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Zestschrift zur Pflege der Mathematik
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Organ fiir den Verein Schweszerischer Mathematiklehrer

El Math. Band III Nr. 5 Seiten 89-104 Basel, 15. September 1948

Uber die Funktionentheorie
in einer hyperkomplexen Algebra

RIEMANN schreibt in seinen fundamentalen Grundlagen fiir eine allgemeine Theorie
der Functionen einer verdnderlichen complexen Grofe: «Die Einfithrung der complexen
GroBen in die Mathematik hat ihren Ursprung und nichsten Zweck in der Theorie
einfacher durch GroBenoperationen ausgedriickter Abhingigkeitsgesetze zwischen
verinderlichen GréBen. Wendet man nimlich diese Abhingigkeitsgesetze in einem
erweiterten Umfange an, so tritt eine sonst versteckt bleibende Harmonie und Regel-
méiBigkeit hervor.» «...beinahe jeder Schritt, der hier gethan ist, hat nicht bloB den
ohne Hilfe der complexen GréBen gewonnenen Resultaten eine einfachere, geschlos-
senere Gestalt gegeben, sondern auch zu neuen Entdeckungen die Bahn gebrochen?).»
Die Funktionentheorie hyperkomplexer GroBen ist die konsequente Weiterbildung
dieser Gedanken. Sie ist keine formale Verallgemeinerung, sondern fithrt zu neuen
Einsichten. Dies mé6chte ich im folgenden ausfiihren.

Legen wir statt der komplexen GroBen eine assoziative Algebra mit den unabhin-
gigen Einheiten ¢, ¢,, €, ... zugrunde und bilden wir in ihr das Linearsystem

n—1
Q:z2= 2 x, e, wo die x, reelle Variablen sind, so konnen wir z als hyperkomplexe
k=0
Variable in dem #z-dimensionalen euklidischen Raume R auffassen. Sind ferner in R
nreelle stetige und stetig partiell differenzierbare Funktionen u,(x),s=0,1,2, ...,7n—1,
der # reellen Variablen x gegeben, so kénnen wir diese in

n—1
Cw= ) uy(%) e,
=0

als hyperkomplexe Funktion in R zusammenfassen?). Dies hat den Vorteil, daB wir
z. B. die # reellen Gleichungen #,(x) = 0 durch die eine w = 0 ersetzen kénnen,
da wegen der Unabhingigkeit der ¢; auch aus z = 0 das Verschwinden jedes x, folgt.
Wir schreiben w = f(z2).

Wollen wir jetzt eine Funktionentheorie von w = f(z) entwickeln, so ist klar, da3
wir eine geeignete Auswahl aller w treffen miissen. Fiir den Fall der komplexen Funk-
tionen ist dies von RIEMANN so durchgefiihrt worden, daB die Existenz des Differential-
quotienten in jedem Punkt des Funktionsbereiches, d. h. die Eindeutigkeit des Grenz-
wertes des Differenzenquotienten verlangt wurde. Alle Versuche einer Verallgemeine-

1y Bernhard Riemanns gesammelte mathematische Werke, 2. Aufl.,, Leipzig 1892, S. 37 ff. Siehe auch
Gavss'’ Brief an BesseL, C. F. Gauf’ Werke, Bd. 8, S. 90, Gottingen 1900,
2) Zuweilen ist es niitzlich, fiir % ein anderes hyperkomplexes System zu wihlen.
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rung dieses Ansatzes auf weitere hyperkomplexe Funktionen hatten einen negativen
Erfolg!). Der Riemannsche Ansatz lift sich nicht verallgemeinern.

Der von mir vorgeschlagene Ansatz geht prinzipiell von einem andern Gesichts-
punkt aus; er verlangt, daf das Analogon zum ersten Cauchyschen Integralsatz fiir die
hyperkomplexen Funktionen w = f(z) wieder gilt. Diese Forderung ist um so verstind-
licher, als wegen des Satzes von MORERA bekanntlich der erste Cauchysche Satz auch
hinreichend fiir die analytischen Funktionen einer komplexen Variablen ist. Sie ist
iibrigens virtuell schon bei CAuCHY vorhanden?). Funktionen, die der ausgesprochenen
Bedingung geniigen, heiBen wieder anmalytisch oder regulir. Sie bilden diejenige
Auswahl aller Funktionen w = f(z), fiir die die Funktionentheorie durchgefiihrt
werden kann.’

