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Ist ¢ eine Wurzel dieser Gleichung, so sind
xp=asecty, yr=>"btgt, bzw. x¥=atgt,, yr=0bsect (10)

die Koordinaten eines Schnittpunktes der Kurven H’ und K’, bzw. H* und K*.

Damit ist der Satz auch fiir den Fall einer gezeichneten Hyperbel bewiesen.

5. Der Satz von SmiTH und KortuM laBt sich auf folgende Weise verallgemeinern:

Liegt ein von einem Kreis abweichender Kegelschnitt in der Ebene gezeichnet vor, so
kann man die Wurzeln jeder Gleichung viertem oder dritten Grades mit Zirkel und
Lineal konstruieren.

Die Berechnung der Wurzeln einer Gleichung vierten oder dritten Grades erfordert
ndmlich auBer rationalen Operationen Berechnung von Quadratwurzeln und von
Kubikwurzeln. Die Konstruktion der Quadratwurzel aus einer Zahl A erfordert die
Konstruktion von |/ W und die Halbierung des Winkels Arg 4. Beide Konstruk-
tionen sind mit Zirkel und Lineal ausfithrbar. Die Konstruktion von V4 erfordert
die Konstruktion von W;ﬂ , das heiBt ein Delisches Problem und die Dreiteilung des
Winkels Arg 4. Beide Probleme lassen sich auf Gleichungen mit reellen Koeffizieniten
zuriickfithren. Sie sind also nach dem Satz von SmiTH und KorTUM konstruierbar.

Gyura (Jurius) v. Sz. NaGgy, Szeged (Ungarn).

Uber die Anzahl der stabilen Ruhelagen eines Wiirfels

Herrn GEORG FABER zum 70. Geburtstag gewidmet

7. Was im Lateinischen «cubus» heiBt (englisch «cube», franzosisch «cube», italie-
nisch «cubo», hollindisch «kubus» usw.), dafiir haben wir im Deutschen das vom
Wort «werfen» kommende Wort «Wiirfel». Dieses Wort dient uns aber nicht nur zur
Bezeichnung derjenigen geometrischen Figur, die man auch «Hexaeder» nennt, son-
dern ebenso zur Benennung jenes Korpers von dieser Gestalt, der zum «Wﬁrfelspiel »
verwendet wird, mit dem also wirklich «geworfen» wird. Demgegeniiber haben andere
Sprachen fiir solche «Spielwiirfel» besondere Namen (game at «dice»; jouer aux «dés»,
giocare ai «dadi»; dobbelen — «dobbelsteen, teerling»), so daB in ihnen die Aus-
drucksweise der Geometer nicht zugleich jene der Gliicksritter ist. '

Nun ist ein Wiirfelspiel auch mit anderen geworfenen Koérpern als solchen von
kubischer (hexaedrischer) Gestalt mdéglich, und man kénnte z.B. auch oktaedrische
«Wiirfel» nehmen, wobei wir hier — wie im Titel — das Wort «Wiirfel» im allgemeinen
Sinn eines Korpers verwenden, mit dem geworfen wird.

Es handelt sich dann um die Anzahl der Ruhelagen eines solchen geworfenen Kér-
pers und um die Frage, welches die Chancen einer jeden dieser Ruhelagen sind?).

Dabei kann man die Betrachtung auf konvexe Koérper beschrinken, wenn man
solche aus inhomogenem Material nicht ausschlieBt. Liegt ndmlich ein nichtkonvexer
Wiirfelkérper € vor, so kann man den kleinsten konvexen Kérper R betrachten,
der £ umfaBt2) und dabei R als inhomogen auffassen, insofern in dem zur Erginzung

1) Auf die Beurteilung dieser Chancen, speziell wenn sie nicht fiir alle Ruhelagen gleich gro8 sind,
komme ich in einem Aufsatz Wiirfelspiel und Integralgeometrie zu sprechen. (Sitz.-Ber. Bayr. Akad. Wiss.,
Math.-naturw. Kl., Sitzung 4. Oktober 1946, Jg. 1945/46, S. 131~158.)

2) Bekanntlich heiBt & nach CARATHEODORY die «konvexe Hiille» von £.

El Math. 7
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hinzugenommenen Raumteil’) & — £ im allgemeinen eine andere Dichte herrscht
(ndmlich die der Luft im AuBenraum) als in £.

