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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare-

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unlerrichis
Organ fiir den Verein Schweizerischer Mathematiklehrer

El. Math. Band III Nr. 2 Seiten 25-48 Basel, 15. Mirz 1948

Die 1soperimetrische Ungleichuhg im Raum’)

Das Ziel der vorliegenden Darstellung ist, eine méglichst elementare Theorie des
isoperimetrischen Problems der konvexen Korper des dreidimensionalen Raumes zu -
umreiBen und insbesondere eine einfache Herleitung der isoperimetrischen Unglei-
chung von H. A. SCHWARZ?) vorzutragen. — Fiir konvexe Bereiche der Ebene sind
im Laufe der Zeit zahlreiche elementare Losungen des zweidimensionalen isoperi-
metrischen Problems gegeben worden3). Vielfiltig waren die Anstrengungen, ebenso
einfache Losungen des gleichen Problems fiir konvexe K&rper des Raumes zu fin-
den; jedoch sind die Schwierigkeiten, die es zu iiberwinden gilt, hier weit erheblicher
als im ebenen Fall.

Betreffend Geschichte und Literatur des von uns aufgegriffenen berithmten Pro-
blems vergleiche man das idltere, aber heute noch fesselnde Buch «Kreis und Kugel»
von W.BLASCHKE?) und insbesondere die neuere und vollstindige Monographie
«Theorie der konvexen Kérper» von T. BONNESEN und W. FENCHELS).

Im Hinblick auf die Behandlung des isoperimetrischen Problems im Rahmen einer
elementaren Vorlesung oder im Mittelschulunterricht stellt sich oft die Frage nach
einer einfachen Herleitungsmoéglichkeit fiir die isoperimetrische Ungleichung. Der
bekannteste klassische Weg — der allerdings durchaus nicht elementar ist — fiihrt
iber den Brunn-Minkowskischen Hauptsatz. Um auf diesem Wege zum Ziele zu
gelangen, muB zunichst die Theorie der Linearscharen von BRUNN oder der Konkav-
scharen von BLASCHKE entwickelt werden. Wiinschbar wire eine Ableitung, welche
direkt an die Grundtatsachen der Elementargeometrie, der Punktmengenlehre und
der elementaren Inhaltslehre anschlieBt.

Allerdings ist zu bemerken, daB die hier als elementar angesprochene Arbeits-
grundlage, welche sich aus einer gegenseitigen Durchdringung der Analysis des reellen
Zahlkontinuums und der Geometrie des Raumes und seiner Teile (Punktmengen) er-

1) Mit Subvention der Stiftung Dr. JoacHiM DE Giacomr der SNG. gedruckt.

2) Von H. A. ScuwaRrz stammt die erste vollstindige Losung des isoperimetrischen Problems in der
Erweiterung auf nicht notwendig konvexe Kérper. Seine berithmte Abhandlung, «Beweis daB die Kugel
kleinere Oberfliche besitzt, als jeder andere Korper gleichen Volumens» (Nachr. Ges. Wiss., Gottingen
1884), stellt eine der meistgenannten Anwendungen der analytischen Methode von WEIERSTRASS dar.

3) Von den in neuerer Zeit gegebenen Losungen seien hier genannt: G. Bov: Einfache Isoperimetrie-
beweise fiir Kreis und Kugel, Abh. Math. Sem. Hansischen Univ. 15, 1943; H. Hapwicer: Eine elemen-
tare Ableitung der isoperimetrischen Ungleichung fiir Polygone, Comm. Math. Helv. 16, 1943/44.

4) Leipzig 1916.

5) Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, J. Springer, Berlin 1935,
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geben soll, sicherlich in dem Sinne hohere Anspriiche stellen muB, als eine scharfe
Handhabung gewisser Begriffe, wie etwa diejenigen des Infimums oder Supremums
bei Zahlenmengen unter anderen, erforderlich ist.

Indem man sich verschiedene iltere Gesichtspunkte und konstruktive Ideen ver-
schiedener Geometer, wie J. STEINER?), H. MINKowsK12), W. BLASCHKE3), W. GROSS?),
zu eigen macht und diese mit neueren Methoden und Kunstgriffen, wie sie etwa von
L. LusTerNIKS), G. BoL%), A.DiNGHAS?) und E. ScuMIiDT®) angewendet wurden,
verbindet, kann man zu der im Folgenden vorgetragenen Ableitung der isoperi-
metrischen Ungleichung gelangen.