Wie werden nun diese regulidren Funktionen gefunden? Dazu dient der Gaufsche
Integralsatz in n Dimensionen. Es sei R ein endlicher n-dimensionaler Raum, der
durch die zweiseitige geschlossene (» — 1)-dimensionale Hyperfliche H begrenzt sei.
H durchdringe sich nirgends und besitze in jedem Punkt eine nach innen gerichtete
Normale mit den Richtungskosinus §,, # =0, 1,2, ..., n» — 1. H kann auch aus meh-
reren Teilflichen bestehen. Sind jetzt P,,, #=0,1,2,...; k=0,1,2,..., n—1,
reelle, stetige und stetig partiell differenzierbare Funktionen der # reellen Variablen
%,k=0,1,...,n—1,in dem abgeschlossenen Raume R, ist dr das Raumelement
von R, dh das Element von H, und kiirzt man

OB

5 mit B
Xk

ab, so lautet der genannte Integralsatz fir #=0,1,2,...,n—1:

n—1 n—1
f)j' P,,‘,’ﬁ’dr=-f2 B & dh.
k=0 k=0

(R) (H)

ey

Mit dem Beweise dieses Satzes werden die topologischen Schwierigkeiten, die auf-
treten konnen, erledigt.

Um diesen Satz auf unser Problem anzuwenden, nehmen wir zunichst » fest ge-
gebene beliebige hyperkomplexe Funktionen der Algebra:

ak-':hzahk(x)eh. - (k=0,1,2,...,n-—1)
(%)

Die reellen Funktionen a,,(x) geniigen in R den iiber die %,(x) gemachten Voraus-
setzungen und kénnen auch konstant sein. Sind jetzt w = f(z) und v=g(z) zwei hyper-
komplexe Funktionen in R, deren Funktionentheorie wir entwickeln wollen, so multl-
plizieren wir w @, v in unserer Algebra aus:

wakvMZPhkeh, (k=0,1,2,...,n—1)

wodurch die Komponenten P,,,c als stetlge und stetig differenzierbare Funktionen
in R gegeben werden. w a4, v liegt im allgemeinen nicht mehr in £, sondern in der

1) Siehe etwa ScHEFFERS, Berichte kgl. sichs.,Ges. Wiss., Bd. 45, S. 828, und Bd. 46, S. 120.

%) A.-L. CauchY, Mémoire sur les intégrales définses prises enire des limites imaginaires, Bull. Soc. Math.
{Darboux), Paris 1874, Bd. VII, S. 265, speziell S. 269. Siche auBerdem P. STACKEL, Infegration durch imagi-
ndres Gebiet, Bibliotheca Math., 8. Folge, 1. Bd. Leipzig 1900, S. 109.
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gegebenen Algebra. Diese B, ; setzen wir in dem GauBschen Satze ein, multiplizieren
mit ¢, und addieren iiber alle 4. Dann folgt wegen (w a, v)® = 3 B¢,
n

n—1 . n—1
/2 (w a, v)¥dr = — /w(Z ak§k>vdh.
J ¥=0 : ¥=0

(R) (H)

n—1
Z= Zak Ek dh

das hyperkomplexe Element von H. Es ist von w und v unabhingig. Wollen wir jetzt
die Unabhingigkeit des Integrals von H verlangen, so muB:

Wir nennen:

f wdZv=0 I)
(H)
sein, was offenbar die Bedingung hervorruft:
n—1
D, wa,v)P=0. (I11)
k=0

