Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 3 (1948)

Heft: 3

Artikel: Über die Grundfunktionen positiver Zahlen

Autor: Kreis, H.

DOI: https://doi.org/10.5169/seals-13575

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Rechnungen zugrunde gelegt wurde und wie er sich aus direkteren Beobachtungen ergibt.

Der eigentliche Zweck der vorliegenden Rechnungen war aber weniger das Gewinnen numerischer Resultate als das genäherte Darstellen der Erdachsenbewegung und das Erläutern der Begriffe Präzession und Nutation in der Astronomie.

M. Schürer, Bern.

Über die Grundfunktionen positiver Zahlen

Für das System A der n positiven Zahlen a_1 , a_2 , a_3 , ..., a_n bilden wir die symmetrischen Grundfunktionen

$$S_{1}(A) = a_{1} + a_{2} + \cdots + a_{n} = \binom{n}{1} m_{1}(A)$$

$$S_{2}(A) = a_{1} a_{2} + a_{1} a_{3} + \cdots = \binom{n}{2} m_{2}^{2}(A)$$

$$S_{3}(A) = a_{1} a_{2} a_{3} = a_{1} a_{2} a + \cdots = \binom{n}{3} m_{3}^{3}(A)$$

$$\vdots$$

$$S_{n}(A) = a_{1} a_{2} a_{3} \dots a_{n} = \binom{n}{n} m_{n}^{n}(A),$$

wo m_1 das arithmetische, m_n das geometrische Mittel und m_2^2 , m_3^3 , ..., m_{n-1}^{n-1} die Mittel aller Produkte von je zwei, drei, ..., (n-1) Zahlen des Systems A bedeuten.

Die bekannte Tatsache, daß die Folge der absoluten Grundwerte m_1 , m_2 , m_3 , ..., m_n monoton abnehmend, das heißt, daß

$$m_1(A) \ge m_2(A) \ge \cdots \ge m_n(A)$$
 (1)

ist, soll in der vorliegenden Arbeit auf elementare Art bewiesen werden.

Für n = 2 geht die zu beweisende Behauptung

$$m_1 \ge m_2$$

$$\frac{a_1 + a_2}{2} \ge \sqrt[2]{a_1 a_2}$$

oder

unmittelbar aus der selbstverständlichen Ungleichung

$$(a_1-a_2)^2 \ge 0$$

hervor.

Angenommen, die Beziehungen (1) gelten für jedes beliebige System A von n positiven Zahlen, so soll gezeigt werden, daß sie ebenfalls für jedes beliebige System B von n+1 positiven Zahlen gelten.

Es bedeute B das System von n+1 positiven beliebigen Zahlen

und $b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_{n+1} > 0$ $B_1 \quad \text{das Teilsystem der } n \text{ Zahlen } b_2, b_3, \ldots, b_{n+1} \text{ } (B \text{ ohne } b_1)$ $B_2 \quad \text{das Teilsystem der } n \text{ Zahlen } b_1, b_3, \ldots, b_{n+1} \text{ } (B \text{ ohne } b_2)$ $\ldots \qquad B_{n+1} \text{ das Teilsystem der } n \text{ Zahlen } b_1, b_2, \ldots, b_n \quad (B \text{ ohne } b_{n+1}).$

Zu beweisen ist nun, daß, falls die Ungleichungen (1) gelten, stets sein wird:

$$m_1(B) \ge m_2(B) \ge m_3(B) \ge \cdots \ge m_{n+1}(B). \tag{2}$$

Zu diesem Zwecke betrachten wir die Summe der n+1 Partialbrüche

$$y = \frac{1}{n+1} \left(\frac{1}{x+b_1} + \frac{1}{x+b_1} + \cdots + \frac{1}{x+b_{n+1}} \right), \tag{3}$$

deren Bild die n + 1 parallelen Asymptoten

$$x = -b_1$$
; $x = -b_2$; ...; $x = -b_{n+1}$

aufweist.

Zwischen zwei aufeinanderfolgenden Unendlichkeitsstellen $-b_i$ und $-b_{i+1}$ fällt die Kurve (3) beständig von $+\infty$ bis $-\infty$, so daß in einem solchen Intervall notwendigerweise ein Schnittpunkt der Kurve mit der x-Achse, etwa an der Stelle $x=-a_i$, vorhanden sein muß. Die Funktion (3) besitzt infolgedessen n negative Nullstellen $-a_1, -a_2, \ldots, -a_n$ im Endlichen.

Zieht man die Partialbrüche der Funktion (3) zusammen, so erscheint y als Quotient zweier Polynome $F_n(x):G_{n+1}(x)$. Der Zähler $F_n(x)$ ist vom n-ten Grade und hat dieselben Nullstellen $-a_1$, $-a_2$, ..., $-a_n$ wie y. Seine Koeffizienten lassen sich leicht auf zwei verschiedene Arten darstellen: einerseits durch die symmetrischen Grundfunktionen des Systems A der n Zahlen a_1 , a_2 , ..., a_n , anderseits durch die symmetrischen Grundfunktionen des Systems B der n+1 Zahlen b_1 , b_2 , ..., b_{n+1} .

