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Kleine Mitteilungen

1. Eine analytische Begriindung der Tangensfunktion

In den «Kleinen Mitteilungen» des Bd. II, Nr. 4, der «Elemente» leitete Herr M. ALT-
WEGG die Eigenschaften der Winkelfunktionen aus ihrer Differentialgleichung ab. Er
bediente sich dabei gewisser allgemeiner Sétze der Theorie der gewohnlichen Differen-
tialgleichungen.

Im folgenden soll dasselbe Resultat, ausgehend vom Integral des arcus tangens erreicht
werden. Diese Herleitung verwendet nur sehr einfache Hilfsmittel der Infinitesimal-
rechnung.

1. Die Hilfsfunktion A. Wir setzen die Funktion an:

X
dt
0

Sie ist eindeutig und stetig fiir alle # und wegen

, 1

Y=15m>"

mit » monoton wachsend. Sie ist weiter eine ungerade Funktion, denn die Substitution
t = — u im Integral liefert sofort:

A(—x)=fi—§%¥—/i—jj%=—A(x). (1)
0 0

Um den Wertebereich der y zu erhalten, bemerken wir, da8 das Integral fiir ¥ > oo
gegen einen bestimmten Wert konvergiert, den wir mit «/2 bezeichnen wollen:

at o
1442 2
0
Wegen (1) hat man weiter:
- 00
dt o
1443 2’
0
und da y monoton wichst, gilt
o 3
-7 <y < 7

Die Zahl a stimmt mit n tiberein. Denn definieren wir letztere Grée als den halben
Umfang des Einheitskreises, d.h. durch die Gleichung

1
®_ dx
2 |/1—x’ ’
0

so erhilt man durch Ausfiihren der Substitution ¥ = ————— in diesem Integral:

. dx zf at  «
2 1_ 22 1+ 2°
0 V ]
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I1. Die Funktion T. Die in I. charakterisierte Hilfsfunktion y = 4(x) hat nach be-
kannten Sitzen eine eindeutige und stetige inverse Funktion

x = T(y),

definiert im Intervall — — < ¥ < —, mit Polen an den Enden des Intervalls und einer

2 2’
Nulistelle bei y = 0. Aus (1) folgt weiter, daB 7" ungerade ist. Durch die Relationen

T(y £ )= T(y)

setzen wir sie auf der y-Achse fort. T wird dadurch zu einer periodischen Funktion mit
der Periode x.

II1. Das Additionstheorem. Sei x = T(y,), %, = T(y,); wir fragen nach dem Werte

x=T(y;+ ¥9).
Nach Definition ist

=A%), V3= A(x), ¥+ ya= A(%),

so daB wir zur Bestimmung von x die Gleichung erhalten:

* Xs x
dt dt dt
1+t2+ 1422 ) 1+4¢2
0 0 .0

oder auch, wenn wir den zweiten Summanden links auf die andere Seite bringen:

X .
f1+zz_f1+z2'

Nun fithren wir im Integral rechts die Substitution

U+ ¥y

aus. Wie eine leichte Rechnung zeigt, ergibt dies

X — %y
% 1+xx,
_ar _ar
1482 1427
0 0

Da die Funktion A4(#) stetig und monoton ist, folgt daraus:

xX—Xx X+ x
2 ¥ = 1 2

S Py Tl g

Auf die inverse Funktion angewendet, besagt dieses Resultat:

O e LR - @

IV. Die Ableitung von T. Fiir diese ergibt sich leicht:

T'(y) = —14ai=1+ T(y)2 : (3

’( 22

V. Eygebnis. Die Funktibn T(y) ist nach II. eine eindeutige, stetige, ungerade und
periodische Funktion mit der Periode n. Sie besitzt das Additionstheorem (2) und die
Ableitung (3).
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* Dies sind aber gerade die Eigenschaften der Funktion tg x; sie geniigen, um die wei-
teren Definitionen und grundlegenden Sitze der trigonometrischen Funktionen elemen-
tar herzuleiten.

Man kann schlieBlich mit derselben Methode zeigen, daB T mit der durch geometri-
sche Definition (Linge einer Kathete in einem rechtwinkligen Dreieck der Hypotenuse
1) gewonnenen Funktion tg # zusammenfallt. P. WILKER, Bern.

I1. Uber das Verhalten des Kriimmungsradius bei Affinitit

Obwohl das Zeichnen einer ebenen Kurve, insbesondere eines Kegelschnitts, durch
den Kriimmungskreis nur in einem Scheitel erleichtert wird, finden Konstruktionen
des Kriimmungsradius fiir einen allgemeinen Punkt immer wieder Interessel). Es soll
daher hier auf eine heute wenig bekannte, allgemeine Formel h1ngew1esen werden, aus
der sich viele Konstruktionen sehr einfach er eben s

Wir betrachten zwei affine Kurven € und €. » sei das Affxmtatsverhaltms Ist ¢, ¢
ein Paar entsprechender Tangenten, g bzw. ¢’ der Kriimmungsradius im Beriihrungs-
punkt P bzw. P’, A das (konstante) Verhidltnis zweier entsprechender Strecken auf ¢
bzw. ¢, so gilt ’ 3

€_2, (1
) n
Ist die Affinitdt speziell eine Scherung?) in Richtung der Tangente ¢, also A = n = 1,
so erhidlt man g = .

