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100 ' Kleine Mitteilungen

Minimum von A(p) entspricht?), so muB es mehr als zwei stabile Ruhelagen geben.
Damit ist Satz 1 bewiesen.

Ein einfaches Beispiel einer zweidimensionalen homogenen Wurffigur mit genau
zwei stabilen Ruhelagen liefert eine Ellipse. Dasselbe gilt von Dreiecken, bei welchen
eine der vom Schwerpunkt auf eine Dreiecksseite gefillten Normalen diese Seite nicht
im Innern, sondern auBerhalb oder in einem Eckpunkt trifft, so daB nur auf den
beiden anderen Seiten ein stabiles Ruhen moglich ist.

Natiirlich kann man fragen, inwieweit in Satz 1 die Voraussetzung (V) entbehrlich
ist. Auch ist anzunehmen, da8 ein zu Satz 1 analoger Satz auch fiir » = 3 Dimen-
sionen gilt, wobei man in abgeplatteten Rotationsellipsoiden ’

2
_:_2§.+_fﬂ__l)2~iﬁ_..1§0 (b > a)

Beispiele von «Wiirfeln» mit nur zwei stabilen Ruhelagen hat.
HEeinricH TIETZE, Miinchen.
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1. Eine anschauliche Deutung des Vierscheitelsatzes

Die Randkurve eines ebenen'konvexen Bereiches hei3t Eilinie, wenn sie sowohl eine
stetige Tangente als auch stetige und iiberall positive Kriimmung besitzt. In der Dif-
ferentialgeometrie der ebenen Kurven?2) wird durch Rechnung bewiesen, daBl es bei
jeder Eilinie mindestens vier Scheitel gibt, das heiBt vier Punkte, in denen die Kriim-
mung ein relatives Extremum erreicht. Die Begriffe, die HyeLMsLEV?®) zur Untersuchung
der ebenen Kurven einfiihrte, gestatten eine geometrische Deutung des Vierscheitel-
satzes..

Ein Bogen A B, bei dem die Richtung der Tangente sich von 4 bis B stetig und in
gleichem Sinn um weniger als 180° dndert, heiBt «einfacher Bogen». Das von den
Halbtangenten in 4 und B und der Beriihrungssehne gebildete Dreieck umschlieBt
somit den Bogen 4 B. Variiert zudem die Kriimmung von 4 bis B stetig und monoton,
sofern-sie nicht konstant ist, so hei3t der einfache Bogen 4 B « Normbogen». Durch die
Scheitel wird die Eilinie in Normbégen geteilt. Man darf zum Beweis des Vierscheitel-
satzes offenbar annehmen, da8 keiner dieser Normbdgen Kreisbégen enthidlt. Unter
dieser Voraussetzung hat HJELMSLEV a.a.O. rein geometrisch gezeigt, daB die Evo-
lute (Ort der Kriimmungsmittelpunkte) eines Normbogens immer ein einfacher Bogen
ist. Je zwei einfache Bogen der Evolute miissen sich infolge der Stetigkeitsvoraus-
setzungen so aneinanderschlieBen, daB zwei Halbtangenten aufeinanderfallen, das
heiBt, es entsteht eine Spitze «erster Art». Offenbar ist es unmoglich, auf diese Weise
aus nur zwei einfachen Bogen eine geschlossene Evolute zusammenzusetzen. Da die
Anzahl der Scheitel aber gerade sein muB, braucht es mindestens vier einfache Bogen,
wie bei der Ellipse. . ErNsT TROST.

1) Falls zum Wert @ = y der Minimalwert g(y) = » gehort, dann gehért fir ein passendes § > 0 der
ganze Kreissektor g S7, 9 — 0 S @ Sy + 6 zu & und fiir jedes @ aus y — 6 S @ <=y + 0 hat man
an R eine Stiitzgerade x cos ¢ + ¥ sin @ — A(p) = 0 mit A(p) = r = h(p). Man hat iiberdies notwendig
ein eigentliches. Minimum, d.h. es ist (@) > h(yp) fiir 0 < | @ — | = 6, da g(g) nach Voraussetzung in
keinem Intervall konstant ist, somit fiir ¢ =y ein eigentliches Minimum hat. [Auf indifferente Ruhe-
lagen, wie sie bei-Konstanzintervallen von p(@) auftreten, komme ich zuriick in einer Note Uber stabil:
und indifferente Ruhelagen eines homogenen Zylinders, Sitz.-Ber. Bayr; Akad. Wiss., Sitzung 2. Juli 1948
(Zusatz bei der Korrektur).]
© %) Vgl. W. BLASCHKE, Vorlesungen iiber Differentialgeometrie, 3. Auflage, Bd. 1, S. 31.