]

2. Man kann die Fragestellung auch fiir andere Dimensionszahlen als 3, insbeson-
dere fiir 2 Dimensionen behandeln, wobei ein langer Stab, dessen Querschnitt eine
vorgegebene zweidimensionale konvexe Figur R ist, zur Realisierung des zugehérigen
«Wiirfelspiels» dienen kann. (Man mag etwa an einen in iiblicher Weise sechskantig
geschnittenen Bleistift denken.) Der Schwerpunkt einer solchen konvexen Wurf-
figur & sei S; der Rand der Figur R sei in Polarkoordinaten g, ¢ gegeben durch

e=¢(p) Mt0=9p=2n), ¢(0)=p0(2n). (1)

Wir wollen dabei ausdriicklich noch die folgende einschriankende Voraussetzung (V)
machen:

(V) Die in (1) auftretende Funktion g(¢) habe im Intervall 0 < ¢ < 2 nur end-
lich viele Maxima und Minima?2).

3. Bei Betrachtung der moglichen Ruhelagen kann man von instabilen absehen
(deren Chance gleich Null ist). Natiirlich bietet auch der Fall der homogenen Kreis-
scheibe bzw. des homogenen zylindrischen Stabes, wo gar keine stabilen, sondern nur
indifferente Gleichgewichtslagen auftreten, kein weiteres Interesse.

Bei inhomogener Massenverteilung kann aber auch der fiir ein «Wiirfelspiel» triviale
Fall eintreten, daB nur eine einzige stabile Ruhelage vorhanden, jede andere Ruhe-
lage dagegen labil ist. (Einfachstes Beispiel: die inhomogene Kreisscheibe mit ex-
zentrischem Schwerpunkt bzw. der entsprechende inhomogene zylindrische Stab.)3)

Dagegen gilt fiir homogene zweidimensionale konvexe Wurffiguren K der Satz:

Satz 1. Eine der Voraussetzung (V) geniigende konvexe zweidimensionale Wurffigur
R, deren Rand keinen Kreisbogen mit dem Schwerpunkt als Mitielpunkt enthdlt, hat
ber homogener Massenverteilung mindestens zwei stabile Ruhelagen.

4. Um Satz 7 zu beweisen, werden wir uns auf folgenden Satz stiitzen:

Satz 2. Sei in Polarkoordinaten eine konvexe Figur R durch o = o(¢p) gegeben, wobei
o(p) nur 1 Maximum und 1 Minimum habe*), dann ist der Schwerpunkt der Figur K
(von der homogene Flichendichte vorausgesetzt wird) notwendig verschieden vom An-
fangspunkt O des Polarkoordinatensystems.

Beim Beweis von Satz 2 kénnen wir annehmen, die durch ¢ = 0 (oder = 2 7) ge-
kennzeichnete Polarachse entspreche dem Minimalwert 7 von g(g). Der Maximalwert
sei R und gehore zu ¢ = @,. Eine nicht durch den Schwerpunkt S von & gehende
Gerade g heiBe eine «Kipplinie» (Lapsionslinie) ; und sie heiBe eine spezielle Kipplinie

1) Schon die iiblichen — im wesentlichen kubisch gestalteten ~ Spielwiirfel sind meist so hergestellt,
daB die Nummern 1 bis 6 durch angebrachte Hohlungen (mit einer Kugelkalotte als Oberfliche) gekenn-
zeichnet sind, so daB man es genau genommen mit einem nichtkonvexen Wiirfelkorper € zu tun hat,
wobei & - € von der Gesamtheit'der 1 + -+« - 6 = 21 Hohlungen gebildet wird.

%) Durch (V) ist also z.B. bereits jene Figur & ausgeschlossen, deren Rand von den unendlich vielen
geradlinigen Verbindungsstrecken F, P,,, gebildet wird, wenn fiir ein geeignetes Polarkoordinaten-
system (nicht mit dem Schwerpunkt S als Mittelpunkt) P, die Koordinaten ¢ =1, ¢ = 2z/y hat (v = 1,
2,8, ...).

8) Bekannte dreidimensionale Beispiele sind leichte Puppen (etwa aus Zelluloid) mit schwerem (etwa
mit Blei ausgegossenem) halbkugelférmigem FuB.

%) Es ist das, wenn wir o(p) als periodische Funktion mit der Periode 2 v auffassen, so zu verstehen
daB fiir eine beliebige Wahl von a im Intervall ¢ < p < o + 2 7 ein etwaiges Maximum (bzw. Minimum),
in @ = ot und eines in @ = a 4+ 2 77 zusammen nur einmal gezahlt werden.
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dann, wenn sie die Figur & derart in zwei Teile zerlegt, einen gréBeren und einen
kleineren, dall dabei das an der Geraden g gespiegelte Bild des kleineren Teils ganz
im gréBeren Teil enthalten ist.

