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Zur Elementargeometrie der Ellipse
Die planimetrische Behandlung der Ellipse benützt gewöhnlich eine der drei

folgenden Aussagen als Definition der Ellipse (während die beiden andern dann Lehrsätze

werden):
A. Die Ellipse ist der geometrische Ort des Punktes, dessen Abstände von einem

gegebenen Punkt und einer gegebenen Geraden in einem konstanten Verhältnis e < 1

stehen.
B. Die Ellipse ist der geometrische Ort des Punktes, dessen Abstände von zwei

gegebenen Punkten eine konstante Summe haben.
C. Die Ellipse ist die normal-affine Figur eines Kreises in bezug auf einen Durchmesser

des letztern als Affinitätsachse. (Die an sich überflüssige Bedingung für die
Achse ist wohl zweckmäßig.)

Am verbreitetsten ist die Definition B; in theoretischer Hinsicht verdient aber wohl
A den Vorzug, da man durch bloße Aufhebung der Bedingung e < 1 eine allgemeine
Definition der Kegelschnitte erhält (siehe auch das nachgelassene Werk von Henri
Lebesgue, Les coniques [Paris 1942]). Allerdings erscheint dabei der Kreis nicht als
Spezialfall der Ellipse, sondern als Grenzfall (wie übrigens bei exakter Auffassung
auch in B).

Im folgenden soll auf möglichst einfachem Weg aus Definition A Satz B, aus Satz B
Satz C, und schließlich ohne Vermittlung von B aus Definition A direkt Satz C abgeleitet

werden. Auf oder nahe an diesem Weg findet man dabei einige der Haupteigenschaften

der Ellipse (mit Ausnahme derjenigen über konjugierte Durchmesser und
über den Flächeninhalt, die man am natürlichsten von C aus erhalten würde). Obwohl
versucht wurde, ausgetretene Wege zu vermeiden und z. B. auf die Verwendung des

Leitkreises verzichtet wurde, ist in Anbetracht der überaus umfangreichen Literatur
über den Gegenstand kaum anzunehmen, daß in den hier gegebenen Beweisgängen
etwas Neues zu finden ist. Auf eine hierauf bezügliche Durchsicht dieser Literatur
wird der Verfasser der vorliegenden kleinen Arbeit wohl verzichten dürfen.

Die meisten der hier folgenden Entwicklungen gelten natürlich fast ohne Änderung
auch für die Hyperbel und, wo der zweite Brennpunkt nicht im Spiel ist, für die
Parabel.

I. Von der Definition A zu Satz B

Im Anschluß an die Definition A wird man die klassische Aufgabe nicht übersehen

(Newton: Principia, 1. Buch, § 44), einen Kegelschnitt zu konstruieren, der durch
drei gegebene Punkte Plt P2, P3 geht und einen gegebenen Brennpunkt F hat. (Die
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gesuchte Leitlinie teilt die Strecke PtPk im Verhältnis ± PiF/P^; von den

Teilungspunkten auf den Seiten des Dreiecks PXP2PZ liegen nach Menelaos [Umkehrung]

viermal je 3 auf einer Geraden.) Die Beschränkung auf die Ellipse wäre hier
nicht zweckmäßig, da auch bei lauter positiven Teilverhältnissen der Kegelschnitt
keine Ellipse zu sein braucht.

Es seien nun F, l Brennpunkt und Leitlinie einer Ellipse. Die Normalprojektion
eines beliebigen Punktes P der Ebene auf eine Gerade g wird im folgenden mit Pg
bezeichnet. FFl ist Symmetrieachse der Ellipse. Die Hauptscheitei A, B teilen die

Strecke FFt harmonisch im Verhältnis e.

Satz 1. Der Abschnitt einer Kurventangente zwischen Berührungspunkt und
Leitlinie erscheint aus dem Brennpunkt unter einem rechten Winkel. Beweis

(nach Lebesgue): Schneidet die Sekante PQ die Leitlinie in S, so liegt S wegen

S1

P'^-k-^P P

&t

Fig. 1 Fig. 2 Fig. 3

SP/SQ PPilQQi FPjFQ auf der Außenwinkelhalbierenden des Dreiecks PFQ
(Fig. 1). Beim Grenzübergang Q->P geht die dazu senkrechte Innenwinkelhalbierende

in FP über, was die Behauptung ist.
Aufgabe. Man lege von einem Punkt P der Ebene die Tangenten an die Ellipse.

