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Das ergibt sich daraus, daß die Affinität in bezug auf die Hauptachse, welche vom
Hauptkreis zur Ellipse führt, kombiniert mit einer Affinität in bezug auf die kleine
Achse mit demselben Affinitätsverhältnis bja eine Ähnlichkeitstransformation
ergeben muß, die Ellipse also durch die zweite Affinität in den Kreis vom Radius b

übergeführt wird. Damit ist C bewiesen.
Der Spezialfall X 1 (die Ellipse ein Kreis) entspricht, wie schon erwähnt, einem

Grenzfall bei A und B.
Wünscht man den Satz C auf noch elementarerem Weg, ohne Benützung der

harmonischen Eigenschaft von Pol und Polare in bezug auf den Kreis, zu beweisen, so
führt, außer dem unter III angegebenen kurzen Beweis (siehe unten), auch der
folgende Weg in einfacher Weise zum Ziel (Fig. 10):

Es sei Pf das Spiegelbild von Ft in bezug auf die Tangente t, ut das Lot von F{
auf t, vx, v2 die Abschnitte auf der Tangente von P bis zum Hauptkreis, y und y' die
Abstände der entsprechenden Punkte P und P' von der Hauptachse. Dann gilt

rx\rt FXF$P: AFXF2P AFXF2P: AF2F2*P

(ye)2 (uxvx) (u2v2)

vx v2 ist der absolute Betrag der Potenz von P in bezug auf den Hauptkreis, also

»1 v2 (y' - y) (/ + y)

und ux u2= b2.

Hieraus (ye)2 -= b2 (y'2 — y2), also y'jy konstant.

III. Direkter Übergang von A zu C

Da der Hauptkreis ein Apollonischer Kreis bezüglich der Strecke FFX ist, so folgt
in Verbindung mit Definition A, wenn die Strecken PF, P'F mit s, s', und die Strecken

PPX, P'FX mit u, v bezeichnet werden (Fig. 11):

p2

und hieraus die Konstanz von yjy'. Hiebei bedeuten y und y' wieder die Abstände
entsprechender Punkte von der Hauptachse.

C. Bindschedler, Küsnacht-Zürich.

Kleine Mitteilungen
I. Kurzer Beweis der isoperimetrischen Ungleichung für konvexe Bereiche

Die bekannte verschärfte isoperimetrische Ungleichung von T. Bonnesen1) für einen
konvexen Bereich K heißt

L% — 4 nF ^> (L — 2 n r)*, (1)

l) Vgl. hierüber weiteres in T. Bonnesen und W. Fenchel, Theorie der konvexen Körper, Verlag
J. Springer, Berlin 1934 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3) insbesondere
S. 112/113.
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wobei F und L den Flächeninhalt und den Umfang, r den Inkreisradius von K
bezeichnen. Ein kurz zusammenfaßbarer Beweis ist der folgende:

Zunächst verifiziere man die Flächenformel
T

i% (2)

für konvexe Polygone K, wobei L(X) den Umfang des inneren Parallelbereiches K(X)
von K im Abstand X bedeutet. — Aus der leicht zu verifizierenden Tatsache, daß der
äußere Parallelbereich von K(k) im Abstand X seinerseits ein Teilbereich von K sein
muß, ergibt sich nach der Steinerschen Formel, welche für konvexe Polygone durchaus
elementar ist, die Ungleichung& 6 L(X) + 2 n X ^ L. (3)

Durch Integration nach X von 0 bis r folgt hieraus

(4)

Dies ist aber nur eine andere Schreibweise der Bonnesenschen Ungleichung (1) für
Polygone. Die allgemeine Gültigkeit gewinnt man durch Approximation in der üblichen
Weise. H. Hadwiger, Bern.

iL Notiz zur fehlenden Ungleichung in der Theorie der konvexen Körper
Ein in dieser Zeitschrift (Bd. II, Nr. 3, S. 51 — 54) erschienener Artikel befaßte sich

mit einem im Titel dieser Mitteilung angedeuteten Problem. Es handelt sich darum, der
klassischen Ungleichung von Minkowski