Hat man ein Funktionspaar w, v gefunden, das der Gleichung (II) gentigt, so kann
man nach allen w fragen, die zu einem festen v gehdren. Wir setzen:

ak=bkck, k=0,1,...,n—"1, dZ=2bkaEkdh,
k=0

wo by, c; beliebige feste GroBen der Algebra sind und die ¢ auch reell (skalare Multi-
plikation) sein konnen. Man kann dann iber die ¢, so verfiigen, daB bei festem v:

n—1
2 bk (ck v)(k) = O. (III)
k=0
Dann folgt aus (II) fiir die gesuchten w:
n—1
D, (wb)Pe,=0. (IV)
k=0

Man darf sich also auf alle Funktionen w, v beschrinken, die den Gleichungen (III)
und (IV) geniigen. w heiBt rechis-, v linksreguldr. Die Bedingungsgleichungen sind
Systeme von wenigstens # reellen linearen homogenen Differentialgleichungen erster
Ordnung. Damit hat man den wichtigen Zusammenhang mit der Theorie der Differen-
tialgleichungen gefunden. Geniigt w beiden Gleichungen (III) und (IV), so heiBt
es zweisertig regulir. Die rechts- sowie die linksreguliren Funktionen bilden im
Bereiche aller reellen Zahlen einen Modul, dagegen im allgemeinen keinen Ring.

Es wiirde zu weit fiihren, wenn gezeigt wiirde, daB man durch geeignete Koordi-
natentransformationen die noch willkiirlichen b; und c, speziell so wihlen darf, daf3:

bk:--ek, Ck"—"—‘l, Ay = €

wird. Voraussetzung dabei ist, daB die Determinante der »? Komponenten der a,
in R von Null verschieden ist. Jetzt lauten die beiden Bedingungsgleichungen so:

n—1 n—1
Tt =0, Feah-o v
k=0 k=0
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n—1
und im Hauptsatze I darf man dZ = Z' &. e, dh setzen. Wir wollen alle die Konse-

quenzen, die (V) erzeugt, nicht im allgemeinen Falle betrachten, insbesondere auch
* nicht die Frage, wieweit ein Analogon zum zweiten Cauchyschen Satze gefunden
werden kann, sondérn nun an denjenigen Fillen die Theorie verfolgen, die bisher weit-
gehendst ausgebaut worden sind.

1. Fall: Die zugrunde gelegte Algebra sei diejenige der komplexen Zahlen. Sie ist kom-
mutativ, also fallen rechts- und linksregulir zusammen. Man setzt e, =1,¢;, =1
(imaginire Einheit) und die Gleichung (V) lautet:

w0 4 7wl = 0.

Im Reellen ergeben sich fiir w = %, + ¢ %, die Riemann-Cauchyschen Differential-

gleichungen: Ouy _ O0u,y Ong _ __ Oty

0x, 0xy’ ox; 0%,
2. Fall: Die Algebra sei diejenige der Quaternionen. Wir setzen nach Hurwitz die

Quaternioneneinheiten gleich 7;, 2= 0,1, 2, 3, also ¢y = 7, = 1, ¢, = 7;; sie geniigen
der bekannten Multiplikationstafel. Die Gleichungen (V) lauten dann:

3 3
2‘ w® i, — 0, 2 i o™ = 0. (VI)

Die erste ergibt im Reellen die vier linearen homogenen partlellen Differential-

gleichungen:
W= Uy+ ulzl—{- Uy Ty + Uy g,

Oug _ Ouy  Ouy  Oug _
0%, 0x, 0%y Oxy ’
ERE TR i
e~ e e+ o 0
gLy o

Fiir die den Gleichungen (VI) geniigenden Funktionen w, v gilt somit der 7. Haupt-
satz, der dem I. Cauchyschen Satze entspricht:

f wdZv=20
(H)
Es ist bemerkenswert, dafl aber auch der dem zweiten Cauchyschen Satze ent-
sprechende II. Hauptsatz gilt;

