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ELEMENTE DER MATHEMATIK
Revue de mathematiques elementaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematik
und zur Förderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematiklehrer

El. Math. Band III Nr. 2 Seiten 25-48 Basel, 15. März 1948

Die isoperimetrische Ungleichung im Raum1)

Das Ziel der vorliegenden Darstellung ist, eine möglichst elementare Theorie des

isoperimetrischen Problems der konvexen Körper des dreidimensionalen Raumes zu
umreißen und insbesondere eine einfache Herleitung der isoperimetrischen Ungleichung

von H. A. Schwarz2) vorzutragen. — Für konvexe Bereiche der Ebene sind
im Laufe der Zeit zahlreiche elementare Lösungen des zweidimensionalen
isoperimetrischen Problems gegeben worden3). Vielfältig waren die Anstrengungen, ebenso
einfache Lösungen des gleichen Problems für konvexe Körper des Raumes zu
finden; jedoch sind die Schwierigkeiten, die es zu überwinden gilt, hier weit erheblicher
als im ebenen Fall.

Betreffend Geschichte und Literatur des von uns aufgegriffenen berühmten
Problems vergleiche man das ältere, aber heute noch fesselnde Buch «Kreis und Kugel»
von W. Blaschke4) und insbesondere die neuere und vollständige Monographie
«Theorie der konvexen Körper» von T. Bonnesen und W. Fenchel5).

Im Hinblick auf die Behandlung des isoperimetrischen Problems im Rahmen einer
elementaren Vorlesung oder im Mittelschulunterricht stellt sich oft die Frage nach
einer einfachen Herleitungsmöglichkeit für die isoperimetrische Ungleichung. Der
bekannteste klassische Weg — der allerdings durchaus nicht elementar ist — führt
über den Brunn-Minkowskischen Hauptsatz. Um auf diesem Wege zum Ziele zu
gelangen, muß zunächst die Theorie der Linearscharen von Brunn oder der Konkavscharen

von Blaschke entwickelt werden. Wünschbar wäre eine Ableitung, welche
direkt an die Grundtatsachen der Elementargeometrie, der Punktmengenlehre und
der elementaren Inhaltslehre anschließt.

Allerdings ist zu bemerken, daß die hier als elementar angesprochene
Arbeitsgrundlage, welche sich aus einer gegenseitigen Durchdringung der Analysis des reellen
Zahlkontinuums und der Geometrie des Raumes und seiner Teile (Punktmengen) er-

*) Mit Subvention der Stiftung Dr. Joachim de Giacomi der SNG% gedruckt.
2) Von H. A. Schwarz stammt die erste vollständige Lösung des isoperimetrischen Problems in der

Erweiterung auf nicht notwendig konvexe Körper. Seine berühmte Abhandlung, «Beweis daß die Kugel
kleinere Oberfläche besitzt, als jeder andere Körper gleichen Volumens» (Nachr. Ges. Wiss., Göttingen
1884), stellt eine der meistgenannten Anwendungen der analytischen Methode von Weierstrass dar.

3) Von den in neuerer Zeit gegebenen Lösungen seien hier genannt: G. Bol: Einfache Isoperimetrie-
beweise für Kreis und Kugel, Abh. Math. Sem. Hansischen Univ. IS, 1943; H. Hadwiger: Eine elementare

Ableitung der isoperimetrischen Ungleichung für Polygone, Comm. Math. Helv. 16, 1943/44.
*) Leipzig 1916.
5) Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 3, J. Springer, Berlin 1935.
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geben soll, sicherlich in dem Sinne höhere Ansprüche stellen muß, als eine scharfe
Handhabung gewisser Begriffe, wie etwa diejenigen des Infimums oder Supremums
bei Zahlenmengen unter anderen, erforderlich ist.

Indem man sich verschiedene ältere Gesichtspunkte und konstruktive Ideen
verschiedener Geometer, wie J.Steiner1), H.Minkowski2),W.Blaschke3), W.Gross4),
zu eigen macht und diese mit neueren Methoden und Kunstgriffen, wie sie etwa von
L. Lusternik5), G. Bol6), A. Dinghas7) und E. Schmidt8) angewendet wurden,
verbindet, kann man zu der im Folgenden vorgetragenen Ableitung der
isoperimetrischen Ungleichung gelangen.

Diese lautet bekanntlich __F3 — 36 n V2 ^ 0. (1)

Hier bezeichnet F die Oberfläche und V das Volumen des konvexen Körpers. Ist M
das sogenannte Integral der mittleren Krümmung, so besteht noch die Ungleichung

M2-\nF ^0. (2)

Diese «erste Minkowskische Ungleichung» werden wir mühelos als Folgerung von (1)
gewinnen.