3) J. HysrMsLEv, Darstellende Geomeiris, Kap. 7, Leipzig 1914.
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II. Démonstration du théovéme de Coriolis au moven des fonctions linéaires vectorielles

1. Fonction linéaire vectorielle

Soit un vecteur x rapporté & deux systémes de coordonnées rectangulaires d’origines
confondues et portant respectivement les vecteurs unités ¢; et g;. On a

£=Ze,-xi=2€i§z-.
Multiplions scalairement par e;:
(xep) =2, =27, (¢, ¢) = oy 7y,
ou ;= (& €p).

Considérons le vecteur y qui, dans le systéme des ¢;, a les composantes ¥, = ;. On
dit que x est une fonction linéaire vectorielle de y, ou, du moins, un cas particulier de
fonction linéaire vectorielle. Nous exprimerons symboliquement la relation entre x et
par la notation x = a(p).

2. Dérivation de la fonction linéaive vectorielle

Supposons invariable le systéme des e; et fonctions d’un parameétre ¢ le systéme des
¢; et le vecteur 1. Calculons les dérivées:

13’-‘-"— Zekx;c ’
Fp= Doy %) = Z (a5 %y + 0y %)),
ou ajp = (2;¢5)" = (e 7).

Considérons les o}, comme les coefficients d’une fonction linéaire vectorielle. On a
¥ =a(y’) +o'(n).

Formellement, on dérive une fonction linéaire vectorielle comme un produit.

3. Origine mobile
Supposons mobile I'origine du systéme des e, et soit b le vecteur qui en détermine la
position et x celui qui fixe celle du point mobile par rapport au systéme mobile.

Ona t=b-+x.

4. Théoréme des vitesses
Dérivons la derniére équation:
t'=D0b"+ 2" =Db"+ a(y’) + «’(y).

Cette équation a la signification suivante; la vitesse absolue t’ est égale 4 la somme
de trois vitesses: la vitesse absolue b’ de l'origine mobile, la vitesse a’(y) due a la
rotation du systéme mobile, et la vitesse relative a(n’). La résultante des deux premiéres
vitesses est appelée vitesse d’entrainement. La vitesse due a la rotation du systéme
mobile peut étre exprimé par un produit vectoriel, [w p] o w est le vecteur vitesse
angulaire du systéme d’axes mobiles.

) 5. Accélérations, théoréme de Coriolis
Deux dérivations successives donnent
l:” — b” + all(t)) 4 a(nll) + 2 at(nl)_

" - Cette équation exprime le théoréme de CorioLIs: I'accélération absolue est égale 2 1a
somme des quatre accélérations suivantes: b”, accélération de l'origine du systéme
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mobile; a”(y), accélération due 2 la rotation du systéme mobile; «(1”), accélération rela-
tive et 2 a’(y’), accélération complémentaire. L’accélération complémentaire est égale
au double de la vitesse de 1’extrémité du vecteur vitesse relative dans la rotation du
systéme mobile, soit au produit vectoriel 2[w 1’]. Les deux premiéres accélérations
constituent l’accélération d’entrainement. P. RossiEr, Genéve.

II1. Goniometrie und komplexe Zahlen

In Nummer 1 von Band 3 dieser Zeitschrift wird iiber einen Vortrag berichtet, in dem
Herr M. Post, Lausanne, einen Lehrgang entwickelte, «der unter lediglicher Benutzung
der Addition und der skalaren Multiplikation von Vektoren einfach und elegant die
Trigonometrie sowie die ebene analytische Geometrie aufbaut». Als besonderer Vorzug
dieser Methode wird unter anderem erwidhnt, daB sich nach ihr die Additionstheoreme
fiir Sinus und Kosinus in voller Allgemeinheit in einem einzigen Gedankengang ergeben.
Dies nun 148t sich auch ohne Vektorrechnung erreichen unter lediglicher Benutzung
der ohnehin iiblichen geometrischen Darstellung der komplexen Zahlen.