Diese lautet bekanntlich F3_ 367 V2> 0. 1)

Hier bezeichnet F die Oberfliche und V das Volumen des konvexen Korpers. Ist M
das sogenannte Integral der mittleren Kriimmung, so besteht noch die Ungleichung

M2—47F =0. 2)

Diese «erste Minkowskische Ungleichung» werden wir miihelos als Folgerung von (1)

gewinnen.
Dann zeigen wir, daB in der isoperimetrischen Ungleichung (1) das Gleichheits-

zeichen dann und nur dann steht, wenn der konvexe Kdérper entweder eine Kugel

oder eine Strecke ist.
Dies geschieht so, daB wir die Verschirfung

F3_-36n V= (VF — V4 nr)® 3)

nachweisen, wobei r den Inkugelradius bezeichnet. Der rechtsseitige Ausdruck in (3)
kamn offenbar bei eigentlichen konvexen Koérpern nur dann verschwinden, wenn
dieser mit seiner Inkugel zusammenfillt. — Fiir die Kugel besteht in (1) das Gleich-
heitszeichen. Nach der letzten Feststellung ist dies aber andererseits der einzige in
Betracht kommende Fall. Damit ist die isoperimetrische Eigenschaft der Kugel,
ndmlich unter allen eigentlichen konvexen Koérpern gleichen Volumens die kleinste
Oberfliche aufzuweisen, festgestellt. _

Diese Einleitung abschlieBend, gestattet sich der Verfasser noch die nachstehenden
Bemerkungen: Die Tatsache, daB unsere Entwicklung nicht auch die «zweite Min-

kowskische Ungleichung»
F2-3MV =0 - 4)

liefert, muB nicht unbedingt eine berechtigte Erwartung tduschen, da die Unglei-

1) Einfache Beweise der isoperimetrischen Hauptsitze, J. reine angew. Math. 18, 1838,

2) Volumen und Oberfliche, Math. Ann. 57, 1903,

8) Kreis und Kugel, Leipzig 1916; Vorlesungen iiber Differentialgeometrie. I. Elementare Differential-
geometrie, 3. Aufl., Berlin 1930, insb. § 115.

4) Die Minimaleigenschaft der Kugel, Mh. Math. Phys. 18, 1917.

5) Die Brunn-Minkowskische Ungleichung fiir beliebige meBbare Mengen, C. R. Acad. Sci. URSS. 1935
(I11) 8. . .

%) Einfache Isoperimetriebeweise fiir Kreis und Kugel, Abh. Math. Sem. Hansischen Univ. 15, 1943.

7) Beweis der isoperimetrischen Eigenschaft der Kugel im s-dimensionalen Raum, Sitz.-Ber. Akad.
Wiss. Wien 1940; Uber die isoperimetrische Eigenschaft der Kugel im gewdhnlichen Raum, Mh. Math.
Phys. §1, 1944.

8) A. DincHAs und E. ScuMipt: Einfacher Beweis der isoperimetrischen Eigenschaft der Kugel im
n-dimensionalen euklidischen Raum, Abh. Preuss. Akad. Wiss.; Math.-Naturw. K1. 1944,
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chung (4) mit den beiden Ungleichungen (1) und (2) nicht gleichgestellt ist. Wie an
anderer Stelle!) ausfiihrlicher dargelegt wurde, ist es in gewissem Sinne unnatiirlich,
die beiden Minkowskischen Ungleichungen (2) und (4) zu einem fundamentalen Paar
zu vereinigen und dann hieraus (1) zu folgern, wie dies in teilweiser Anlehnung an das
klassische Vorbild meistens geschieht. Es ist vielmehr so, daB die Ungleichungen (1)
und (2) und dann wieder (4) und eine noch unbekannte Ungleichung

? =0 (5)

paarweise zusammengehéren. Es ist ndmlich (4) eine exakte Verschirfung von (1),
indem statt (4) auch

9Ve
F3——367tV2;T(1V12~4nF) (4a)

geschrieben werden kann, wobei das Gleichheitszeichen nach H. MINKowsKI fiir
Kappenkérper der Kugel und nach einem neueren Resultat von G. BoL?) nur fiir
diese gilt. In analoger Weise fehlt wohl eine exakte Verschirfung von (2) der Form

M2—47F =2, (5a)

wobei das Gleichheitszeichen fiir die Korper einer noch nicht bekannten extremalen
Schar gilt, welche beispielsweise wie die Schar der symmetrischen Kugelzonen eine
Verbindung zwischen Kreisscheibe und Kugel herstellt.

Wenn sich der Verfasser entschlossen hat, die nachfolgenden Ausfithrungen iiber
die isoperimetrische Ungleichung zu veréffentlichen, so tat er dies mit der Hoffnung,
damit ein Bescheidenes zur Ausfiillung der eingangs erérterten Liicke im elementaren
Unterricht beigetragen zu haben.

1. Der konvexe Korper und die dres Mapfzahlen

Unter einem konvexen Kérper wollen wir hier eine abgeschlossene, beschrankte
und konvexe Punktmenge des Raumes verstehen. Falls diese Punktmenge auch
innere Punkte enthilt, sprechen wir genauer von einem «eigentlichen», im gegen-
teiligen Fall von einem «uneigentlichen» konvexen Korper. Kugel, Wiirfel, Tetraeder
mit positivem Inkugelradius sind Beispiele eigentlicher, Kreisscheibe, Quadrat-
flichenstiick, Dreiecksflichenstiick, Strecke solche uneigentlicher konvexer Kérper.