16) = = g [1QdZ 5 (=21 (¢~ 27,
(#)
wobei z irgendein Pankt im Innern von H ist, { die Integrationsvariable und % ({ — 2)
die Norm von { — z bedeutet. Aus dem II. Hauptsatze kann man die Reihenentwick-
lung der rechtsreguliren Funktionen herleiten, die auch umgekehrt bei Konvergenz
stets rechtsreguldre Funktionen darstellen. Dagegen fiihrt die Betrachtung der Sin-
gularitidten auf ganz neue und wichtige Entwicklungen. Neben den punktférmigen
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isolierten Singularitdten treten ndamlich jetzt auch solche auf, die eine zweidimensio-
nale Punktmenge bilden. Das Analogon zur Laurentschen Reihe fithrt somit, wie
W. NEF gezeigt hat, auf Reihen nach Stieltjésschen Integralen iiber solche Mengen.
Damit erhalten letztere das Biirgerrecht in der Funktionentheorie und héitten hier
entdeckt werden miissen, wenn sie nicht schon lingst gefunden worden wiren.

Alle Komponenten der reguliren Funktionen sind Potentialfunktionen von vier
reellen Variablen. Der II. Hauptsatz fiihrt daher sehr einfach, im Falle H eine
Hyperkugel ist, auf das Poissonsche Integral.

Zu neuen Erkenntnissen fithrt die Tatsache, daB die analytischen Funktionen
zweier komplexer Variablen (ebenso wie diejenigen einer komplexen Variablen) unter
den rechtsreguliren Funktionen auftreten. Setzt 'man namlich:

3
7 = E'xkik=z1+z2i2,
k=0
WO 2= Ko+ 11%, 2= X+ 1,%; Iist,soist w=w,+ i,w,

rechtsregulir, falls w, = wy+ ¢, ,, und w, = u, + 1; 43 zwei analytische Funktionen
der beiden komplexen Variablen z;, z, sind. Man hat hier von vornherein zwes analy-
tische Funktionen der beiden Variablen zusammengekoppelt, indem man die weitere
Einheit 7, einfithrt. Dies ist bedeutsam, weil dadurch erst sich funktionentheoretisch
ein verniinftiges Problem ergibt, indem erst jetzt ein Umkehrproblem vorhanden ist.
Man erhilt so eine wichtige Vereinfachung, indem man statt zwe: analytischen
Funktionen zweier komplexer Variablen eine «regulire analytische Quaternionenfunk-
tion» bekommt. '

Diese Vereinfachung kommt noch stirker zum Ausdruck, wenn w,, w, Abelsche
Funktionen von 2z, 2z, mit den vier Periodenpaaren wy, wy (k=1, 2, 3, 4) sind.
Denn statt z; um w}, und zugleich z, um wj zu vermehren, wird jetzt offenbar die
Quaternionenvariable 2 um 0, = W} + o] iy, (k=1,2,3,4)
vermehrt. So entsteht eine analytische regulire Quaternionenfunktion von z mit
den vier Perioden w,. Die allgemeine Theorie gestattet aber alle vierfachperiodischen
Funktionen aufzustellen. Unter diesen finden sich somit auch alle Abelschen Funk-
tionen. Die Vereinfachung, statt vier Periodenpaaren vier Perioden zu haben, ist
evident.

Die Funktionentheorie der analytischen Funktionen zweier komplexen Variablen
wird auf diese Weise in einen hohern Funktionenraum eingebettet. Man iibersieht
sie jetzt von einem hoéheren Standpunkt aus. Damit finden ihre vielen schein-
baren Anomalien ihre Erklirung. Wohl das schlagendste Beispiel hierfiir ist der
wichtige Hartoggssche Satz, daB eine analytische Funktion zweier komplexer Vari-
ablen, die auf einer im Endlichen liegenden, geschlossenen, zweiseitigen, sich nirgends
durchdringenden Hyperfliche reguldr ist, auch im ganzen Innern regulir ist. Der
analoge Satz fiir analytische Funktionen einer Variablen gilt bekanntlich nicit. Der
Beweis des Satzes mittels der Theorie der rechtsreguliren Funktionen ist auBer-
ordentlich einfach und deckt zugleich den Grund seines Bestehens auf; er zeigt,
welche besonderen Eigenschaften eine rechtsregulire Funktion haben muB, damit
er gilt, und warum er bei analytischen Funktionen einer komplexen Variablen in
einer Ebene nicht allgemein gelten kann.
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Die geometrische Seite des durch rechtsregulire Funktionen vermittelten Abbil-
dungsproblems (das im 1. Falle auf die konforme Abbildung fiihrt) ist von H. G. HAE-
FELI abgeklirt worden. Es zeigt sich, daB die durch die rechtsreguliren Funktionen
erzeugte Abbildung eines Hyperraumes in einen andern auf die additive Zusammen-
setzung von je drei konformen Abbildungen, die Spiegelungen mit Schiebungen sind,
herauskommt. Die additive Zusammensetzung ist nur in trivialen Féllen wieder
konform.