Dann zeigen wir, daß in der isoperimetrischen Ungleichung (1) das Gleichheitszeichen

dann und nur dann steht, wenn der konvexe Körper entweder eine Kugel
oder eine Strecke ist.

Dies geschieht so, daß wir die Verschärfung

F3 - 36 n V2 ä (VF ~ V^nrf (3)

nachweisen, wobei r den Inkugelradius bezeichnet. Der rechtsseitige Ausdruck in (3)
karm offenbar bei eigentlichen konvexen Körpern nur dann verschwinden, wenn
dieser mit seiner Inkugel zusammenfällt. — Für die Kugel besteht in (1) das
Gleichheitszeichen. Nach der letzten Feststellung ist dies aber andererseits der einzige in
Betracht kommende Fall. Damit ist die isoperimetrische Eigenschaft der Kugel,
nämlich unter allen eigentlichen konvexen Körpern gleichen Volumens die kleinste
Oberfläche aufzuweisen, festgestellt.

Diese Einleitung abschließend, gestattet sich der Verfasser noch die nachstehenden
Bemerkungen: Die Tatsache, daß unsere Entwicklung nicht auch die «zweite
Minkowskische Ungleichung»

F2 - 3 M V ä 0 (4)

liefert, muß nicht unbedingt eine berechtigte Erwartung täuschen, da die Unglei-

*) Einfache Beweise der isoperimetrischen Hauptsätze, J. reine angew. Math. 18, 1838.
2) Volumen und Oberfläche, Math. Ann. 57, 1903,
8) Kreis und Kugel, Leipzig 1916; Vorlesungen über Differentialgeometrie. I. Elementare Differentialgeometrie,

3. Aufl., Berlin 1930, insb. § 115.
4) Die Minimaleigenschaft der Kugel, Mh. Math. Phys. 18, 1917.
5) Die Brunn-Minkowskisehe Ungleichung für beliebige meßbare Mengen, C R. Acad. Sei. URSS. 1935

(III) 8.
•) Einfache Isoperimetriebeweise für Kreis und Kugel, Abh. Math. Sem* Hansischen Univ. 15, 1943.
7) Beweis der isoperimetrischen Eigenschaft der Kugel im »-dimensionalen Raum, Sitz.-Ber. Akad.

Wiss. Wien 1940; Über die isoperimetrische Eigenschaft der Kugel im gewöhnlichen Raum, Mh. Math.
Phys. 61, 1944.

8) A. Dinghas und E. Schmidt: Einfacher Beweis der isoperimetrischen Eigenschaft der Kugel im
n-dimensionalen euklidischen Raum, Abh. Preuss. Akad. Wiss., Math.-Naturw. Kl. 1944.
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chung (4) mit den beiden Ungleichungen (1) und (2) nicht gleichgestellt ist. Wie an
anderer Stelle1) ausführlicher dargelegt wurde, ist es in gewissem Sinne unnatürlich,
die beiden Minkowskischen Ungleichungen (2) und (4) zu einem fundamentalen Paar

zu vereinigen und dann hieraus (1) zu folgern, wie dies in teilweiser Anlehnung an das
klassische Vorbild meistens geschieht. Es ist vielmehr so, daß die Ungleichungen (1)

und (2) und dann wieder (4) und eine noch unbekannte Ungleichung

2> 0 (5)

paarweise zusammengehören. Es ist nämlich (4) eine exakte Verschärfung von (1),
indem statt (4) auch

F3 - 36 n V2 ^ -^ (M2 -AnF) (4a)

geschrieben werden kann, wobei das Gleichheitszeichen nach H. Minkowski für
Kappenkörper der Kugel und nach einem neueren Resultat von G. Bol2) nur für
diese gilt. In analoger Weise fehlt wohl eine exakte Verschärfung von (2) der Form

M2~AnF^ (5a)

wobei das Gleichheitszeichen für die Körper einer noch nicht bekannten extremalen
Schar gilt, welche beispielsweise wie die Schar der symmetrischen Kugelzonen eine

Verbindung zwischen Kreisscheibe und Kugel herstellt.
Wenn sich der Verfasser entschlossen hat, die nachfolgenden Ausführungen über

die isoperimetrische Ungleichung zu veröffentlichen, so tat er dies mit der Hoffnung,
damit ein Bescheidenes zur Ausfüllung der eingangs erörterten Lücke im elementaren
Unterricht beigetragen zu haben.