Es ist eine bekannte und hier vorausgesetzte Tatsache, daB ein konvexer Kérper
stets ein elementares (d.h. Peano- Jordansches) Volumen V und eine wohlbestimmte
Oberfliche F aufweist. Die genannten zwei fundamentalen MaBzahlen V und F wer-
den in der Theorie der konvexen Korper noch erginzt durch eine dritte MaBzahl M,
ndmlich durch das Integral der mittleren Kriimmung. Diese letzte Bezeichnungs-
weise von M, welche auf differentialgeometrische Zusammenhénge hinweist, wird
leider dem einfachen und fundamentalen Charakter dieser dritten MaBzahl, die der
Oberfliche und dem Volumen an die Seite gestellt werden muB, nicht ganz gerecht.

1) H. HapwiGer, Uber eine fehlende Ungleichung in der Theorie der konvexen Kérper, E1. Math. 2, 1947.
%) Beweis einer Vermutung von H. MiNKowsk1, Abh. Math. Sem. Hansischen Univ. 15, 1943.
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Jedenfalls ist es fiir den Leser wichtig, sich zu vergegenwirtigen, daB fiir konvexe
Polyeder alle drei MafBzahlen in gleichartiger und durchaus elementarer Weise defi-
niert werden koénnen. Es ist nimlich ¥ die Summe der Inhalte der Tetraederraum-
stiicke, in die sich das Polyeder tetrangulieren 148t, F ist entsprechend die Summe
der Inhalte der Dreiecksflichenstiicke, in die sich die Oberfliche des Polyeders trian-
gulieren 148t ; endlich ist M die Summe der Produkte, die man aus den Kantenlidngen
und den halben Neigungswinkeln der an den Kanten anschlieBenden Seitenflichen
des Polyeders bilden kann. Als Neigungswinkel ist der Zwischenwinkel der beiden nach
auBen weisenden Normalen der anschlieBenden Seitenflichen zu beriicksichtigen.

Wihlt man diesen Sachverhalt als Ausgangsposition, so kénnen die drei MaBe V,
F und M fiir allgemeinere konvexe Koérper K als die Suprema der entsprechenden
MaBe der von K iiberdeckten konvexen Polyeder bzw. auch als die Infima der
MaBe der von K unterdeckten konvexen Polyeder definiert werden.

Ist A ein konvexer Korper, der einen andern A* iiberdeckt, geschrieben 4 > A%,
so gelten die Monotoniebeziehungen

V({d) 2 V(4¥%), F(d) = F(4%), M(4) = M(4*), (6)

die sich unmittelbar aus der oben vorgeschlagenen Definition ergeben.
- Ist A eine Kugel vom Radius R, so hat man die Formeln

V(d) = - R, F(A)=4nR? M(d)=4=nR (7)

2. Die guferen und inneven Parallelkorper

Es sei 4 ein konvexer Kérper. Unter dem duBeren Parallelkérper C,(4) von 4 im
Abstand ¢ = 0 verstehen wir die Vereinigungsmenge aller abgeschlossenen Kugeln
vom Radius g, deren Mittelpunkte in 4 liegen. Es ist sehr leicht einzusehen, daB
C,(A) wieder ein konvexer Kérper ist. Ahnlich definieren wir den inneren Parallel- -
korper C_,(4) von 4 im Abstand g als die Vereinigungsmenge aller Mittelpunkte von
abgeschlossenen Kugeln vom Radius g, die ganz in 4 liegen. Auch C_ ,(4) ist ein kon-
vexer Korper, der allerdings nur dann nicht leer ist, wenn 0 < g < 7 ist, wo 7 den
Inkugelradius von 4 bezeichnet. Fiir g = 7 ist der innere Parallelkdrper uneigentlich
und reduziert sich in der Regel auf einen Punkt (Inkugelmittelpunkt). Es ist zweck-
miBig, die Parallelkérper durch die oben gewihlte Schreibweise als Resultate einer
Paralleloperation C aufzufassen. Die Eigenschaften des Operators C kénnen sehr all-
gemein studiert werden. Fiir unsere Zwecke geniigt es, die beiden folgenden Rela-
tionen zur Verfiigung zu haben. Fiir ¢ = 0, ¢ = 0 gilt

C, Co(4) = C,, o(4) (8)
und fir0 < p =7 ‘
: C,C_,(4) cA. (9)

Die Beweise der beiden letzten Relationen liegen auf der Hand und kénnen un-
mittelbar an die Definitionen der Operationen C angeschlossen werden.
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3. Die Formeln von J. Steiner

Bezeichnen V,, F, und M, die MaBzahlen des duBeren Parallelkdrpers C,(4) des
konvexen Korpers A4, so gelten die nach J. STEINER benannten Parallelformeln

V=V +Fo+ Mg+ -7 o5, (10)
F,=F4+2Mop+4mg? (11)
M,=M+4mnyg. (12)

Betreffend den Nachweis dieser Formeln ist folgendes zu sagen: Fiir konvexe
Polyeder ist die Volumformel (10) direkt ablesbar, wobei die in 1. erérterte Bedeu-
tung der MaBe V, F und M beriicksichtigt werden muB. Der duBere Parallelkdrper
kann in diesem Fall nimlich in lauter elementare Raumstiicke zerlegt werden: in das
urspriingliche Polyeder, in gerade prismatische Korper, die den Seitenflichen auf-
gesetzt sind, in Zylinderkeile, die lings den Kanten eingeschoben sind, und endlich
in Kugelsektoren, die sich bei den Ecken einpassen und zu einer vollen Kugel zu-
sammengefiigt werden kénnen. Durch Approximation eines allgemeineren konvexen
Korpers durch konvexe Polyeder wird dann die Formel (10) verallgemeinert. Die
beiden andern begleitenden Formeln (11) und (12) ergeben sich jetzt notwendlg
durch sinngeméiBe Auswertung des Kompositionsgesetzes (8).

