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Wenn demnach fiir jedes System 4 von # Zahlen die Ungleichungen

my(d) = my(d) = my(d) =+ = my(A) (1)
gelten, so gelten folgende Ungleichungen fiir das System B von # + 1 Zahlen:
my(B) = my(B) = my(B) = - -+ = my(B). 4
Man kann schlieBlich noch beweisen, da aus der Ungleichung
my(B) = m,(B) (3)
notwendig die Ungleichung folgt
My (B) = My, (B). (6)

Wendet man nidmlich Ungleichung (5) auf das System der reziproken Werte

11 1 .
, p— an, so wird

;b;_ ; _b;_’ . -
B s e
7nn+l (B) == mn+1 (B) ’

n+1 n+1

was geschrieben werden kann

m, 1(B) =

oder wegen (5)

somit My (B) Z My (B). 6)
Aus (4) und (6) folgen also die behaupteten Relationen
my(B) = my(B) = my(B) = -+ = tip,y (B). (2)

Die Ungleichungen (1) und (2) gelten aber fiir » = 2, somit gelten sie auch fiir » = 3,
dann fiir » = 4 usw., das heiBt, sie gelten allgemein fiir jedes ganzzahlige n.
H. Kreis, Winterthur.

Eine geometrische Anwendung der grundlegenden
algebraischen Mittelwerte

Seien gegeben # positive GroBen a4;, 4;, ..., a,, und bezeichne € q, eine Kombi-

nation derselben zur Klasse %, so ergeben sich fiir jedes & im ganzen (Z) verschiedene

solcher Kombinationen, und durch Summation derselben erhalten wir die den #
GréBen a; zugeordneten # elementarsymmetrischen Funktionen s, ; = 2 Ca,.

- Mit M, = “k#  Gefinieren wir den grundlegenden algebraischen Mittelwert

n

(&)
k-ter Ordnung der »# GréBen a; (siehe « Elemente der Mathematik» 11, Nr. 1). Esgilt,
sofern nicht alle «, einander gleich sind,

Mn,l >Mn,2 > Mn,s e > Mn,m
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wobei M, , das arithmetische und M,, ,, das geometrische Mittel ist. Einen Beweis
hiefiir gibt u.a. die Arbeit von H. KRels in diesem Heft.
Wir betrachten vorerst ein Rechteck mit den Seitenlingen &, und 4,. Der Umfang

st da.nn: Z(al+a2)=282’1“—=4M2'1
und die Fliche: 4y Gy = Sq 4= M3 ,.

Offenbar ist M, , die Seite des Quadrats mit gleichem Umfang und M, , die Seite
des Quadrats mit gleicher Fliche wie das Rechteck. Wegen M, ; > M, , folgt:

a) M, > Mi,=a 0,
das heiBit: von allen Rechtecken gleichen Umfangs hat das Quadrat den groBten
Flﬁcheninhalt; b) 4 Ms,g < 4 Mz,l = 2 (“1 + az)’

das heiBt: von allen Rechtecken gleicher Fliche hat das Quadrat den kleinsten
Umfang.
Sei nun gegeben ein rechtwinkliger Quader mit den respektiven Seitenlingen
a,, ay und ag, so ist
die gesamte Kantenlidnge: 4 (@, + ay 4 a5) = 4 53, = 12 M, 4,
die gesamte Oberfliche: 2 (ayay+ ay a3+ aya5) =255 =6 M2 ,,
und das Volumen: ay agag =S5 3= M3 ;.
Offenbar ist

M, , die Linge der Kante des Wiirfels mit gleicher Kantenldngensumme,
M, , die Linge der Kante des Wiirfels mit gleicher Oberfliche und
M, ; die Linge der Kante des Wiirfels mit gleichem Volumen wie der Quader.

Wegen M, , > M o > M, 4 folgt

a) 6M3,>6M;,=2(a a,+ a a3+ a3 a),
M§_1>M§,3=a1aga3,

das heiit von allen Quadern mit gleichem Kantenldngentotal hat der Wiirfel die
groBte Oberfliche und das gréBte Volumen;

b) 12M3,a< 12M3 ;=4 (4, + ay + ay),
M3, > M3 ;= a,a;4a;,

das heiBt von allen Quadern mit gleicher Oberfliche hat der Wiirfel die kleinste ge-
samte Kantenlinge, aber das gr6Bte Volumen;

€) 6M3,< 6Mis=2(aa3+ ay a3+ a3 ay),
12My 3 < 12 Mgy = 4 (4 + a3 + ay),

das heiBt von allen Quadern mit gleichem Volumen hat der Wiirfel die kleinste
Oberfliche und das kleinste Kantenlidngentotal.

Wir bezeichnen jetzt mit B, , die Summe der A-dimensionalen Begrenzungsele-
mente eines n-dimensionalen rechtwinkligen Quaders. Nachdem M, ; offenbar die
Linge einer Kante des Wiirfels mit gleichem B, » wie der Quader ist, folgt

su, k

B

Bn,kzzu,kM!’:,k‘:Zn,k
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wenn Z,, ; die Zahl der %-dimensionalen Begrenzungselemente des n-dimensionalen
Quaders bedeutet. Es ist aber
n—k+1
Zﬂ,k = Z"’ k-1 T = (Z) Zﬂ—k’
woraus auch folgt:

Zﬂ,k Z"+’,k+t, . Zn_k

G G

SinngemiB bedeutet Z,, , die Zahl der Ecken des #-dimensionalen Quaders und ist
gleich 2", Es ist somit also:

S
B", = (Z) P Mﬁ, k= (Z) 2n-k :;k = 2n-k s,,'k.
()
Folgender kleiner Tabellenausschnitt gibt eine ziffernmiBige Veranschaulichung der
eben genannten Formeln:

" (n) 7 k.. (n) 7 _?_"i (n) 7 Zn,2 (n) z m8

0 ”n,0 n 1 ”,1 n 2 ”,2 n 3 n3 n
() (%) z) G)

0 1 1 1

1 1 2 2 1 1 1

2 1 4 4 2 4 2 1 1 1

3 1 8 8 3 12 4 3 6 2 1 1 1

4 1 16 16 4 32 8 6 24 4 4 8 2

5 1 32 32 5 80 16 10 80 8 10 40 4

6 1 64 64 6 192 32 15 240 16 20 160 8

Es besteht also eine sehr einfache Beziehung zwischen der Summe der Z-dimensio-
nalen Begrenzungselemente einerseits und den elementarsymmetrischen Funktionen
bzw. den grundlegenden algebraischen Mittelwerten anderseits, und es lassen sich die
vorgingig fiir Ebene und euklidischen Raum genannten Sitze ohne weiteres auf
n Dimensionen iibertragen. Wegen

My >Myy> - >My ey >My > - >M,,

ist Zn,k+tM’fz,+kt>Zn,k+thu,+1:+t=Bn,k+¢ k+t=n
und Zo it M3 < Zp Mi% ¢=Bpit, k—t=1

das heiBt: von allen #-dimensionalen Quadern mit B,, , = konstant hat der Wiirfel
die gréBten B, ;.. und die kleinsten B,, ;_;, oder, mit anderen Worten: von allen
n-dimensionalen Quadern mit gleicher Summe der k-dimensionalen Begrenzungs-
elemente hat der Wiirfel die gréB8ten Summen der mehr als k-dimensionalen Begren-
zungselemente und die kleinsten Summen der weniger als k-dimensionalen Begren-
zungselemente. H. JECKLIN, Ziirich.
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