Nun ist g(¢) im Intervall 0 < ¢ < @, eine monoton vom Wert r zum Wert R zu-
nehmende (oder doch niemals abnehmende) Funktion, wihrend g(¢) im Intervall
¢o = @ = 27 monoton von R zu r abnimmt (oder doch niemals zunimmt). AuBer-
dem ist g(¢), der Konvexheit von & zufolge, stetig. Nehmen wir einmal den Fall,
daB Teilintervalle ¢, in denen p(¢p) konstant ist (also kreisbogenférmige Stiicke mit O
als Mittelpunkt), nicht vorkommen, dann wird jeder dem Intervall » < p < R an-
gehérende Wert ¢ genau einmal im Intervall 0 < ¢ < ¢, und einmal im Intervall
@o < ¢ < 27 angenommen, etwa fir ¢ = ¢, und @ = @,. Dabei ist die Summe
@, + (27 — ¢,) eine mit ¢ monoton wachsende stetige Funktion f(g), fiir welche
f(r) = 0 und f(R) = 27 ist. Es muB also einen Wert p = 7* zwischen » und R geben,
fiir den f(r*) = & ist. Zu den zugehérigen Werten ¢, und @, gehdren solche Halb-
geraden, die sich zu einer einzigen Geraden erginzen, die offenbar eine spezielle
Kipplinie ist. Da diese durch O geht, kann O nicht der Schwerpunkt sein.

Auf den Fall, daB auch streckenweise Konstanz von g(¢) zugelassen wird, ist die
Uberlegung ohne Schwierigkeit iibertragbar. Zu jedem Wert g zwischen 7 und R ge-
hort dann aus 0 < @ < @, entweder ein einzelner Wert ¢ = ¢, oder ein ganzes Inter-
vall ¢; < @ < ¢y'; desgleichen aus gy < ¢ < 27 ein Wert ¢ = @, oder ein Intervall
@2 = @ = @y An Stelle der einen Summe ¢, + 27 — @, sind gegebenenfalls alle Zahlen
des Intervalls von @; + (27 — @) bis @7 + (27t — ¢3) in Betracht zu ziehen. Enthilt
dieses Intervall den Wert 7, dann erhilt man eine einzige oder einen ganzen Winkel-
raum von speziellen Kipplinien.

Satz 2 ist damit bewiesen. Ubrigens ist es im speziellen Fall g, = 7 leicht, noch
einfacher zu einer speziellen Kipplinie durch O zu gelangen, da eine solche dann alle-
mal durch die beiden Halbgeraden ¢ = /2 und ¢ = 3 7/2 gebildet wird.

5. Um von Satz 2 zu Satz 1 zu gelangen, betrachten wir zunidchst die Kennzeich-
nung einer stabilen Ruhelage. Sei durch den Winkel ¢, wie oben, die Richtung eines
Halbstrahls durch den Koordinatenanfangspunkt O gekennzeichnet, wobei wir jetzt
fiir O den Schwerpunkt S der Figur & nehmen. Unter den diesen Halbstrahl senk-
recht schneidenden Geraden betrachten wir jene geniigend weit von S entfernten,
so daB auf der einen Seite einer solchen Geraden kein Punkt von R liegt. Unter
diesen untereinander parallelen Geraden gibt es eine dem Punkt S nichstgelegene;
es ist die auf der Richtung ¢ senkrechte «Stiitzgerade» von R, die kurz o(p) genannt
werde. Ibhre Gleichung in kartesischen Koordinaten x, y sei

% cos @ + ysin ¢ — h(p) =0,

wobei fiir die in der Richtung ¢ wirkende Schwerkraft eine stabile Ruhelage von &
durch ein eigentliches Minimum der «Stiitzfunktion» 4(p) charakterisiert ist.

Wird nun & als konvexe, der Voraussetzung (V) geniigende Wurffigur mit homo-
gener Dichte angenommen, wobei ¢ = p(¢) die Gleichung des Randes von & in Polar-
koordinaten mit dem Schwerpunkt S als Anfangspunkt sei, dann muB es nach Satz 2
mehr als ein Minimum der Funktion g(p) geben. Und da einem solchen auch ein
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Minimum von A(p) entspricht?), so muB es mehr als zwei stabile Ruhelagen geben.
Damit ist Satz 1 bewiesen.