Miti=1,n= b/a folgt aus (1) fiir den Ellipsenscheitel sofort ¢’ = a%/b = a3/ab und
daraus durch Scherung in Richtung der grolen Achse
@a 4
a,;bysinw ~ ab

(2)

als allgemeine Formel fiir den Kriimmungsradius im Endpunkt des Durchmessers 2 b,,
wenn 2 a, der konjugierte Durchmesser und w der Schnittwinkel ist?). Nach (2) 148t
sich g, genau wie der Kriimmungsradius im Scheitel konstruieren, indem man das
Rechteck mit den Seiten a, und b, sin w bildet4). Damit ist zugleich eine Konstruktion
von g’ aus g gegeben, denn der Kriimmungskreis in P’ ist identisch mit dem Kriim-
mungskreis der Ellipse, die durch die Affinitit aus dem Kriimmungskreis in P hervor-
geht.

Da aus einem Parabelsegment mit zur Achse senkrechter Sehne s durch Scherung
parallel zu s das allgemeine Segment entsteht, gilt fiir den Kriimmungsradius im
Scheitel S des Segments folgende einfache Konstruktion: Es sei N der Schnittpunkt
der Normalen in S mit der Sehne. Man trigt auf der Normalen nach auBen die Strecke
SM = SN, auf der Sehne die Strecke NT = 0,5s ab und errichtet auf M T in T die
Senkrechte, die die Normale in K schneidet. Dann ist p’ = NK.

Wir geben fiir (1) zwei anschauliche und zwei analytische Beweise.

1. Der Umkreis eines Dreiecks mit den Seiten'a, b, ¢ und der Fliche F hat den Radius
r=abc/(4 F). Ist also QPR ein € eingeschriebenes Dreieck und Q P’R’ das affine,
@’ eingeschriebene Dreieck, so gilt

o=

Fallen Q und R mit P zusammen, so wird a’/a = b’/b = ¢’/c = A, und man erhilt (1)%).

1) Diese Mitteilung wurde durch einen Brief von Herrn R. NUscHELER vom 18. Januar 1948 veranlaBt,
in welchem der Ausdruck (2) mittels Differentialrechnung hergeleitet wird.

2) Die Affinititsstrahlen sind parallel zur Affinititsachse.

3) Die Formel (2) zeigt, daB g in den Scheiteln extreme Werte annimmt.

4) Diese Konstruktion hat schon DupPiN angegeben (Développements de géométrie [1813]).

$) Dieser Beweis findet sich in T. Scumip, Darstellende Geometrie I, S. 94 (Leipzig 1922)« Eine dqui-
valente Aussage machte schon 1836 MAc-CusLAGH. Vgl. RoUucHE et- Cousn:novssz, Traité-de géométiie 11,
$. 439 (1912). Eine zu (1) analoge Formel. gilt auch fiir die Kriimmung einer Raumkurve und ihver ParalIel-
projektion. Vgl. Scumip, 1. c., S. 170.

EL Math. 6
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2. Ist P, ein Nachbarpunkt von P, ¢, die Tangente in P,, S der Schnittpunkt von ¢
und ¢, dv der Schnittwinkel (Kontingenzwinkel), so gilt fiir die Flichen der Dreiecke
PP,S bzw. P’'PS’

A PPiS"  P'S'.P{S’.sindv’ _
“APPS ~ PS.PS.snar - ™ 3)

Ist das Bogenelement ds = PP, geniigend klein, so ist bei Vernachlissigung von Glie-
dern hoherer Ordnung ‘

1
P,S=PS, ds=2PS-cos —2—dt, sindr = dxr,

also ergibt sich mit (3)

o, _ds ds 1 PS%.cos(1/2)d B cos(1/2)dv
N PS3.cos (1/2) dr " m  cos(1/2)dr ’

was beim Grenziibergang (1) liefert.

3. Offenbar geniigt es, (2) zu beweisen, denn bei affiner Abbildung des Kriimmungs-
kreises in P in die Ellipse mit den konjugierten Halbmessern a,, b, ist a,= 4 p,
a, b;sinw = n g% so daB (2) in (1) iibergeht. Im schiefwinkligen Koordinatensystem
mit dem Achsenwinkel w lautet die Scheitelgleichung der Ellipse

= 2a x— L 4 x2.

b b}
Der die Ellipse im Ursprung berithrende Kreis vom Radius 7 hat die Gleichung
yi=22xrsinw— 2% ycos w— 2
Man erhélt im Ursprung eine dreipunktige Beriihrung, wenn
a}

inw— M1y
rsin w B, )

4. Es sei ¥y = f(») die Gleichung von € fiir ein Koordinatensystem, dessen x-Achse
zur Tangente im betrachteten Punkt P parallel ist. Sieht man von Translationen ab,
so wird eine affine Abbildung durch die Transformation

x=ax+ fn

Ad=0ad— + 0
y=yx+0y * By

vermittelt. Das Affinititsverhiltnis ist » = 4-!, wie man durch Berechnen einer Drei-
ecksfliche erkennt. Mit der Kettenregel erhilt man

,__ay“—y " __ y”A2
NET_pyr NT -8y

Fiir den Punkt P gilt somit

s 2 2\%/s
o-tE° A, )

Die Einheitsstrecke auf der #-Achse geht iiber in eine Strecke der Linge

, h
A= (ot oyt = S

Damit wird (4) zu (1). E. TrosT.

1) Vgl, die Bestimmung der Scheitelkriimmungsradien bei A. Hess, Analytische Geometrie, 3. Aufl.,
S. 75. , "



	Kleine Mitteilungen