Dem aufmerksamen Leser fillt hier vielleicht auf, daB im Zusammenhang mit den
Steinerschen Formeln nur von den duBeren Parallelkérpern die Rede ist. In der Tat
gelten dhnlich einfache Formeln fiir die inneren Parallelkérper im allgemeinen nicht.
Immerhin werden wir spiter einige Ungleichungen betrachten, welche die hier er-
wihnte Liicke naturgemdB nur in sehr unvollkommener Weise ausfiillen sollen.

4. Die Steinersche Symmetrisierung

Betrachten wir, etwa auBerhalb eines konvexen Koérpers 4, eine Ebene w und die
Schar der auf w senkrecht stehenden Geraden g, welche A treffen. Verschieben wir
nun jede Sehne, in welcher die Gerade g den Korper A durchsetzt, lings g in die
beziiglich w symmetrische Lage, so erfiillt die Gesamtheit aller verschobenen Sehnen
wieder einen konvexen Korper A*, der hinsichtlich @w symmetrisch ist. Diesen wohl-
bekannten ProzeB, nimlich die Steinersche Symmetrisierung beziiglich der Ebene w,
wollen wir, wieder als Operation aufgefat, durch das Symbol S bezeichnen, so daB
A* = S(A) geschrieben werden kann. — Die Verifikation der obenerwihnten recht
geldufigen Tatsachen kdnnen wir dem Leser iiberlassen.

Im Hinblick auf eine besondere Form des klassischen Prinzips von CAVALIERI ist
ohne weiteres klar, daB das Volumen eine Invariante beziiglich der Symmetrisierungs-

operation ist, so daB also
V Sd)=V(4) (13)

gilt. — Wir werden jetzt noch einen Hilfssatz, den wir etwas spiter bendtigen werden,
ableiten. Es bestehe die folgende Situation: Zwei konvexe Korper 4 und B sollen
sich in dem natiirlich ebenfalls konvexen Durchschnittskérper 4 B gegenseitig durch-
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setzen (vgl. Fig. 1). In den Restbereichen 4 — A B und B — A B seien die beiden kon-
vexen Korper X und Y enthalten. Wir symmetrisieren jetzt die vier Kérper 4, B

1
B

] Fig. 1

und X, Y beziiglich derselben Ebene und bilden sodann die Durchschnittskérper
S(4) S(B) und S(X) S(Y). Nun gilt die folgende Volumrelation

V S(X) S(Y) + V(4 B) < V S(4) S(B). (14)

Wir beweisen nun (14) in der folgenden Weise: Es sei g eine Gerade senkrecht auf
der Symmetrisierungsebene w und es bezeichne s(Z) die Linge der Sehne, welche g
aus dem Korper Z ausschneidet. Aus der Definition der Symmetrisierung folgern wir
unmittelbar, daB

s{S(4) S(B)} = Min{s(d), s(B)}

ist, wobei Min (p, q) die kleinere der beiden Zahlen p und ¢ bedeutet. Nun ist, nach
der bestehenden Situation (vgl. Fig. 1) beurteilt, offenbar

s(4) = s(AB) und s(B) = s(4B),
und es kann nach der weiter oben stehenden Beziehung
| s{S(4) S(B)} = s(AB) + Min{s(4) — s(AB), s(B) — s(4B)}
geschrieben werden. Weiter ist nun
s(A) — s(AB) = s(X) und s(B) —s(4B) = s(Y),
so daB sich damit
s{S(4) S(B)} =z s(4B) + Min {s(X), s(Y)}=s(4B) + s{S(X) S(Y)}
ergibt. Nach dem Prinzip von CAVALIERI folgt hieraus offenbar die Behauptung (1‘4).

. 5. Das Kugelungstheorem nach W. Grof

Wir betrachten nun einen eigentlichen konvexen Korper 4 mit einer innern
‘Kugel J von positivem Radius mit dem Mittelpunkt Z. Ferner wollen wir eine mit
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J konzentrische Kugel K vom Radius R einfiihren, welche das gleiche Volumen
aufweisen soll wie 4, so daBB mithin )

V=V(d)= V(K - TR (15)

gilt. Nun betrachten wir Koérper 4* = S*(4), welche aus 4 dadurch hervorgehen,
daB der Reihe nach endlich viele Symmetrisierungen Sy, S,, ..., S; an Ebenen, die
alle durch Z hindurchgehen, angewendet werden. Die Operation S* kann symbolisch
als Produkt S, ... S, S; geschrieben werden; insbesondere denken wir uns nun die
unendliche Menge © aller so erreichbaren Kérper A*. Fiir die nachfolgenden Schliisse

@

Fig. 2

ist es von Bedeutung, sich davon zu iiberzeugen, daB fiir alle Kérper A* stets J eine
innere Kugel bleibt.