Lösung (Fig. 2): Die Tangenten aus F an den Kreis um P mit Radius e • PPX
schneiden die Leitlinie in Punkten der gesuchten Ellipsentangenten t, f. Die
Berührungspunkte Q, Q' liegen auf den Normalen in jF zu den Kreistangenten. Zwei Lösungen,

wenn PF> B-PPt.
Diese Konstruktion bringt den sogenannten ersten Ponceletschen Satz zu fast

unmittelbarer Evidenz:
Satz 2. Die Abschnitte der beiden Tangenten von ihrem Schnittpunkt bis zu den

Berührungspunkten erscheinen vom Brennpunkt aus unter gleichen Winkeln.
Man hat nur zu beachten, daß die Geraden FQ, FQ* mit den Kreistangenten gegensinnig

gleiche. Winkel bilden (als Unterschiede des Winkels der Kreistangenten gegenüber

einem Rechten).
1 Die entsprechende Aufgabe «Schnitt der Ellipse mit einer Geraden g» bietet keine

Schwierigkeiten (PF/PS** PFjPP^ PP^PS, S Schnittpunkt von g mit /).
Satz 3. Die EEipse besitzt eine zweite Symmetrieachse, die Mittelsenkrechte der

Verbindungsstrecke ihrer Hauptscheitel.
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Beweis (Fig. 3). Ist P ein Kurvenpunkt, so liegt auf der Geraden PPX im allgemeinen

genau ein weiterer Punkt P* der Kurve, nämlich der Schnittpunkt von PPX mit
dem Apollonischen Kreis bezüglich der Strecke FPlt der dieselbe im Verhältnis
± £ teilt. Sein Durchmesser wird aus der Geraden FPX herausgeschnitten von den
Tangenten in den Hauptscheiteln A und B; der geometrische Ort für den Mittelpunkt
ist also die Mittelsenkrechte von AB, und diese ist dann gleichzeitig Symmetrieachse
für PP*.

(Dieser Beweis wird auch von Lebesgue erwähnt unter Hinweis auf Rouch£ et
de Comberousse).

Durch Spiegelung von F und / an dieser zweiten Symmetrieachse nach F* und /*
erhält man nun sofort die fundamentale Eigenschaft:

Satz 4. Die Summe der Abstände eines Ellipsenpunktes von den beiden
Brennpunkten ist konstant.

Dies folgt aus PF + PF* e • PPX + e • PPt* e • PxPt*.

Bezeichnen wir diese konstante Summe der «Brennstrahlen» mit 2a und den

Mittelpunkt der Kurve mit M, so erhält man, da die Beziehung PF -f- PF* 2 a

auch für die Scheitel A und B gilt, in bekannter Weise 2 a AB, a — MA — MB.
Zum. vollständigen Beweis von Satz B ist es noch nötig, zu zeigen, daß jeder Punkt

P des Ortes PF + PF* 2 a auch der Ellipse im Sinn von Definition A angehört.
Da der fragliche Punkt nicht außerhalb des Kreises um M mit Radius a («Hauptkreis»)

liegen kann (die Schwerlinie PM des Dreiecks FPF* ist kleiner als das

arithmetische Mittel der Seiten PF, PF*), und da es auf einer Halbgeraden h, die in einem

Punkt H der Strecke AB senkrecht zu ihr errichtet wird, nur einen solchen Punkt P
geben kann, müssen wir nur nachweisen, daß eine solche Halbgerade auch die Ellipse
schneidet. Der Schnittpunkt ist dann nach Satz 4 identisch mit P.

Die Existenz dieses Schnittpunktes folgt aber daraus, daß für einen auf h sich

bewegenden Punkt Q das Verhältnis QFjQQx sich mit Q stetig ändert, für Q H kleiner

als e ist, außerhalb des Hauptkreises aber sicher größer als e. (Dieser Kreis ist ja
ein Apollonischer Kreis bezüglich der Strecke FFX).

Damit ist der Satz B vollständig bewiesen. Sind C, D die Endpunkte der «kleinen

Achse», so wird für MC MD b, mF e, b2= a2 — e2. Aus CFjCCx e folgt
MMX aje und, da MF • MMX a2, e ea.

Bei festgehaltenen Scheiteln rückt, falls man zur Grenze e -> 0 übergeht, die Leitlinie

ins Unendliche.

II. Von Satz B zu Satz C

Satz 5. Die Ellipsentangente halbiert den Außenwinkel der Brennstrahlen des

Berührungspunktes (Fig. 4).
Beweis: Die Brennpunkte werden in diesem Abschnitt mit Ftt Fa bezeichnet, die

Leitlinien mit lt, l%, die Brennstrahlen eines Punktes P mit rt, rg. Ferner sei PPl% ux,

PPt u% und die Tangentenabschnitte bis zu den Leitlinien mm tt,t2.
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ut
und folgt

Wg *1 ^2 ti t^

Die rechtwinkligen Dreiecke mit den Katheten rt und den Hypotenusen t{ sind
also ähnlich.

Als einfache Anwendung dieses Satzes folge hier die Konstruktion der
Krümmungskreise in den Scheiteln.

a) Die Krümmung in den Hauptscheiteln.