Ein einfaches Beispiel einer zweidimensionalen homogenen Wurffigur mit genau
zwei stabilen Ruhelagen liefert eine Ellipse. Dasselbe gilt von Dreiecken, bei welchen
eine der vom Schwerpunkt auf eine Dreiecksseite gefillten Normalen diese Seite nicht
im Innern, sondern auBerhalb oder in einem Eckpunkt trifft, so daB nur auf den
beiden anderen Seiten ein stabiles Ruhen moglich ist.

Natiirlich kann man fragen, inwieweit in Satz 1 die Voraussetzung (V) entbehrlich
ist. Auch ist anzunehmen, da8 ein zu Satz 1 analoger Satz auch fiir » = 3 Dimen-
sionen gilt, wobei man in abgeplatteten Rotationsellipsoiden ’

2
_:_2§.+_fﬂ__l)2~iﬁ_..1§0 (b > a)

Beispiele von «Wiirfeln» mit nur zwei stabilen Ruhelagen hat.
HEeinricH TIETZE, Miinchen.

Kleine Mitteilungen

1. Eine anschauliche Deutung des Vierscheitelsatzes

Die Randkurve eines ebenen'konvexen Bereiches hei3t Eilinie, wenn sie sowohl eine
stetige Tangente als auch stetige und iiberall positive Kriimmung besitzt. In der Dif-
ferentialgeometrie der ebenen Kurven?2) wird durch Rechnung bewiesen, daBl es bei
jeder Eilinie mindestens vier Scheitel gibt, das heiBt vier Punkte, in denen die Kriim-
mung ein relatives Extremum erreicht. Die Begriffe, die HyeLMsLEV?®) zur Untersuchung
der ebenen Kurven einfiihrte, gestatten eine geometrische Deutung des Vierscheitel-
satzes..

Ein Bogen A B, bei dem die Richtung der Tangente sich von 4 bis B stetig und in
gleichem Sinn um weniger als 180° dndert, heiBt «einfacher Bogen». Das von den
Halbtangenten in 4 und B und der Beriihrungssehne gebildete Dreieck umschlieBt
somit den Bogen 4 B. Variiert zudem die Kriimmung von 4 bis B stetig und monoton,
sofern-sie nicht konstant ist, so hei3t der einfache Bogen 4 B « Normbogen». Durch die
Scheitel wird die Eilinie in Normbégen geteilt. Man darf zum Beweis des Vierscheitel-
satzes offenbar annehmen, da8 keiner dieser Normbdgen Kreisbégen enthidlt. Unter
dieser Voraussetzung hat HJELMSLEV a.a.O. rein geometrisch gezeigt, daB die Evo-
lute (Ort der Kriimmungsmittelpunkte) eines Normbogens immer ein einfacher Bogen
ist. Je zwei einfache Bogen der Evolute miissen sich infolge der Stetigkeitsvoraus-
setzungen so aneinanderschlieBen, daB zwei Halbtangenten aufeinanderfallen, das
heiBt, es entsteht eine Spitze «erster Art». Offenbar ist es unmoglich, auf diese Weise
aus nur zwei einfachen Bogen eine geschlossene Evolute zusammenzusetzen. Da die
Anzahl der Scheitel aber gerade sein muB, braucht es mindestens vier einfache Bogen,
wie bei der Ellipse. . ErNsT TROST.

1) Falls zum Wert @ = y der Minimalwert g(y) = » gehort, dann gehért fir ein passendes § > 0 der
ganze Kreissektor g S7, 9 — 0 S @ Sy + 6 zu & und fiir jedes @ aus y — 6 S @ <=y + 0 hat man
an R eine Stiitzgerade x cos ¢ + ¥ sin @ — A(p) = 0 mit A(p) = r = h(p). Man hat iiberdies notwendig
ein eigentliches. Minimum, d.h. es ist (@) > h(yp) fiir 0 < | @ — | = 6, da g(g) nach Voraussetzung in
keinem Intervall konstant ist, somit fiir ¢ =y ein eigentliches Minimum hat. [Auf indifferente Ruhe-
lagen, wie sie bei-Konstanzintervallen von p(@) auftreten, komme ich zuriick in einer Note Uber stabil:
und indifferente Ruhelagen eines homogenen Zylinders, Sitz.-Ber. Bayr; Akad. Wiss., Sitzung 2. Juli 1948
(Zusatz bei der Korrektur).]
© %) Vgl. W. BLASCHKE, Vorlesungen iiber Differentialgeometrie, 3. Auflage, Bd. 1, S. 31.

3) J. HysrMsLEv, Darstellende Geomeiris, Kap. 7, Leipzig 1914.
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