Das im folgenden zu beweisende Kugelungstheorem sagt nun aus, daB sich in dieser
Menge solche Korper finden lassen, welche die oben eingefiihrte Kugel K beliebig
genau approximieren. Mit andern Worten: Durch endlich viele geeignete Symmetri-
" sierungen an Ebenen durch das Zentrum Z kann der urspriingliche, beliebig gestaltete
konvexe Korper beliebig gut aufgekugelt werden.

Wir beweisen zunichst eine sich auf Volumzahlen beziehende Aussage. Bilden wir
fiir jeden Korper A* der oben erdrterten Kérpermenge das Volumen V(KA*) des
Durchschnitts des Korpers mit der Kugel K, so erhalten wir eine zweifellos be-
schrinkte Menge positiver Zahlen. Die Behauptung lautet jetzt, daB fiir das iiber
die gesamte Menge der A* genommene Supremum

gilt sup V(A*K) =V : . (16)
Bewers: Wir nehmen im Gegensatz zu der Behauptung (16) an, daB
sup V(A*K)=V — 4 (16a)

sei, wobei 4 > 0 ist. Nun konstruieren wir zwei mit K konzentrische Hilfskugeln P
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PoK>Q

und @, wobei P ¢ K ¢ Q (vgl. Fig. 2) und deren Radien so gewihlt werden sollen,
daB die Beziehung

0<VP)—VEK)=VEK)—-V(Q) <4 (17)
gilt.

Nun wihlen wir auf den Oberflichen von P und Q je einen Punkt $ und ¢ und
konstruieren die beiden von p und ¢ ausgehenden Tangentialdoppelkegel U und V
an die Inkugel J. Es gibt offenbar zwei ausreichend kleine kongruente Kugeln X
und Y in den Durchschnittsbereichen der Doppelkegel U und ¥V mit den Kugel-
schalen P— Kund K- Q, also X~ Y und X cU(P—K) und Yc V(K — Q)
und es sei V(X) = V(Y) =&. Nach der Bedeutung des Supremums 148t sich ein
Korper A* aus der betrachteten Kérpermenge © so herausgreifen, daf3

VA*E) >V — A4 — 9 (18)

gilt. Wie eine einfache Volumbetrachtung lehrt, gibt es auf der Oberfliche von P
einen zu A* gehoérenden Punkt p und ebenso auf der Oberfliche von Q einen nicht
zu A* gehérenden Punkt g.

In der Tat ist ndmlich das Volumen des iber K hinausragenden Teils von A*
gleich V — V(4A*K) = A, somit nach (17) gréBer als das Volumen der Kugelschale
P — K; hieraus folgt die Existenz eines Punktes p. Andererseits ist das Volumen
des in K enthaltenen Teils von A* gleich V(4*K) < V — A4, also nach (17) kleiner
als das Volumen der Kugel Q; hieraus folgt die Existenz eines Punktes ¢. Die beiden
Punkte $ und ¢ lassen sich nachtréglich identifizieren mit den beiden weiter oben
eingefithrten und gleichbenannten Punkten. Aus der Konvexitit des Koérpers A*
schlieBt man, daB die der innern Kugel J zugewandte Kappe des Tangentialdoppel-
kegels U ganz zu A* gehort und daB analog die abgewandte Hilfte des Tangential-
doppelkegels V ganz nicht zu A* gehort. Das Gleiche trifft eo ipso zu fiir die beiden
kongruenten Kugeln X und Y. Alsoist X c 4* — KA*und Y ¢ K — K A4*.

Jetzt legen wir eine Ebene w durch Z, welche senkrecht auf der Zentrallinie der
beiden Kugeln X und Y steht und symmetrisieren an w. Nach dem Hilfssatz (14)

hat man nun
VS(A*) S(K) =z V(A*K) + V S(X) S(Y) -

und da S(X) = S(Y) =~ X = Y ist, folgt zundchst
V S(4*) S(K) =z V(A*K) + 9.

Bedenken wir jetzt, daB S(K) = K ist, setzen weiter S(A*) = A** und nehmen

Bezug auf (18), so resultiert .
V(A**K) > V — A. (19)

Da nun aber 4** offensichtlich wieder ein Kérper der eingangs in Betracht gezogenen
Korpermenge ist, stellt (19) eine gegen (16a) widerspruchsvolle Beziehung dar. Da-
mit ist erwiesen, daB die an den Kopf des Beweisganges gestellte Gegenannahme un-
richtig ist, und die Behauptung (16) ist sichergestellt.

