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64 A. Emch : Eigenschaften von Flachen zweiter Ordnung

Eigenschaften von Flächen zweiter Ordnung,
hergeleitet mit Hilfe stereographischer Projektion

1. Einleitung
Nichtsinguläre Flächen zweiter Ordnung F2, die in dieser Arbeit behandelt werden,

mit Ausnahme des einschaligen Hyperboloids und des hyperbolischen Paraboloids,
haben reelle Nabelpunkte, das heißt Grenz- oder Nullkreise der Kreissysteme, die von
besondern Büscheln paralleler Ebenen auf diesen Flächen ausgeschnitten werden.
Flächen mit Mittelpunkt M haben im allgemeinen 16 solche Punkte, wovon vier reell
sind, die sich in zwei Paare in bezug auf M diametral gelegene Punkte ordnen (Enden
zweier bestimmter Durchmesser von F2). Beim elliptischen Paraboloid sind die
unendlich fernen Punkte dieser Durchmesser als Nabelpunkte zu betrachten.

Ein Nabelpunkt ist geometrisch der Berührungspunkt einer Tangentialebene von
F2, die parallel zu den Ebenen des zugehörigen Kreissystems ist.

2. Projektion einer F2 von einem Nabelpunkt aus

Sei N eiri Nabelpunkt auf F2, ex eine zugehörige Kreisschnittebene, welche F2 in
einem Kreise / schneidet; ferner e eine beliebige Ebene, welche F2 in einem
Kegelschnitt k und ex in einer Geraden s schneidet. Die Schnittpunkte von s mit / seien
A und B, welche reell oder imaginär sein können. Durch diese geht auch k. Die
Ebene e sei durch drei beliebige Punkte P, Q, R auf F2 bestimmt. Diese projiziere
man von Nauf ex, wodurch Px, Qx, Rx erhalten werden, welche den Kreis c bestimmen.
Der durch c gehende Kegel K mit Spitze in N schneidet F2 in einer Kurve vierter
Ordnung C4, welche durch P, Q, R, N geht. Da jedoch die Kreisschnitte von K
parallel mit denjenigen von F2 sind, so schneidet K die Fläche F2 bei N in einem
Nullkreise, so daß die Restkurve von C4 ein durch P, Q, R gehender Kegelschnitt k*
sein wird, der notwendigerweise mit k zusammenfallen muß. Umgekehrt fällt dann
die Projektion von k von N auf ex mit c zusammen. Da k als irgendein Kegelschnitt
auf F2 angenommen wurde, so hat man

Satz 1. Wird ein reeller Kegelschnitt k auf F2 von einem ihrer Nabelpunkte N auf eine

Ebene ex projiziert, die F2 in einem Kreise I schneidet, der zu dem entsprechenden
Kreissystem gehört, so ist die Projektion ein Kreis c. Alle drei, k, c und I, haben dieselben

reellen oder imaginären Punkte A und B gemeinsam.

3. Projektionen von zwei diametral gelegenen Nabelpunkten aus

In derselben Weise kann jetzt der Kegelschnitt k von dem zu JV diametral
gelegenen Nabelpunkt Nf auf ex projiziert werden, wodurch ein Kreis c' erhalten wird,
der auch durch die Punkte A und B geht. Da die projizierenden Kegel K und K'
beide durch k gehen, so haben sie zwei gemeinschaftliche Tangentialebenen, deren

Spuren t und V durch den Schnittpunkt 0 von NN' mit ex, dem Mittelpunkt von I
gehen und gemeinschaftliche Tangenten von c und c' sind.

Daraus folgt, daß c und cf invers in bezug auf I als Inversionskreis sind. Somit:
Satz 2. Projiziert man einen beliebigen reellen Kegelschnitt k auf F% von zwei

diametral gelegenen Nabelpunkten N und N' auf eine zugehörige Kreisschnittebene ex,
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welche F2 in I schneidet, so erhält man zwei Kreise c und c', welche in bezug auf den
Kreis I mvers sind.

Da auf der Kugel jeder Punkt als Nabelpunkt betrachtet werden kann, so ist klar,
daß es sich dann dabei um die gewöhnliche stereographische Projektion handelt, bei
der alles Vorhergehende gültig bleibt. Arnold Emch, Urbana, Illinois.

Kleine. Mitteilungen
I. Noch eine Aufgabe, die mit Zirkel und Lineal nicht losbar ist

In den Elementen Bd. II, S. 14-16, zeigte Herr P. Buchner, daß es im allgemeinen
mit Zirkel und Lineal nicht möglich ist, ein Dreieck aus zwei Seiten und dem Inkreisradius

zu konstruieren. Hier sei eine weitere Aufgabe derselben Art mitgeteilt.
Aufgabe. Man konstruiere em Dreieck aus zwei Seiten a und c und der Winkelhalbierenden

eines Gegenwinkels der beiden Seiten, etwa wY (im folgenden kurz mit w
bezeichnet)

Wir suchen zunächst eine Beziehung zwischen den drei Seiten a, b, c und der
Winkelhalbierenden wy. Mit Hilfe des Kosinussatzes, angewandt auf die beiden Teildreiecke
in Fig 1, folgt nach Elimination der Großen p, q und cos (y/2), wenn wir b x setzen.

a x* -f (2 a2- w2) x2 + (a3 - a c2 - 2 a w2) x - a2 w2 0 (1)

Die Lösung der Aufgabe hangt somit von dieser Gleichung dritten Grades ab. Die
Diskriminante

D 4a2c2w« + a2c2(12a2+ c2) w4 -f 4a*c2(3a2 ~\ 5 c2) w2 f 4a*r2(a2~ c2)2 (2)

ist als Summe von Quadraten stets positiv, sofern nicht a, c und w gleichzeitig
verschwinden Wir haben also den Casus irreducibihs vor uns, und die Gleichung (1)
besitzt drei reelle und verschiedene Wurzeln

Fig. 1

Wir bestimmen die Anzahl der uns allem interessierenden positiven Wurzeln. Da
a > 0 und — a2 w2 < 0 ist es nach der Descartesschen Zeichenregel ausgeschlossen, daß
(1) zwei positive Losungen aufweist. Es ist aber auch nicht möglich, daß drei positive
Wurzeln auftreten, denn aus 2a2— w2<0 und a9 — ac% — 2 aw*> Q folgt die sogar
für reelle Werte a und c unmögliche Ungleichung 3 a2 < — c2. Der Fall einer einzigen
positiven Wurzel ergibt sich, wenn nur em Vorzeichenwechsel auftritt. In der Gleichung
«3 x3 -f- az x2 -f ax x -f a0 0 muß entweder a% > 0 und ax $ 0 oder a% < 0 und ax < 0 sein.
Alle drei Möglichkeiten können realisiert werden.

Um über die Lage der positiven Wurzel eine Übersicht zu haben, betrachten wir die
l°n

f(x) a xs -f (2 a2 - w2) x% + (a3 - a c2 - 2 a w%) x - a2 w\ (3)
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