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Rechnungen zugrunde gelegt wurde und wie er sich aus direkteren Beobachtungen
ergibt.

Der eigentliche Zweck der vorliegenden Rechnungen war aber weniger das
Gewinnen numerischer Resultate als das genäherte Darstellen der Erdachsenbewegung

und das Erläutern der Begriffe Präzession und Nutation in der Astronomie.
M. Schürer, Bern.

Über die Grundfunktionen positiver Zahlen
Für das System A der n positiven Zahlen ax,a%,az, an bilden wir die

symmetrischen Grundfunktionen

Si(A) ax + a2 + • - • + an mx(A)

S2(A) axa2+axa3+.-- (*) m\(A)

SZ(A) axa2az=axa2a + • • • (3) w| (A)

Sn(A) ^axa2az...an (jj) m%(A),

wo mx das arithmetische, mn das geometrische Mittel und ml, ml, m^z\ die Mittel
aller Produkte von je zwei, drei, (n— 1) Zahlen des Systems A bedeuten.

Die bekannte Tatsache, daß die Folge der absoluten Grundwerte mx,m2imz, mn
monoton abnehmend, das heißt, daß

mx(A) ^ m2(A) ^ • • ^ mn(A) (1)

ist, soll in der vorliegenden Arbeit auf elementare Art bewiesen werden.
Für n 2 geht die zu beweisende Behauptung

mx^m2

- ax 4- a% 2/
oder

2 ä Vai <*2

unmittelbar aus der selbstverständlichen Ungleichung

hervor. fe-J'SO
Angenommen, die Beziehungen (1) gelten für jedes beliebige System A von n

positiven Zahlen, so soll gezeigt werden, daß sie ebenfalls für jedes beliebige System B
von n + 1 positiven Zahlen gelten.

Es bedeute B das System von n -f- 1 positiven beliebigen Zahlen

und
bx > b2 ^ bz ^ • • • ^ bn+x > 0

Bx das Teüsystem der n Zahlen b2,bz, bn+l (B ohne bx)

B% das Teilsystem der n Zahlen bx, bZt bn+1 (B ohne 63)

Bn+t das Teilsystem der 1» Zahlen blt bti bn (B ohne b^x).
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Zu beweisen ist nun, daß, falls die Ungleichungen (1) gelten, stets sein wird:

mx(B) :> m2(B) ^ mz(B) ^ ^ mn+x(B). (2)

Zu diesem Zwecke betrachten wir die Summe der n+ 1 Partialbrüche

y ^ ~n~+T W+X + TTh + " * * + TTb^) > (3)

deren Büd die n + 1 parallelen Asymptoten

aufweist. *-"*: *=-^: -¦: *=-*«
Zwischen zwei aufeinanderfolgenden Unendlichkeitsstellen — bt und — bi+1 fällt

die Kurve (3) beständig von -f oo bis — oo, so daß in einem solchen Intervall
notwendigerweise ein Schnittpunkt der Kurve mit der x-Achse, etwa an der Stelle x — aif
vorhanden sein muß. Die Funktion (3) besitzt infolgedessen n negative Nullstellen
— ax, — a2, — an im Endlichen.

Zieht man die Partialbrüche der Funktion (3) zusammen, so erscheint y als Quotient
zweier Polynome Fn(x): Gn+X(x). Der Zähler Fn(x) ist vom w-ten Grade und hat
dieselben Nullstellen — a^, — a^, — an wie y. Seine Koeffizienten lassen sich
leicht auf zwei verschiedene Arten darstellen: einerseits durch die symmetrischen
Grundfunktionen des Systems A der n Zahlen ax,a2, an, anderseits durch die

symmetrischen Grundfunktionen des Systems B der »+1 Zahlen bx, b2, 6W+1.

Indem man die Koeffizienten der nämlichen Potenzen von x einander gleichsetzt,
ergeben sich allgemeine Beziehungen zwischen den erwähnten Grundfunktionen.

Beispielsweise hat man:

1. für die Koeffizienten von xn~1:

StiA) -^ (S,(BJ + S^BJ + • ¦ • + SAB^)) -^ St(B)

oder ^(A) ^ (* 1J) ml(B) - ml(B)

also mx(A) mx (B);

2. für die Koeffizienten von xn~2:

S2(A) -^ (SZ(BJ + S2(ß2) + • • • + Ss(Bn+1)) -J^i S2(ß)

oder (J) m%(A) -£=| (M + *) m\{B) (*) m|(B),

also m2(A) m2(B);

3. allgemein für die beiden Koeffizienten von xn~k:

oder (jj *W - ^A+i (« + i) w*(ß) _ («) w|(ß),

also fWj.(A) *»*{£). (& 1, 2, n)
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Wenn demnach für jedes System A von n Zahlen die Ungleichungen

«iW ^ ™*(A) ^ md(A) > •. ^ mn(A) (1)

gelten, so gelten folgende Ungleichungen für das System B von «+1 Zahlen*

mx(B) ^ m2(B) > m,(B) ^ •.. ^ mn(B) (4)

Man kann schließlich noch beweisen, daß aus der Ungleichung

m[(B)^mn(B) (5)

notwendig die Ungleichung folgt

mn(B)^mn+l(B) (6)

Wendet man namhch Ungleichung (5) auf das System der reziproken Werte
11 l

iT~ > t~ >
• • • i t— an, so wird

un+l

<(B) ^/-^(sr
<X\ (B) ~ \ <X\ (B) '

was geschrieben werden kann

«•*»" 1fm ^> mi(B) <# limmn (B) ^ -^Je) mnvi (B>J

oder wegen (5) 1 t* W < 1(B)>m:\11(B),

somit wn (5) > mn+x (B). (6)

Aus (4) und (6) folgen also die behaupteten Relationen

mx(B) ^ m2(B) ^ m3(B) > •. ^ mn+1(£) (2)

Die Ungleichungen (1) und (2) gelten aber für n 2, somit gelten sie auch für ^ 3,
dann fnvn 4 usw das heißt, sie gelten allgemein für jedes ganzzahlige n.

H. Kreis, Winterthur

Eine geometrische Anwendung der grundlegenden
algebraischen Mittelwerte

Seien gegeben n positive Großen ax,a2, ,an, und bezeichne C at eine Kombination

derselben zur Klasse k, so ergeben sich für jedes k im ganzen u) verschiedene

solcher Kombinationen, und durch Summation derselben erhalten wir die den n
Großen a{ zugeordneten n elementarsymmetrischen Funktionen 5BJS. ICaf.

k i
k

Mit Mn u
1 -^- definieren wir den grundlegenden algebraischen Mittelwert
1/ ln\
r lv

k-tet Ordnung der n Großen a% (siehe «Elemente der Mathematik »III, Nr. 1). Es gilt,
sofern nicht alle a{ einander gleich sind,

Mn x > Mn 2 > Mn 3 > • • • > Mn>n,
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