Mit Beriicksichtigung der Konvexitit der Kérper A* geht aus dem quantitativen
Urteil (16) in einfacher Weise ein qualitatives hervor, nach welchem die beliebig
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gute Approximation der Kugelgestalt zustande kommt. Wir behaupten nidmlich:
Zu jedem & > 0 gibt es in der Kérpermenge & einen Korper 4*, so daB

A*> C_,(K) (20)

gilt. Der postulierte Korper iiberdeckt also eine Kugel vom Radius R — e. In der Tat:
Wire diese Aussage falsch, so gibe es zu jedem Korper A* noch einen Punkt
Z auf der Oberfliche der Kugel C_(K), der erstens nicht zu A* gehért und zweitens

Fig. 3

die Eigenschaft hat, daB die ihm zugeordnete Stiitzebene an C_ (K) von K eine
Kugelkalotte vom Volumen d abschneidet, welche mit 4* keine Punkte gemeinsam
hat (vgl. Fig. 3). Somit wire das Volumen V(A4*K) nicht groBer als V — d, wo d eine
nur von ¢ abhédngige positive GréBe ist. Dies steht aber im Widerspruch mit der
bewiesenen Relation (16).

6. Ein Hilfssatz vber die duBeren Parallelkorper

Durch die Symmetrisierung S gehe der konvexe Korper A4 iiber in S(4) und der
duBere Parallelkérper C,(4) entsprechend in SC,(4). Bilden wir jetzt noch den
duBeren Parallelkérper C,S(A4), so 148t sich — wie wir weiter unten beweisen wer-
den — behaupten, daB

SC,(4) > C,S(4) (21)
ausfillt. Aus (21) folgt im Hinblick auf die Invarianzbeziehung (13) die Volumrelation
¢ V C,(4) = V C,S(A). (22)

Indem wir endlich viele Symmetrisierungen an Ebenen durch das in 5. betrachtete
Inkugelzentrum Z der Reihe nach einwirken lassen, kann die Ungleichung (22) fort-
gesetzt angewendet werden, und die Zusammenziehung dieser Ungleichungen fiihrt
auf die fiir einen beliebigen Korper 4* der Koérpermenge & giiltigen Beziehung

V Co(A) = V Cy(A*). ' (23)
Beachten wir noch die Existenz eines Korpers A* gemiB (20), so schlieBt man zu-
nichst auf TV C,(d) 2 VC,C_ ),

ElL Math. 3
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und im Hinblick darauf, daB dies fiir jedes ¢ > 0 richtig bleibt, auf
VC,(A) =V C,(K). (24)

~ Damit haben wir einen in der Brunn-Minkowskischen Theorie wohlbekannten
wichtigen Satz gewonnen, wonach das Volumen des duBeren Parallelkérpers eines
konvexen Korpers A nicht kleiner ist als das Volumen der entsprechenden Parallel-
kugel der mit 4 volumgleichen Kugel K. x

Der nun zu leistende Nachweis von (21) kann beachtenswert einfach gefiihrt wer-
den. Betrachten wir eine zur Symmetrisierungsebene von S senkrecht stehende
Sehne W von S(4), so entspricht ihr eine auf der durch W hindurchlaufenden Sym-
metrisierungsgeraden g liegende kongruente Sehne W’ von A. Die beiden duBeren
Parallelkérper C,(W) und C,(W’) dieser Sehnen, die aus einem Zylinder mit zwei
aufgesetzten Halbkugeln bestehen (vgl. Fig. 4), sind offenbar kongruent, und es ist

v W

Id
\

Qy
N

Fig. 4

Co(W) = SC,(W’). Da natiirlich C,(W’) ¢ C,(4) gilt, hat man C (W) ¢ SC,(4).
Demnach wird auch X' C,(W) ¢ SC,(4) gelten, wobei die Vereinigungsmenge auf
der linken Seite in bezug auf alle Sehnen W des Kérpers S(4) der oben angegebenen
Lage zu bilden ist ; andererseits ist diese Vereinigungsmenge identisch mit der duBeren
Parallelmenge C,S(4), so daB sich also C,S(4) ¢ SC,(4), d. h. Beziehung (21)
ergibt.

7. Die isoperimetrische Ungleichung

Nun ist die Entwicklung so weit fortgeschritten, daB sich nun miihelos die isoperi-
metrische Ungleichung von H. A. ScHwARz folgern 148t. Wenn wir, wie bereits in
3., das Volumen des duBern Parallelkérpers mit ¥V, bezeichnen, so hat man, mit
Riickblick auf die durch (15) festgelegte Bedeutung von R nach (24) die Beziehung

4
V,z 5 (R+ 0 (25)
Wird nun der Einsatz gemiB der Steinerschen Formel (10) gemacht, so resultiert

V4+Fo+Mg +F 82 *Z RS 4 4aR2 g+ 4nRo* + o o

J

und hieraus nach den auch im Hinblick auf (15) naheliegenden Kiirzungen
F+Mp=4nR*+4nRop.
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Lassen wir nunmehr g -> 0 streben, so wird
F=4nRe (26)

Wird endlich aus (15) und (26) R eliminiert, so resultiert die isoperimetrische Un-
gleichung
F3=36nV2 (27)

Eine einfache Verifikation mit den auch in (7) angegebenen MaBzahlen der Kugel
zeigt, daB in (27) bzw. in (1) in diesem Fall das Gleichheitszeichen beansprucht wird.
DaB die Kugel der einzige eigentliche konvexe Korper dieser Eigenschaft ist, folgern
wir aus einer spiter folgenden Verschirfung. ‘

8. Eine erste Ungleichung von H. Minkowski

Indem wir die soeben bewiesene isoperimetrische Ungleichung (1) fiir die 4uBeren
Parallelkérper in Anspruch nehmen, gewinnen wir die nach H. MINKOWSKI benannte

Ungleichung M2>4nF (28)

oder also Ungleichung (2). In der Tat erhilt man nach den Steinerschen Formeln
(10) und (11) :

F3—367mV2=ay+ a0+ a,0%+ a3 0% + ag 04, (29)

wobei die Koeffizienten des rechtsstehenden Polynoms in der folgenden Tabelle zu-
sammengestellt sind

G=  F3—36aV?
@= 6MF—127FV), |
4= 12(M?F —2xF2—6n VM), (29a)

az= 8M3—3aMF —12n%YV),
a,=12n(M?— 4 = F).

