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Kleine Mitteilungen

I. Eine analytische Begründung der Tangensfunktion

In den «Kleinen Mitteilungen» des Bd. II, Nr. 4, der «Elemente» leitete Herr M. Alt-
wegg die Eigenschaften der Winkelfunktionen aus ihrer Differentialgleichung ab. Er
bediente sich dabei gewisser allgemeiner Sätze der Theorie der gewöhnlichen
Differentialgleichungen.

Im folgenden soll dasselbe Resultat, ausgehend vom Integral des arcus tangens erreicht
werden. Diese Herleitung verwendet nur sehr einfache Hilfsmittel der Infinitesimalrechnung.

I. Die Hilfsfunktion A. Wir setzen die Funktion an:

0

Sie ist eindeutig und stetig für alle x und wegen

• * >o1 + X'<

mit x monoton wachsend. Sie ist weiter eine ungerade Funktion, denn die Substitution
t — u im Integral liefert sofort:

*<-*>-Mr--/T&r--^ (i)

Um den Wertebereich der y zu erhalten, bemerken wir, daß das Integral für x -> oo

gegen einen bestimmten Wert konvergiert, den wir mit a/2 bezeichnen wollen:

Wegen (1) hat man weiter:

und da y monoton wächst, gilt

/o
- «

/-

dt OL

1+t2 2 '

dt oc

1+t2 2 '
ö

oc oc
— < v < —
2 y^ 2

Die Zahl a stimmt mit n überein. Denn definieren wir letztere Größe als den halben
Umfang des Einheitskreises, d.h. durch die Gleichung

l
HL f dx
2 ~J vfxZTx*

o

so erhält man durch Ausführen der Substitution x » ¦. in diesem Integral:

l
~2~J ]/T=r^ =J i + /»- 2
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IL Die Funktion T. Die in I. charakterisierte Hilfsfunktion y A(x) hat nach
bekannten Sätzen eine eindeutige und stetige inverse Funktion

x T(y),
71 71

definiert im Intervall —-z- < y < -^, mit Polen an den Enden des Intervalls und einer

Nullstelle bei y 0. Aus (1) folgt weiter, daß T ungerade ist. Durch die Relationen

T(y ±7t)= T(y)

setzen wir sie auf der v-Achse fort. T wird dadurch zu einer periodischen Funktion mit
der Periode n.

III. Das Additionstheorem. Sei xx T(yx), x2 T(y2); wir fragen nach dem Werte

x=T(yx+y2).
Nach Definition ist

yx= A (xx), y2 A (x2), yx+ y2= A (x),

so daß wir zur Bestimmung von x die Gleichung erhalten:

f dt f dt _ f dt
J 1+t2 +y i+*2 ~ J 1+t2ooooder auch, wenn wir den zweiten Summanden links auf die andere Seite bringen:

Xl
dt - f dt

/2
r dt _ r dt

J l+t2 -J 1 + t2
0 xt

Nun führen wir im Integral rechts die Substitution

l~uxt
aus. Wie eine leichte Rechnung zeigt, ergibt dies

x- xt
l + xxt

f^JL.- f dt
J 1 + t2 - J 1 + t2'
0 0

Da die Funktion A (x) stetig und monoton ist, folgt daraus:

% — %2 xx ~\~ x2x
1 + x xM

' 1 — xx x%

Auf die inverse Funktion angewendet, besagt dieses Resultat:

T{yi + ^-l~-T(yx)T(y2)' (2)

IV. Die Ableitung von T. Für diese ergibt sich leicht:

T'(y)=-1~ l + ^=l + T(yy. (3)

V. Ergebnis. Die Funktion T(y) ist nach II. eine eindeutige, stetige, ungerade und
periodische Funktion mit der Periode 7t, Sie besitzt das Additionstheorem (2) und die
Ableitung (3).
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* Dies sind aber gerade die Eigenschaften der Funktion tg x; sie genügen, um die
weiteren Definitionen und grundlegenden Sätze der trigonometrischen Funktionen elementar

herzuleiten.
Man kann schließlich mit derselben Methode zeigen, daß T mit der durch geometrische

Definition (Länge einer Kathete in einem rechtwinkligen Dreieck der Hypotenuse
1) gewonnenen Funktion tg# zusammenfällt. P. Wilker, Bern.

IL Über das Verhalten des Krümmungsradius bei Affinität
Obwohl das Zeichnen einer ebenen Kurve, insbesondere eines Kegelschnitts, durch

den Krümmungskreis nur in einem Scheitel erleichtert wird, finden Konstruktionen
des Krümmungsradius für einen allgemeinen Punkt immer wieder Interesse1). Es soll
daher hier auf eine heute wenig bekannte, allgemeine Formel hingewiesen werden, aus
der sich viele Konstruktionen selir einfach ergeben.

Wir betrachten zwei affine Kurven (£ und (£'. n sei das AffinitätsVerhältnis. Ist t, tf
ein Paar entsprechender Tangenten, q bzw. q' der Krümmungsradius im Berührungspunkt

P bzw. P', X das (konstante) Verhältnis zweier entsprechender Strecken auf t
bzw. /', so gilt _/ «»3

q n v '

Ist die Affinität speziell eine Scherung2) in Richtung der Tangente t, also X n 1,

so erhält man (>' q.