Der gewthnlich eingeschlagene Weg bei der Behandlung der Gauschen Zahlenebene
ist dieser: Zuvor wurden die genannten Additionstheoreme in der iiblichen Weise mit
mehr oder weniger sorgfiltiger Durchfiihrung der Fallunterscheidungen hergeleitet. Mit
Hilfe der komplexen Zahlen und des Symbols cis ¢ = cos ¢ -+ ¢ sin ¢ konnen sie in die
«Cisgleichung» ) ) )

, cis(p+ y)=cisgp-cisy
zusammengefaBt werden. Damit fiihrt die geometrische Darstellung der komplexen Zah-
len zu der Erkenntnis: Die Multiplikation der komplexen Zahlen mit cis ¢ 148t sich
geometrisch darstellen durch eine Drehung der Zahlenebene um den Nullpunkt um den
Polarwinkel ¢.

Dieser Weg nun 148t sich auch in umgekehrter Richtung durchlaufen. Man kann
nidmlich den zuletzt genannten Satz auch ohne Additionstheoreme in leicht faBlicher
Weise herleiten. Aus ihm folgt die Cisgleichung, und diese liefert durch Ausrechnung
die beiden Additionstheoreme in allgemeingiiltiger Form. Dieser Lehrgang hat sich mir
seit vielen Jahren bewédhrt und sei im folgenden in Kiirze entwickelt.

Die komplexen Zahlen werden zunichst in der Form X = x + ¢ #’ eingefiihrt, wo »
und %’ reelle Zahlen und ¢ die imagindre Einheit bedeuten, und es werden die Addition,
Subtraktion und die Multiplikation solcher Summen nach den Regeln der Algebra mit
Beriicksichtigung von ¢ = — 1 geiibt. X = Y bedeutet zugleich x = y und 2’ = y’.

Es schlieBt sich an die geometrische Darstellung der Zahlen X durch die Punkte
einer Ebene mit den kartesischen Koordinaten (#; #’). Dann wird der Absolutwert | X |
einer Zahl X definiert, rechnerisch als positive Quadratwurzel aus der Quadratsumme
von # und #’ und geometrisch als Abstand vom Nullpunkt. Analog deutet man [ X —Y|
als Abstand der reprasentierenden Punkte.

Nun beweist man durch Ausrechnung die grundlegende Indentitit:

|XY| = [X|-]Y].

Es folgt die Betrachtung der geometrischen Orter fiir U = w4 (u reell, 4 komplex)
und |U| = r. Dann zeigt man, daB sich die Punkte des Einheitskreises E = ¢ + i ¢’
durch eine einzige GroBe, den Polarwinkel ¢, eindeutig festlegen lassen, wiahrend umge-
kehrt ¢ eine periodische Funktion von E ist, mit der Periode 2 =.

Nun erfolgt der Anschlu3 an die Trigonometrie durch die allgemeine Definition von
Kosinus und Sinus: cos ¢ = ¢ und sin ¢ = ¢’, die fiir spitze ¢ mit der Definition am
rechtwinkligen Dreieck iibereinkommt. ZweckméBig fithrt man das Symbol ci$ ¢ fiir
E ein («Ciszahly).

Jede komplexe Zahl A4 1iBt sich nun in der Form |A4|cis « darstellen. Die Polar-
koordinaten |4 | und « bestimmen eindeutig die kartesischen Koordinaten a und a’,
wihrend durch a und a’ |4 | eindeutig, « aber nur bis auf ganze Vielfache von 2 x be-
stimmt ist, ‘
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Jetzt ist man in der Lage, die geometrische Bedeutung der Multiplikation mit cis ¢
zu untersuchen. Zunichst stellt man fest:

[Xcisp— Ycisg|=|(X— Y)cisg|=|X~— Y| . |cisg|=|X-Y]|,

d.h. bei Multiplikation mit cis ¢ bleiben simtliche Abstinde unverindert.