Soll nun das «Defizit» (29) fiir beliebig groBe positive g stets nicht negativ ausfallen,
so muf} offenbar 4, = 0 sein. Damit ist aber (28) bewiesen.

9. Der Inkugelradius

Es sei J eine Inkugel des konvexen Korpers 4 ; ihr Radius sei . Wie man in enger
Anlehnung an die Beziehungen (8) und (9) leicht feststellt, ist die 4uBere Parallel-
kugel C,(J) eine Inkugel des duBeren Parallelkérpers C,(4). In gleicher Weise sieht
man leicht ein, daB fiir 0 < ¢ < r die innere Parallelkugel C_ (J) eine Inkugel des
inneren Parallelkérpers C_ ,(4) darstellt. Bezeichnen wir also die Inkugelradien der
Parallelkorper C,(4) und C_ ,(4) mit 7, und r_,, so gelten die nachfolgenden &in-
fachen Relationen

re=r+e (0=9); r.,=7—¢ O=e¢e=7), (30)

welche erkennen lassen, daB der Inkugelradius ein Funktional des konvexen Korpers
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ist, der vom Paralleloperator C in der denkbar einfachsten Weise beeinfluBt wird. Es
ist deshalb ohne weiteres anzunehmen, daB8 der Inkugelradius mit den drei fundamen-
talen MaBzahlen des Korpers Beziehungen eingeht, die insbesondere beim Studium
der duBern und innern Parallelschar deutlich und wirksam in Erscheinung treten.
Da ein analog einfaches Gesetz, wie es durch (30) dargetan ist, etwa beim Umkugel-
radius im allgemeinen nicht gilt, 148t sich das gleiche fiir den Umkugelradius nicht
sagen.

Im folgenden werden wir in bezug auf den Inkugelradius 7 ein im Rahmen unserer
Theorie niitzliches System von Ungleichungen entwickeln. Um die hierzu erforder-
lichen Beweise vorzubereiten, muB hier etwas iiber Stiitzebene und Stiitzgré8e eines
konvexen Korpers A gesagt werden.

Unter einer Stiitzebene {2 von 4 verstehen wir eine Ebene, welche die beiden fol-
genden Eigenschaften hat: 1. £ hat mit 4 Punkte gemeinsam; 2. 4 liegt ganz in
einem der beiden abgeschlossenen Halbriume, deren Durchschnitt £2 ist.

Zu jeder Raumrichtung (Richtungseinheitsvektor) gibt es eine und nur eine Stiitz-
ebene, so daf die vorgegebene Raumrichtung in denjenigen Halbraum weist, der als
offener Halbraum keinen Punkt von 4 enthilt. Der nichtnegative Abstand $ dieser
Stiitzebene von einem zu A gehdérenden Punkt Z wollen wir StiitzgréBe (Stiitzfunk-
tion) nennen; diese ist nach vorstehendem offensichtlich eine eindeutige Funktion
der Raumrichtung. Es ist ohne weiteres klar, daB fiir zwei konvexe Kérper 4 und B
die Beziehung 4 > B dann und nur dann gilt, wenn fiir einen geeignet gewihlten
Aufpunkt Z die beiden Stiitzgré8en $ und ¢ von 4 und B beziiglich Z fiir jede Raum-
richtung der Bedingung p = ¢ geniigen. '
~ Fiir die folgenden Ausfithrungen ist es zweckdienlich, den Aufpunkt Z mit dem
Mittelpunkt einer Inkugel J zu identifizieren.

Nun wollen wir zunichst die Einwirkung des Paralleloperators C auf die Stiitz-
groBen erwihnen. Unmittelbar aus den Definitionen kénnen die beiden folgenden
Beziehungen gewonnen werden: Fiir jede einzelne Raumrichtung gilt

Po=ptt+e; P-.=P—o0 O=po=7 (31

wobei p, bzw. p_, die StiitzgréBen der Parallelkérper C,(4) bzw. C_,(A4) bezeichnen.
Beachte auch, daB nach den vorstehenden Ausfiihrungen iiber die Inkugel zu allen
Korpern der duBeren und inneren Parallelschar Inkugeln einer konzentrischen Schar
gehoren. Dieses gemeinsame Zentrum Z ist der Aufpunkt, auf welchen sich (31) und
die folgenden Ausfithrungen beziehen.