>X U*

\ fy^ Ti\ J^>
1. F, F, lj

3hL^^
Ft *^ /

» /f^^ s\' \ \/A \ /^/ \ ^
i / ^^/ \Y-^ s ^

f -4£. — .,„_ _ >.

A F B

Fig. 4 Fig. 5

Da die Normale in einem Kurvenpunkt P als Winkelhalbierende im Dreieck F1PF2
die Strecke FtF2 im Verhältnis PFJPF2 teilt und beim Grenzübergang P-^A
oder P -> B dieser Teilungspunkt zum Krümmungszentrum K wird, so teilt K die

Strecke FtF2 im Verhältnis (a — e)j(a + e) resp. (a + e)j(a — e). Hieraus ergibt sich
dann der Krümmungsradius qa b2/a.

b) Die Krümmung in den Nebenscheiteln.
Die Kurvennormale in einem Punkt P trifft die Nebenachse in ihrem Schnittpunkt

Fa

U2

Ü2

Fig. 6 Fig. 7

mit dem Umkreis des Dreiecks FtPF%. Das Krümmungszentrum für den Scheitel C

liegt also auf der Normalen in F4 zu F^C, woraus sich sofort qc a%jb ergibt.
Satz 6. Der Abschnitt einer beliebigen Kurventangente zwischen den Tangenten in

den Hauptscheiteln erscheint von einem Brennpunkt aus unter rechtem Winkel. Der
Satz folgt unmittelbar aus Satz 2.

Satz 7. Der Fußpunkt des Lotes von einem Brennpunkt auf eine Tangente liegt
auf dem Hauptkreis (Fig, 5).



C. Bindschedler : Zur Elementargeometrie der Ellipse 109

Sind Tv T2 die Schnittpunkte der Tangente t mit den Tangenten in A und B, so
zeigen die beiden SehnenVierecke AFFtTx, BFFtT2, daß die beiden nach Satz 6

komplementären Winkel ATXF, BT2F gleich den Winkeln AFtF, BFtF sind. Ft

liegt also auf dem Thales-Kreis über A B.
Aus Satz 7 ergibt sich die bekannte Enveloppenkonstruktion der Ellipse.

Satz 8. Das Produkt der Abstände der Brennpunkte von einer veränderlichen
Tangente ist konstant und gleich dem Quadrat der kleinen Halbachse (Fig. 6).

Dieses Produkt ist nämlich gleich dem absoluten Betrag der Potenz eines
Brennpunktes in bezug auf den Hauptkreis, also gleich (a + e) (a — e) b2.

Satz 9. Eine veränderliche Tangente schneidet die Tangenten in den Hauptscheiteln
so, daß das Produkt der Abschnitte auf den letztern konstant und gleich dem Quadrat
der kleinen Halbachse ist.

Beweis ergibt sich aus der Ähnlichkeit der Dreiecke AFTX und BT2F. (Bezeichnungen

wie in Satz 7).
Wir schalten hier noch zwei Sätze ein, von denen weiter kein Gebrauch gemacht

wird.

Satz 10 (sog. 2. Satz von Poncelet) : Verbindet man einen beliebigen Punkt P der
Ebene mit den beiden Brennpunkten, so schließen diese Verbindungsgeraden mit den
beiden Tangenten aus P gleiche Winkel ein (Fig. 7).

Beweis. Die Lote ux, vx aus Fx auf die Tangenten bestimmen ein Dreieck Alt das

ähnlich ist zu dem entsprechend gebildeten Dreieck A2 mit den Seiten u^, v2. Denn
aus ux u2 vx v2 folgt ux/vx v2ju2, und die Winkel bei Fx und F2 sind gleich. Die
Winkel, deren Gleichheit in Satz 10 behauptet wird, sind aber, wie aus der Betrachtung

der SehnenVierecke hervorgeht, die durch t, t'', ux, vx und t, t', u2, v2 bestimmt
werden, gleich einem Paar homologer Winkel in jenen ähnlichen Dreiecken.

Bemerkung: Da beim Beweis von Satz 10 nur die Sätze 6 bis 8, nicht aber 5,
benützt wurden, könnte Satz 5 hier als Spezialfall (P auf der Kurve) seinen Platz
finden.

Satz 11. Der geometrische Ort des Punktes, von dem aus die Ellipse unter rechtem
Winkel erscheint, ist ein zum Hauptkreis konzentrischer Kreis.

Beweis. Wenn in Satz 10 t X t'> so sind die dort benützten Sehnenvierecke Rechtecke.

Die Potenz von P in bezug auf den Hauptkreis ist dann gleich der Potenz von
F2t in bezug auf den Thales-Kreis über FXF2, also konstant.