F2- 3MF2> 0 (1)

eine sicher vorhandene, aber noch nicht bekannte Ungleichung gegenüberzustellen.
Hier bedeuten F, F und M das Volumen, die Oberfläche und das Krümmungsintegral

*-X

eines konvexen Körpers. — Es soll hier kurz mitgeteilt werden, daß diese bisher fehlende
Ungleichungf allerdings vorläufig noch unter Beschränkung auf konvexe Rotationskörper,

nach einläßlicheren Studien von P. Glur, H. Bieri und dem Unterzeichneten
aufgefunden werden konnte. Sie ist indessen transzendent und recht kompliziert und
kann an dieser Stelle nicht näher erörtert werden. Während in der MinkowsMschen Un-
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gleichung (1) das Gleichheitszeichen für die Kappenkörper der Kugel steht, ist dies bei
der neuen Ungleichung für die symmetrischen Kugelzonen der Fall. Die letztgenannte
Körperschar ist vermutlich auch dann extremal, wenn man sich von der Voraussetzung
der Rotationssymmetrie freimacht.

Ausgehend von der für Rotationskörper als gültig nachgewiesenen exakten Ungleichung

kann man auf schwächere, also nicht mehr scharfe, aber dafür einfache und
explizite anschreibbare Ungleichungen schließen. So erreicht man

jr2 M4 (M2 - 4 n F) ^ (n* - 8) (M8 - 48 tz2 F)2. (2)

Übertragen wir (1) und (2) in das Blaschkesche Diagramm (vgl. den eingangs erwähnten
Artikel), indem man dem Wertetripel (V, F, M) das kartesische Paar (x, y) vermöge

des Ansatzes
4tzF

^ __
48gl2 FX~ M* ' V~ M*~~

zuordnet, so ergeben sich die Ungleichungen

y ^ x2, (la)

rc2(l- x) g (rc2- 8) (1 - y)K (2a)

Diese beiden Relationen bedeuten, daß der Diagrammbereich (vgl. Figur), der den
Rotationskörpern entspricht und der im positiven Quadranten x ^ 0, y 2> 0 der
Diagrammebene liegt, ganz von den zwei Parabelbögen AB und BD sowie vom Achsenstück

AD umschlossen ist (der Bereich selbst ist in der Figur schraffiert angedeutet).
H. Hadwiger, Bern.

III. Über die mittlere Schnittpunkiszahl konvexer Kurven und 1soperimetrie

Wir geben hier eine Fassung bekannter integralgeometrischer Ergebnisse1), die sich
unmittelbar an Gedanken von Poincarä, Santalö, Blaschke und Hadwiger2)
anschließt, wobei eine einfache, geometrisch-statistische Interpretation gewisser
«isoperimetrischer Defizite» erzielt wird.

Wir werfen auf die (horizontale) Ebene eines festen konvexen Bereiches G0 vom
Inhalt F0 und Umfang L0 eine zweite konvexe Scheibe G vom Inhalt F und Umfang L
und berücksichtigen nur die Fälle, wo die Scheibe G den Bereich G0 trifft. Nun bestimmen

wir nach einer großen Zahl von Würfen den Mittelwert der Schnittpunktszahl der
Begrenzungskurven von G und G0. Bezeichnen wir diesen Mittelwert mit n(G, G0), so
werden wir Übereinstimmung mit der Relation

LL0-2t*(F + F0) _
1

TL^2n(F + Fj---2n{G'G^^1
konstatieren können. Die angeschriebene Relation ist in der Tat exakt richtig, wenn
man für n(G, G0) den mathematischen Mittelwert

n(G,G0)~
76

nG
GGa*0

G

GG9*0

im Sinne der ebenen Integralgeometrie einsetzt. In der obenstehenden Formel bedeutet
G die kinematische Dichte des beweglichen Bereiches G, und die Integration hat sich,

*) Vgl. W. Blaschke, Vorlesungen über Integralgeometrie, I. Heft, 2. erweiterte Aufl. (Leipzig und Berlin

1930).
*) H. Hadwiger, Über Mittelwerte im Figurengitter, Comm. Math. Helv. 11, 221-233 (1938/89);

Überdeckung ebener Bereiche durch Kreise und Quadrate, Comm* Math. Helv. IS, 195-200 (1940/41)*

EL Math. 8
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wie angedeutet, über alle Lagen von G zu erstrecken, für welche G G0 4= 0 ist. — Nach
der Formel von Poincare bzw. Santalö ergibt sich nämlich

ATT
n(G,G0) LL0+2ti(F + F0) '

Nun beachten wir noch die Sonderfälle, in denen für G0 ein mit G kongruenter
Bereich bzw. ein flächengleicher Kreis K gewählt wird.