Und nun kommen die entscheidenden Uberlegungen. Zuerst spezialisiert man ¢ auf
n/2, untersucht also die Multiplikation mit ¢ und stellt fest: 0.4=0, 1.4 = ¢ und
14 = — 1. Die Multiplikation mit ¢ fiihrt also das Dreieck 0, 1, ¢ in das kongruente
Dreieck 0, ¢, — 1 iiber, welches aus jenem durch eine Drehung im positiven Sinne um
90° um den Nullpunkt hervorgeht.

Da nun ein Punkt durch seine Abstdnde von drei gegebenen, nicht auf derselben Ge-
raden liegenden Punkten eindeutig bestimmt ist und da diese Abstinde unveridndert
bleiben, so ergibt sich, daB die ganze Ebene um einen rechten Winkel um den Null-
punkt gedreht wird.

Jetzt wahlt man ¢ wieder allgemein und stellt fest, im letzten Teil mit Hilfe des eben
gefundenen: O0.cisp =0, 1:.cisp = cis ¢ und ¢ cis ¢ = cis [¢ + (n/2)]. Das heiBt das
Dreieck 0, 1, ¢, und mit ihm die ganze Ebene, wird um den Nullpunkt um den Polar-
winkel ¢ gedreht.

Damit ist das entscheidende Resultat gefunden, aus ihm ergibt sich die Cisgleichung.
Der Baum der Erkenntnis ist gereift, man braucht nur leicht zu schiitteln, und die
schonsten Friichte fallen. Ich erwidhne lediglich: Additionstheoreme, Potenzierung und
Radizierung komplexer Zahlen, Einheitswurzeln.

Ich habe im Vorstehenden die wichtigsten Schritte angedeutet. Es ist Sache des er-
fahrenen Lehrers, in wohlbedachter Riicksicht auf den besonderen Charakter der Schule
und der Klasse zu entscheiden, wie im einzelnen die notwendigen Schritte zu erarbeiten
sind und wie weit Nebenwege beschritten und Erweiterungen ausgebaut werden sollen.

DaB die Additionstheoreme so schén fix und fertig herausspringen, ist gewifl ein
schiatzenswerter Vorzug der geschilderten Methode. Noch bedeutsamer erscheint mir
der Umstand, daB hier die geometrische Darstellung der komplexen Zahlen zum tragen-
den Element wird, wihrend sie sonst ein zwar schoénes, aber doch nur begleitendes
Spiel bleibt. A. Storr, Ziirich.

Aufgaben

Aufgabe 31. Um ein gleichseitiges Dreieck mit der Seite s wird ein geschlossener Faden
der Linge L = 3 s gelegt und durch einen sich bewegenden Stift gespannt. Man be-
rechne die Fliche des vom Stifte beschriebenen Ovals. E.TrosT.

Losung. F bedeute nicht den Flicheninhalt des Ovals, sondern die Differenz zwischen
der Ovalfliche und der Dreiecksfliche. Sind dann ¢ und y beide zwischen 0 und n/2

bestimmt durch ' B I_3s 1 dine I
Smme=2r—3s ¢ Y=2L_-3s"’
dann ist

F=—2—V(L—-s) (L—25s) {(pVL(L-—S)+tpV(L-~2$) (L—Ss)}.

Herleitung. A, B, C seien die Ecken des gleichseitigen Dreiecks mit der Seite s, und
A’ sei die Mitte von BC, B’ diejenige von CA. Die Verlingerungen der Héhen 44’ und
BB’ iiber A’ bzw. B’ hinaus schneiden aus der ringférmigen Fliche F genau 1/6 heraus.
Der krummlinige Teil der Berandung dieses Flichenstiickes besteht aus zwei mit glei-

-cher Tangente aneinanderstoBenden Ellipsenbigen RS und ST, wobei R, S, T bzw.
auf den Verlingerungen von 4’4, BA und BB’ liegen. Der Rest der Berandung besteht
aus den Strecken RA, AB’ und B’T.
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