Mit X 1, n b/a folgt aus (1) für den Ellipsenscheitel sofort q' a2/b azJab und
daraus durch Scherung in Richtung der großen Achse

Q — — *2)* axbxsma> ab x '

als allgemeine Formel für den Krümmungsradius im Endpunkt des Durchmessers 2 bt,
wenn 2 ax der konjugierte Durchmesser und co der Schnittwinkel ist8). Nach (2) läßt
sich qx genau wie der Krümmungsradius im Scheitel konstruieren, indem man das
Rechteck mit den Seiten ax und bx sin w bildet4). Damit ist zugleich eine Konstruktion
von q' aus q gegeben, denn der Krümmungskreis in Pf ist identisch mit dem
Krümmungskreis der Ellipse, die durch die Affinität aus dem Krümmungskreis in P hervorgeht.

Da aus einem Parabelsegment mit zur Achse senkrechter Sehne s durch Scherung
parallel zu s das allgemeine Segment entsteht, gilt für den Krümmungsradius im
Scheitel 5 des Segments folgende einfache Konstruktion: Es sei JV der Schnittpunkt
der Normalen in S mit der Sehne. Man trägt auf der Normalen nach außen die Strecke
SM SN, auf der Sehne die Strecke NT 0,5 5 ab und errichtet auf MT*in T die
Senkrechte, die die Normale in K schneidet. Dann ist #' NK.

Wir geben für (1) zwei anschauliche und zwei analytische Beweise.
1. Der Umkreis eines Dreiecks mit den Seiten a, b, c und der Fläche F hat den Radius

r ab c/(4 F). Ist also QPR ein (£ eingeschriebenes Dreieck und Q'P'Rf das affine,
(£' eingeschriebene Dreieck, so gilt

iL iL !L. _£l. i.
r ~~

a b c n

Fallen Q und R mit P zusammen, so wird a'\a b'/b c'jc *= X, und man erhält (1)*).

x) Diese Mitteilung wurde durch einen Brief von Herrn R. Nüscheler vom 18. Januar 1948 veranlaßt,
in welchem der Ausdruck (2) mittels Differentialrechnung hergeleitet wird.

2) Die Affinitätsstrahlen sind parallel zur Affinitätsachse.
3) Die Formel (2) zeigt, daß q in ölen Scheiteln extreme Werte annimmt.
4) Diese Konstruktion hat schon Dupin angegeben (Developpements de g6om£trie [1813]).
*) Dieser Beweis findet sich in T. Schmid, Darstellende Geometrie I, S. 94 (Leipzig 1922)* Eine

äquivalente Aussage maehte schon 1836 Mac-Cuixaoh. Vgl. Roüche et Comberousse, Trait4 de geometrie II,
S. 439 (1912). Eine zu (1) analoge Formel gilt auch für die Krümmung einer Raumkurve und ihrer
Parallelprojektion. Vgl. Schmid, 1. c, S. 170.

EL Math. 6
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2. Ist Px ein Nachbarpunkt von P, tx die Tangente in Px, S der Schnittpunkt von t
und tx, dt der Schnittwinkel (Kontingenzwinkel), so gilt für die Flächen der Dreiecke
PPXS bzw. P'P'XS'

A P'PjS' _ F^S'.PfS'.sin<ftr*
__

APPiS ~ PS-PXS.sinrfr ~~ W* (3)

Ist das Bogenelement ds PPX genügend klein, so ist bei Vernachlässigung von Gliedern

höherer Ordnung

PXS PS, ds 2 PS • cos -5- rfr, sin <£t <£t,

also ergibt sich mit (3)

'• ^ •
ds * ^8*cos (*/2) <***

^
A* cos(1/2) dr'

Q *Q ~~ dr* ' dr ~ n
'

ps*. cos (1/2) <2r
~~

n cos (1/2) <2t '

was beim Grenzübergang (1) liefert.
3. Offenbar genügt es, (2) zu beweisen, denn bei affiner Abbildung des Krümmungskreises

in P in die Ellipse mit den konjugierten Halbmessern ax, bx ist ax« X q,
ax bx sin m n q2, so daß (2) in (1) übergeht. Im schiefwinkligen Koordinatensystem
mit dem Achsenwinkel co lautet die Scheitelgleichung der Ellipse

y bx
X b\X '

Der die Ellipse im Ursprung berührende Kreis vom Radius r hat die Gleichung

y2 2 x r sin m — 2 x y cos g> — x2.

Man erhält im Ursprung eine dreipunktige Berührung, wenn

a\ lx
01

4. Es sei y « /(#) die Gleichung von C für ein Koordinatensystem, dessen #-Achse
zur Tangente im betrachteten Punkt P parallel ist. Sieht man von Translationen ab,
so wird eine affine Abbildung durch die Transformation

x=ctxx+ ßyx J ao}*-py4=0y^y xx+ dyx

vermittelt. Das Affinitätsverhältnis ist n A~x, wie man durch Berechnen einer
Dreiecksfläche erkennt. Mit der Kettenregel erhält man

_ «/-y „_ y"A%
y*~ ö~ßy" n~~ (ä~ßy')*'

Für den Punkt P gilt somit

Qt-—-r,— - 32 e- W

Die Einheitsstrecke auf der x-Achse geht über in eine Strecke der Länge

Damit wird (4) zu (1). E. Trost.

*) Vgl. die Bestimmung der Scheitelkrümmungsradien hei A. Hess, Analytische Geometrie, 3. Aufl.,
S. 75.


	Kleine Mitteilungen