Wir erhalten so die Beziehungen

Hierbei können die linken Seiten als isoperimetrische Defizite, welche gegenüber
Ähnlichkeitstransformationen invariant sind, betrachtet werden. Daß die rechten Seiten
nicht negativ sein können, ist unmittelbar einleuchtend, da in den beiden betrachteten
Sonderfällen (fast) immer n(G, GQ) j§ 2 ist, falls die beiden Bereiche sich treffen.

Es sei noch darauf hingewiesen, daß, obwohl n(G, G0) beliebig groß sein kann, der
Mittelwert n(G, G0) g 4 ausfällt. Für einen umfangsgleichen Kreis K' findet man
n(G, K') <£ 8/3. L. Fejes Töth, Budapest.

IV. Über Dreiecke mit ganzzahligen Koordinaten und ganzzahligen Seiten

Betrachten wir ein Dreieck der im Titel genannten Eigenschaft, so können wir ohne
Einschränkung der Allgemeinheit etwa den Eckpunkt C im Ursprung annehmen. Wir
ersetzen die beiden anderen Eckpunkte A(xlt yx), B(x2,y2) durch die komplexen
Zahlen a xt -f yx i, ß xt -f y2i. Es sollen nun die Zahlen oc, ß, oc — ß Quadrate ganzer
Zahlen als Normen haben.

Dazu genügt, daß oc |2, ß rj2, a — ß £2 oder r\2 -f f2 £2 sei. Dabei sind
f, r), f ganze Zahlen des Körpers R(i), wo R der rationale Zahlkörper ist. Es ist dies
gewissermaßen die pythagoreische Gleichung in diesem Zahlkörper. Der Ansatz
£ ß% -f v2, rj 2 ß v, f ß2 — v2 löst sie, womit sich dann die Koordinaten der
Eckpunkte mit oc (ß2 + v2)2, ß 4 ß2 v2, a - ß (ß2 - v2)2 ergeben. Die Dreieckseiten

CA 6, AB — c, BC a ergeben sich, wenn N die Norm der komplexen Zahl
bedeutet: b N(ß2 -f v2), c N(2 ß v), a N(ß2 - v2).

Wird im folgenden die Konjugierte zu einer komplexen Zahl mit einem Querstrich
angedeutet, so wird der Reihe nach

b (ß ß)2 + (ß v)2 + (ß v)2 + (v v)2,

c 4 ß v ]i v,

a (ß ß)2 - (ß Fj2 - (v ß)2 + (v v)2.

Es folgt durch Addition und Division durch 2 mit a + b -f c 2s:
s (ß "ß -f v v)2, s — # (ßv+ Ji v)2,

s-6= -• (ß v — v ß)2, s — c ~ (ß fi — v v)2.

Rechts stehen überall Quadrate ganzer rationaler Zahlen, auch bei s — b, da der
Ausdruck rechts unter dem Quadratzeichen rein imaginär ist. Wir haben gewissermaßen
ein heronisches Dreieck höherer Ordnung, indem nicht nur das Produkt s(s-a) (s-b) (s-c),
sondern jeder einzelne Faktor ein Quadrat ist.

Es sind dann nicht nur In- und Umkreisradius und die Sinus aller Dreieckswinkel,
sondern auch deren Kosinus und die sämtlichen Funktionen der halben Dreieckswinkel
rational.