Indem man die Koeffizienten der nämlichen Potenzen von x einander gleichsetzt, ergeben sich allgemeine Beziehungen zwischen den erwähnten Grundfunktionen.

Beispielsweise hat man:

1. für die Koeffizienten von x^{n-1} :

$$S_{1}(A) = \frac{1}{n+1} \left(S_{1}(B_{1}) + S_{1}(B_{2}) + \dots + S_{1}(B_{n+1}) \right) = \frac{n}{n+1} S_{1}(B)$$

$$\binom{n}{1} m_{1}(A) = \frac{n}{n+1} \binom{n+1}{1} m_{1}(B) = \binom{n}{1} m_{1}(B)$$

$$m_{1}(A) = m_{1}(B);$$

oder also

2. für die Koeffizienten von x^{n-2} :

$$S_{2}(A) = \frac{1}{n+1} \left(S_{2}(B_{1}) + S_{2}(B_{2}) + \dots + S_{2}(B_{n+1}) \right) = \frac{n-1}{n+1} S_{2}(B)$$

$$\binom{n}{2} m_{2}^{2}(A) = \frac{n-1}{n+1} \binom{n+1}{2} m_{2}^{2}(B) = \binom{n}{2} m_{2}^{2}(B),$$

$$m_{2}(A) = m_{2}(B);$$

oder also

3. allgemein für die beiden Koeffizienten von x^{n-k} :

$$S_k(A) = \frac{1}{n+1} \left(S_k(B_1) + S_k(B_2) + \dots + S_k(B_{n+1}) \right) = \frac{n-k+1}{n+1} S_k(B)$$
oder
$$\binom{n}{k} m_k^k(A) = \frac{n-k+1}{n+1} \binom{n+1}{k} m_k^k(B) = \binom{n}{k} m_k^k(B),$$
also
$$m_k(A) = m_k(B). \qquad (k=1, 2, \dots, n)$$

(6)

Wenn demnach für jedes System A von n Zahlen die Ungleichungen

$$m_1(A) \ge m_2(A) \ge m_3(A) \ge \cdots \ge m_n(A) \tag{1}$$

gelten, so gelten folgende Ungleichungen für das System B von n+1 Zahlen:

$$m_1(B) \ge m_2(B) \ge m_3(B) \ge \cdots \ge m_n(B).$$
 (4)

Man kann schließlich noch beweisen, daß aus der Ungleichung

$$m_1^{\bullet}(B) \ge m_n(B) \tag{5}$$

notwendig die Ungleichung folgt

$$m_n(B) \ge m_{n+1}(B). \tag{6}$$

Wendet man nämlich Ungleichung (5) auf das System der reziproken Werte $\frac{1}{b_1}$; $\frac{1}{b_2}$; \cdots ; $\frac{1}{b_{n+1}}$ an, so wird

$$\frac{m_{n}^{n}(B)}{m_{n+1}^{n+1}(B)} \ge \sqrt[n]{\frac{m_{1}(B)}{m_{n+1}^{n+1}(B)}},$$

was geschrieben werden kann

$$m_n^{n^2-1}(B) \ge \frac{m_1(B)}{m_n(B)} m_{n+1}^{n^2-1}(B),$$

 $m_n^{n^2-1}(B) \ge m_{n+1}^{n^2-1}(B),$

somit

oder wegen (5)

Aus (4) und (6) folgen also die behaupteten Relationen

$$m_1(B) \geq m_2(B) \geq m_3(B) \geq \cdots \geq m_{n+1}(B). \tag{2}$$

Die Ungleichungen (1) und (2) gelten aber für n = 2, somit gelten sie auch für n = 3, dann für n = 4 usw., das heißt, sie gelten allgemein für jedes ganzzahlige n.

 $m_n(B) \geq m_{n+1}(B)$.

H. KREIS, Winterthur.

Eine geometrische Anwendung der grundlegenden algebraischen Mittelwerte

Seien gegeben n positive Größen a_1 , a_2 , ..., a_n , und bezeichne c_k a_i eine Kombination derselben zur Klasse k, so ergeben sich für jedes k im ganzen $\binom{n}{k}$ verschiedene solcher Kombinationen, und durch Summation derselben erhalten wir die den n Größen a_i zugeordneten n elementarsymmetrischen Funktionen $s_{n,k} = \Sigma \ c_k$ a_i .

Mit $M_{n,k} = \sqrt[k]{\frac{s_{k,n}}{\binom{n}{k}}}$ definieren wir den grundlegenden algebraischen Mittelwert

k-ter Ordnung der n Größen a_i (siehe «Elemente der Mathematik» III, Nr. 1). Es gilt, sofern nicht alle a_i einander gleich sind,

$$M_{n,1} > M_{n,2} > M_{n,3} > \cdots > M_{n,n}$$