Wir wenden uns nun, anschließend an die Sätze 8 und 9, dem Satz C zu. Wir
definieren als «entsprechende Punkte» von Ellipse und Hauptkreis solche Punkte der
beiden Linien, die auf dem gleichen Lot zur Hauptachse und auf derselben Seite

der letzteren liegen. Dann gilt
Satz 12. Die Tangenten in entsprechenden Punkten von Ellipse und Hauptkreis

schneiden sich auf der großen Achse.
Beweis. Tangente t und Normale n trennen, als Winkelhalbierende im Dreieck

FtPF2, die Punkte FXt F% harmonisch in T und JV (Fig. 8). Durch Normalprojektion
auf t erhält man eine harmonische Trennung von Fir, F%i durch T und P. Da die
Punkte Fit auf dem Hauptkreis liegen, Hegt P auf der Polaren von T in bezug auf
diesen Kreis; d. h. TP' ist Kreistangente in F.
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Satz 13. Das Verhältnis der Abstände entsprechender Punkte von Ellipse und
Hauptkreis von der Hauptachse ist konstant und gleich bja (Fig. 9).

Beweis. Die Tangenten in entsprechenden Punkten P, P', die sich nach Satz 12
auf der Hauptachse schneiden, treffen die Tangenten in A und B in den Punkten
U, U' und F, V'.

V

Fig. 8 Fig. 9

Nun ist ÄlP • BV'= a2 und nach Satz 9 ÄÜ". BV b2, also

fc2

XP'P;/
~~~

Zlf'
*

BT7
~~ *2

(PQ Normalprojektion von P auf AB),

PP
P'P

K

F.*

M*
r*

Fig. 10 Fig. 11

Da hier das Affinitätsverhältnis A bja < 1 ist, müssen wir, um Satz C vollständig
zu beweisen, noch zeigen, daß das Affinitätsverhältnis X keiner Beschränkung unterliegt,

also auch > 1 sein kann. Das folgt aber aus der Verbindung von Satz 13 mit
Satz 14. Zwischen der Ellipse und dem Kreis über der kleinen Achse als Durchmesser

besieht normale Affinität.
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Das ergibt sich daraus, daß die Affinität in bezug auf die Hauptachse, welche vom
Hauptkreis zur Ellipse führt, kombiniert mit einer Affinität in bezug auf die kleine
Achse mit demselben Affinitätsverhältnis bja eine Ähnlichkeitstransformation
ergeben muß, die Ellipse also durch die zweite Affinität in den Kreis vom Radius b

übergeführt wird. Damit ist C bewiesen.
Der Spezialfall X 1 (die Ellipse ein Kreis) entspricht, wie schon erwähnt, einem

Grenzfall bei A und B.
Wünscht man den Satz C auf noch elementarerem Weg, ohne Benützung der

harmonischen Eigenschaft von Pol und Polare in bezug auf den Kreis, zu beweisen, so
führt, außer dem unter III angegebenen kurzen Beweis (siehe unten), auch der
folgende Weg in einfacher Weise zum Ziel (Fig. 10):

Es sei Pf das Spiegelbild von Ft in bezug auf die Tangente t, ut das Lot von F{
auf t, vx, v2 die Abschnitte auf der Tangente von P bis zum Hauptkreis, y und y' die
Abstände der entsprechenden Punkte P und P' von der Hauptachse. Dann gilt

rx\rt FXF$P: AFXF2P AFXF2P: AF2F2*P

(ye)2 (uxvx) (u2v2)

vx v2 ist der absolute Betrag der Potenz von P in bezug auf den Hauptkreis, also

»1 v2 (y' - y) (/ + y)

und ux u2= b2.

Hieraus (ye)2 -= b2 (y'2 — y2), also y'jy konstant.

III. Direkter Übergang von A zu C

Da der Hauptkreis ein Apollonischer Kreis bezüglich der Strecke FFX ist, so folgt
in Verbindung mit Definition A, wenn die Strecken PF, P'F mit s, s', und die Strecken

PPX, P'FX mit u, v bezeichnet werden (Fig. 11):

p2

und hieraus die Konstanz von yjy'. Hiebei bedeuten y und y' wieder die Abstände
entsprechender Punkte von der Hauptachse.

C. Bindschedler, Küsnacht-Zürich.

Kleine Mitteilungen
I. Kurzer Beweis der isoperimetrischen Ungleichung für konvexe Bereiche

Die bekannte verschärfte isoperimetrische Ungleichung von T. Bonnesen1) für einen
konvexen Bereich K heißt

L% — 4 nF ^> (L — 2 n r)*, (1)

l) Vgl. hierüber weiteres in T. Bonnesen und W. Fenchel, Theorie der konvexen Körper, Verlag
J. Springer, Berlin 1934 (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3) insbesondere
S. 112/113.
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