Mittelwert # (G, Go) < 4 ausfillt. Fiir einen umfangsgleichen Kreis K’ findet man
n(G, K’) < 8/3. L. Fejes TétH, Budapest.

7 (G, Gy)

IV. Uber Dreiecke mit ganzzahligen Koordinaten und ganzzahligen Seiten

Betrachten wir ein Dreieck der im Titel genannten Eigenschaft, so konnen wir ohne
Einschrinkung der Allgemeinheit etwa den Eckpunkt C im Ursprung annehmen. Wir
ersetzen die beiden anderen Eckpunkte A(#,, y,), B(#;, ¥;) durch die komplexen
Zahlen a = #, + ¥, ¢, = %, + y,¢. Essollen nun die Zahlen a, 8, « — f Quadrate ganzer
Zahlen als Normen haben.

Dazu geniigt, daB a=£2, f= 92 a«— f=_2% oder %+ (2% = &% sei. Dabei sind
&, n,  ganze Zahlen des Korpers R(¢), wo R der rationale Zahlkorper ist. Es ist dies
gewissermaBen die pythagoreische Gleichung in diesem Zahlkorper. Der Ansatz
E=pu?+ 22 ny=2puv, = u?— »?16st sie, womit sich dann die Koordinaten der
Eckpunkte mit a = (u2 + v2)2%, =4 u2v? o — = (u? — »?)2 ergeben. Die Dreieck-
seiten CA = b, AB = ¢, BC = a ergeben sich, wenn N die Norm der komplexen Zahl
bedeutet: b = N(u2? + v?),c = N(2 u»), a = N(u? — »?).

Wird im folgenden die Konjugierte zu einer komplexen Zahl mit einem Querstrich
angedeutet, so wird der Reihe nach

b= (u?+ (w2 + (B9)?+ (v )3
c=4puviuv, '
a=(pp)?— (pv)?— (vu)+ (»9)2
Es folgt durch Addition und Division durch 2 mita + b6+ ¢ = 2 s:
s= (pu+ v9)3 s—a= (pv+ pv)?
S—b=—(av—ru? s—c=(pp— vy

Rechts stehen iiberall Quadrate ganzer rationaler Zahlen, auch bei s — b, da der Aus-
druck rechts unter dem Quadratzeichen rein imaginir ist. Wir haben gewissermaBen
ein heronisches Dreieck h6herer Ordnung, indem nicht nur das Produkt s (s—a)(s-b)(s—c),
sondern jeder einzelne Faktor ein Quadrat ist.

Es sind dann nicht nur In- und Umkreisradius und die Sinus aller Dreieckswinkel,
sondern auch deren Kosinus und die simtlichen Funktionen der halben Dreieckswinkel
rational. ”

Ein Beispiel: Sei p= 2+ 4, v= 2¢. Dann ist a = 15— 84, f = —48 — 644, und
das Dreieck hat die Eckpunkte A (15, — 8), B(— 48, — 64), C(0, 0). Die Seiten werden
b= 17,¢c=65,a= 80, manhats =81,s ~a = 1,s —~ b= 64, s — ¢ = 16; diese letzten
Zahlen sind also alle Quadrate.
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Wir haben hier eine bequem zu rechnende Teillosung gegeben. DaB sie nicht alle im
Titel genannten Dreiecke umfafit, zeigt folgendes Gegenbeispiel: Das (rechtwinklige)
Dreieck mit den Eckpunkten C (0, 0), 4 (3, 4), B (4, 0) hat die Seiten b = 5,a = 4, ¢ = 3.
Es wird s = 6, s — a = 2. Es sind also nicht alle GréBen s, s — @, s — b, s — ¢ Quadrate
rationaler Zahlen, also ist dieses Dreieck in der vorigen Losung nicht enthalten.

L. HoLzER, Graz.

Aufgaben

Aujgabe 8. Par le quatriéme sommet C du rectangle construit sur les deux demi-axes
OA et OB d’'une ellipse, on méne la perpendiculaire p a la droite AB. Un point P
variable sur p a les deux coordonnées m, n. Trouver I'enveloppe des ellipses de demi-
axes m, n coaxiales a l'ellipse donnée quand P se déplace sur p. L. KoLLRoOs.

Lésung: Sind u, v die Linienkoordinaten der Geraden # ¥ + v ¥ = 1, so hat die Ellipse
mit den Halbachsen m, » die Gleichung (v m)2 + (v #)2 = 1. Nach Voraussetzung gilt
(n — b):(m — a) = a:b. Da die Gerade (u, v) auch die «unendlich benachbarte» Ellipse
der Schar berithren muf}, wird wegen dn/dm = a/b:

u?mb+vina=0.

Elimination von m, » liefert (a v)2 4+ (b #)2 = c* u? v? mit ¢? = a? — b2, Die Kurve ist
also die Evolute der gegebenen Ellipse. (Siehe z. B. Loria: Curve piane I, 300.)
C. BINDSCHEDLER, Kiisnacht.
Eine weitere Losung sandte L. KierrFer (Luxemburg).

Aufgabe 9. On projette orthogonalement un point variable de l'ellipsoide sur ses
trois plans principaux; trouver I’enveloppe du plan qui passe par les trois projections.
(Probléme analogue dans le plan et dans I’espace pour les hyperboloides.) L. KoLLRos.

Léosung von L. KIEFFER, Luxemburg (hier gekiirzt wiedergegeben) Es sei
(#/a)? + (y/b)? + (z/c)? = 1 die Gleichung des Ellipsoides; P (%, v, w) sei ein Punkt auf
ihm, also (%/a)? + (v/b)% + (w/c)?2 =1 (1). Als Gleichung der beweglichen Ebene
durch die FuBpunkte der Lote von P auf die Symmetrieebenen des Ellipsoides erhilt
man (x¥/u) + (y/v) + (¢/w) = 2 (2). Denkt man sich die Parameter v, w als Funktionen
von # und bezeichnet die Ableitungen dv/du, dw/du mit v’ bzw. w’, so ergibt sich aus
(1) und (2):

u v

P, wo il y
FtEUtE =00 aty

4 v+———w-—0 4)

Multipliziert man beide Seiten von (4) mit 4, addiert hierzu (3) und fordert noch

Ax  u Ay v Az w
wrtE=% FrE=0  mtaE=0

so ergibt sich durch Addieren mit Hilfe von (1) und (2) 4 = — 0,5. Hieraus weiter
u = V0,54, v= Y0502y, w= Y05z

Als Gleichung der Enveloppe findet man also:

i/(%)z + ?l’/(%)‘2 + i/(—‘;—)== _ V& oder (bcx)+ (ca y);la 4 (@b ) = (2abc)s,

Aufgabe 26: Beweise fiir die Fliche eines Dreiecks die Formel

F_ (asine+ pysinf+ pysiny)*
2sin asin #siny

«, B, y sind die Gegenwinkel der Seiten a, b, ¢ und p,, p,, p, die mit Vorzeichen verse-
henen Abstinde der Seiten von einem beliebigen Punkt der Ebene. E. TrosrT.
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