Ein Beispiel: Sei ß 2 -f i, v » 2 i. Dann ist « « 15 — 8 i, ß « — 48 — 64 i, und
das Dreieck hat die Eckpunkte ^4(15, - 8), £(~ 48, - 64), C(0, 0). Die Seiten werden
b mt 17,^ ** 65, a *» 80, man hat s « 81, s — a «* 1, s — b » 64, s — c « 16; diese letzten
Zahlen sind also alle Quadrate.
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Wir haben hier eine bequem zu rechnende Teillösung gegeben. Daß sie nicht alle im
Titel genannten Dreiecke umfaßt, zeigt folgendes Gegenbeispiel: Das (rechtwinklige)
Dreieck mit den Eckpunkten C (0, 0), A (3, 4), B (4, 0) hat die Seiten b 5, a 4, c 3.
Es wird 5 6, 5 — a 2. Es sind also nicht alle Größen s, s — a, s — 6, s — c Quadrate
rationaler Zahlen, also ist dieses Dreieck in der vorigen Lösung nicht enthalten.

L. Holzer, Graz.

Aufgaben
Aufgabe 8. Par le quatrieme sommet C du rectangle construit sur les deux demi-axes

OA et OB d'une ellipse, on mene la perpendiculaire p ä la droite AB. Un point P
variable sur p a les deux coordonnees m, n. Trouver l'enveloppe des ellipses de demi-
axes m, n coaxiales ä l'ellipse donnee quand P se deplace sur p. L. Kollros.

Lösung: Sind u, v die Linienkoordinaten der Geraden u x + v y ~ 1, so hat die Ellipse
mit den Halbachsen m, n die Gleichung (u m)2 + (v n)2 1. Nach Voraussetzung gilt
(n — b):(m — a) —a.b. Da die Gerade (u, v) auch die «unendlich benachbarte» Ellipse
der Schar berühren muß, wird wegen dn/dm a/b:

u2 m b + v2 n a 0.

Elimination von m, n liefert (a v)2 -\- (b u)2 c4 u2 v2 mit c2 a2 — b2. Die Kurve ist
also die Evolute der gegebenen Ellipse. (Siehe z. B. Loria: Curve piane I, 300.)

C. Bindschedler, Küsnacht.
Eine weitere Lösung sandte L. Kieffer (Luxemburg).

Aufgabe 9. On projette orthogonalement un point variable de rellipsoide sur ses
trois plans principaux; trouver Tenveloppe du plan qui passe par les trois projections.
(Probleme analogue dans le plan et dans l'espace pour les hyperboloides.) L. Kollros.

Lösung von L. Kieffer, Luxemburg (hier gekürzt wiedergegeben). Es sei
(x/a)2 + (y/b)2 -f (z/c)2 1 die Gleichung des Ellipsoides; P(u, v, w) sei ein Punkt auf
ihm, also (u/a)2 -f (v/b)2 -f (w/c)2 1 (1). Als Gleichung der beweglichen Ebene
durch die Fußpunkte der Lote von P auf die Symmetrieebenen des Ellipsoides erhält
man (x/u) + (y/v) + (z/w) 2 (2). Denkt man sich die Parameter v, w als Funktionen
von u und bezeichnet die Ableitungen dv/du, dw/du mit v' bzw. w', so ergibt sich aus
(1) und (2): i + i'+Z''-*- e> i + i»'+i*'-«' <?>

Multipliziert man beide Seiten von (4) mit X, addiert hierzu (3) und fordert noch

Xx u Xy v Xz w K

so ergibt sich durch Addieren mit Hilfe von (1) und (2) X « — 0,5. Hieraus weiter

u ^0,5 a2 x, v ^0,5 b2 y, w « ^0,5 c2T,

Als Gleichung der Enveloppe findet man also:

VCjf + yWf + y{jT V* oder (b c *)m +(ca y)m + (ab z)m - (2 *h c)m-

Aufgabe 26: Beweise für die Fläche eines Dreiecks die Formel

F (pasm<x. + pbsin ß + pe$iny)2
2 sin ol sin ß sin y

oc, ß, y sind die Gegenwinkel der Seiten a, b, c und paPpb, Pc die mit Vorzeichen
versehenen Abstände der Seiten von einem beliebigen Punkt der Ebene. E. Trost.
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