Nimmt man in der oben beriihrten Theorie der vierfachperiodischen rechtsregu-
liren Funktionen die vier Perioden als Basis einer Brandtschen Quaternionenalgebra,
legt ihnen also zahlentheoretische Bedingungen zu, so kommt man zu ganz neuen
Problemen und Theorien, die eine Verallgemeinerung der komplexen Multiplikation
der elliptischen Funktionen darstellen.

3. Fall: Die zugrundegelegte Algebra ist eine Cliffordsche. Es wiirde zu weit fithren,
wenn wir auch diesen Fall ausfithrten. Es sei einzig hervorgehoben, daBl unter diesen
Fall auch die Funktionentheorie der analytischen Funktionen von # komplexen
Variablen fillt. Der Hartoggssche Satz kann auch in diesem Falle einfach bewiesen
werden. Als Anwendung der allgemeinen Theorie gelang W. NEF der Beweis des
Analogons zum Fatouschen Satze fiir reelle Potentialfunktionen von # reellen Vari-
ablen sowie die Losung ihrer Randwertaufgaben.

4. Fall: Man nimmt fiir z und w verschiedene Algebren, und zwar diejenigen, die
von den Physikern zur Herleitung der Diracschen Gleichungen in der Atomphysik
aufgestellt wurden. Man erhilt so die Funktionentheorie der Diracschen Gleichungen
mit verschwindender Ruhmasse. A.KRISZTEN hat diese Theorie verallgemeinert und
fiir nichtverschwindende Ruhmassen durchgefiihrt. So konnte er in diesem allgemei-
nen Falle nicht nur die Losungsfunktionen angeben, sondern auch das Randwert-
problem 16sen.

Zusammenfassend kann man sagen, daB fiir eine groBe Zahl von partiellen linearen
Differentialgleichungen oder Systemen von solchen, die Funktionentheorie entwik-
kelt und die Lésungen gefunden werden konnen. Es gilt nur, die fiir die Differential-
gleichungen passende Algebra zu finden. In ihr kdnnen dann die zu Beginn ausge-
sprochenen Prinzipien ihre Anwendung finden.

Ich glaube, daB diese Beispiele die auBerordentliche Fruchtbarkeit der Funktionen-
theorie im Hyperkomplexen zeigen. Letztere bringt nicht nur eine vereinfachte Dar-
stellung, sondern erweitert den Gesichtskreis, indem sie bisher bekannte Theorien
von hoherm Standpunkte aus betrachten 148t und vor allem zu ganz neuen Problemen
fithrt. Sie durchbricht die bisherige Schranke, die zwang, bei den komplexen Zahlen
stehen zu bleiben, und bringt damit, wie mir scheint, eine groBe Bereicherung der
Forschung. Allerdings muB betont werden, daB die ganze Entwicklung erst in ihren
Anfingen steht.

. Die Literatur iiber das Geblet ist am SchluB der Arbeit von H. G. HAEFELI,
Hyperkomplexe Differentiale; Commentarii Mathematici Helvetici, Vol. 20, fasc. 4,
S. 419/420, zusammengestellt. RupoLF FUETER, Ziirich.
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