Nun wollen wir zeigen, daB die folgenden Ungleichungen gelten: Fiir jede Raum-

richtung ist Peéﬁ(l“*'%); p-@p(lw%)- 0=<o=7 (32

Der Beweis der ersten Ungleichung in (32) ergibt sich unmittelbar aus der Formel
(31) fiir 4 und der Bemerkung, daB natiirlich p = 7 ist. Die zweite Ungleichung von
(32)-ist weniger trivial. Hier hilft die folgende Uberlegung: Fiir einen Kappenkorper
A® der Kugel (vgl. Fig. 5) gilt in der zu beweisenden Ungleichung wohl das Gleich-
heitszeichen, da der innere Parallelkorper eines solchen Kappenkérpers A° dhnlich
zu A° ist, wobei der gemeinsame Inkugelmittelpunkt Ahnlichkeitszentrum ist. Gehen
wir nun zu einem allgemeineren konvexen Korper 4, so 1iBt sich von einem zu 4
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gehérenden Punkt der Stiitzebene ein Tangentialkegel an die Inkugel legen. So wer-
den wir gewahr, daB 4 einen Kappenkorper A° enthilt, der die gleiche Inkugel und
zu der betrachteten Raumrichtung die gleiche StiitzgroBe p aufzuweisen hat. Da
nun offenbar C_ ,(4) 5> C_,(4°) gilt, wird zunéchst p_, = %, sein; nach der vorste-
henden Bemerkung aber ist $°% , = $° (1 — %) Mit der Bemerkung, daB ja $° = ¢

ist, schlieBt sich der Beweis fiir die zweite Ungleichung in (32).
Nun ziehen wir aus diesen wegbereitenden Relationen wichtigere Folgerungen. Zu-
nichst folgt aus (32), daB

C,(4) (1 + —E:)A; C_,(4)> (1 - %)A 0<o=7) (33)

gilt; hierbei bezeichnet A A den mit A4 4hnlichen und dhnlich gelegenen Kérper, mit

dem Inkugelmittelpunkt Z von A als Ahnlichkeitszentrum und der linearen Ver-
groBerung A. Im Hinblick auf die Monotonie der MaBzahlen (6) schlieBt man auf das
Bestehen der folgenden Ungleichungen ’

v, =v 1+ &) v, v (1-&); (34)
F, <F (1+§-)2; F,=F (1—-%)2; (35)
M=M(1+2); M, zM(1-2). (36)

10. Parallelungleichungen

Die nachfolgend angefiihrten Ungleichungen fiir die MaBe der duBeren und inneren
Parallelkorper ergeben sich als einfache Folgerungen aus den bisherigen Hauptresul-
taten. Es handelt sich um die Relationen, welche diejenigen des Systems (34), (35)
und (36) in gewissem Sinne erginzen, ndmlich um

Ve (W+ %’—’- e): Vo (W—l/%’i e): (37)
F, z(F+Vimo% F,<(F-Ving" (38)
M,ZM+4mnp; M_,=M-4mp. (39)

vV
A

v
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Die hier an érster Stelle gesetzten Ungleichungen fiir die MaBzahlen der duBeren
Parallelkorper ergeben sich dadurch, daB man in den Steinerschen Formeln (10), (11)
und (12) die bei den Potenzen g, p? stehenden Koeffizienten gemiB den Ungleichun-
gen (27) und (28) ersetzt. — Die an zweiter Stelle aufgefiihrten Ungleichungen fiir
die inneren ParallelmaBe lassen sich dadurch gewinnen, daB man die oben erdrterten
Ersetzungen in den Relationen '

4n
V., +F_QQ+M_092+"“3*93§V,
F ,+2M_,0+4mp? - £F,
M_,+4mp =M,

die sich aus (9) ebenfalls mit Verwendung der Steinerschen Formeln ergeben, in
gleicher Weise durchfiibrt.

11. Eine Verschdrfung der isoperimetrischen Ungleichung

Um eine an sich instruktive Verschiarfung der isoperimetrischen Ungleichung (1)
zu gewinnen, wéhlen wir als Ausgangspunkt die folgende Volumformel

V= [F_,dg, (40)

deren Richtigkeit fiir konvexe Polyeder miihelos eingesehen werden kann.
Hierbei bezeichnet r wie weiter oben den Inkugelradius. Verwenden wir nun die
sich in (38) vorfindende Ungleichung

F.,<(VF —Vimo)? , (41)

fiir die innere Paralleloberfliche, so erreicht man

V<tF—VinFr+ lp (42)

VF3 — V36 =V = (VF — V4 mr)3. (43)

Da fiir @ = b = 0 noch a? — % = (a — b)2 gilt, 14Bt sich aus (43) die hier in Aus-
sicht gestellte Verschiarfung (3)

F3—36a V2= (/F — Vinr)® (44)

folgern — Da offenbar fiir jeden von der Kugel verschiedenen eigentlichen konvexen
Korper F > 4 7 #® sein wird, 148t sich jetzt der SchluB ziehen, daB in der 1soper1metr1-
schen Ungleichung (1) das Gleichheitszeichen bei solchen Kérpern nur im Falle der
Kugel gelten kann. Damit 1st das isoperimetrische Problem vollstindig geldst.

H. HADWIGER, Bern.
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