1. Der konvexe Körper und die drei Maßzahlen

Unter einem konvexen Körper wollen wir hier eine abgeschlossene, beschränkte
und konvexe Punktmenge des Raumes verstehen. Falls diese Punktmenge auch
innere Punkte enthält, sprechen wir genauer von einem «eigentlichen», im
gegenteiligen Fall von einem «uneigentlichen» konvexen Körper. Kugel, Würfel, Tetraeder
mit positivem Inkugelradius sind Beispiele eigentlicher, Kreisscheibe,
Quadratflächenstück, Dreiecksflächenstück, Strecke solche uneigentlicher konvexer Körper.

Es ist eine bekannte und hier vorausgesetzte Tatsache, daß ein konvexer Körper
stets ein elementares (d.h. Peano-Jordansches) Volumen V und eine wohlbestimmte
Oberfläche F aufweist. Die genannten zwei fundamentalen Maßzahlen V und F werden

in der Theorie der konvexen Körper noch ergänzt durch eine dritte Maßzahl M,
nämlich durch das Integral der mittleren Krümmung. Diese letzte Bezeichnungsweise

von M, welche auf differentialgeometrische Zusammenhänge hinweist, wird
leider dem einfachen und fundamentalen Charakter dieser dritten Maßzahl, die der
Oberfläche und dem Volumen an die Seite gestellt werden muß, nicht ganz gerecht.

1) H. Hadwiger, Über eine fehlende Ungleichung in der Theorie der konvexen Körper, El. Math. 2,1947.
2) Beweis einer Vermutung von H. Minkowski, Abh. Math. Sem. Hansischen Univ. 15, 1943.
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Jedenfalls ist es für den Leser wichtig, sich zu vergegenwärtigen, daß für konvexe
Polyeder alle drei Maßzahlen in gleichartiger und durchaus elementarer Weise
definiert werden können. Es ist nämlich V die Summe der Inhalte der Tetraederraumstücke,

in die sich das Polyeder tetrangulieren läßt, F ist entsprechend die Summe
der Inhalte der Dreiecksflächenstücke, in die sich die Oberfläche des Polyeders trian-
gulieren läßt; endlich ist M die Summe der Produkte, die man aus den Kantenlängen
und den halben Neigungswinkeln der an den Kanten anschließenden Seitenflächen
des Polyeders bilden kann. Als Neigungswinkel ist der Zwischenwinkel der beiden nach
außen weisenden Normalen der anschließenden Seitenflächen zu berücksichtigen.

Wählt man diesen Sachverhalt als Ausgangsposition, so können die drei Maße V,
F und M für allgemeinere konvexe Körper K als die Suprema der entsprechenden
Maße der von K überdeckten konvexen Polyeder bzw. auch als die Infima der
Maße der von K unterdeckten konvexen Polyeder definiert werden.

Ist A ein konvexer Körper, der einen andern A* überdeckt, geschrieben A oA*,
so gelten die Monotoniebeziehungen

V(A) ^ V(A*), F(A) ^ F(A*), M(A) ^ M(A*), (6)

die sich unmittelbar aus der oben vorgeschlagenen Definition ergeben.
Ist A eine Kugel vom Radius R, so hat man die Formeln

V(A) ^f-R*, F(A) 4n R2, M(A)=AnR. (7)

2. Die äußeren und inneren Parallelkörper

Es sei .4 ein konvexer Körper. Unter dem äußeren Parallelkörper Ce(A) von A im
Abstand q 2r 0 verstehen wir die Vereinigungsmenge aller abgeschlossenen Kugeln
vom Radius q, deren Mittelpunkte in A liegen. Es ist sehr leicht einzusehen, daß

CQ(A) wieder ein konvexer Körper ist. Ähnlich definieren wir den inneren Parallelkörper

C_ Q(A) von A im Abstand q als die Vereinigungsmenge aller Mittelpunkte von
abgeschlossenen Kugeln vom Radius q, die ganz in A liegen. Auch C_ e(A) ist ein
konvexer Körper, der allerdings nur dann nicht leer ist, wenn 0 fg o <J r ist, wo r den

Inkugelradius von A bezeichnet. Für q =- r ist der innere Parallelkörper uneigentlich
und reduziert sich in der Regel auf einen Punkt (Inkugelmittelpunkt). Es ist
zweckmäßig, die Parallelkörper durch die oben gewählte Schreibweise als Resultate einer

Paralleloperation C aufzufassen. Die Eigenschaften des Operators C können sehr
allgemein studiert werden. Für unsere Zwecke genügt es, die beiden folgenden
Relationen zur Verfügung zu haben. Für q *> 0, a ^ 0 gilt

CeCa(A)~CQ + M) (8)

und für 0 rg q £g r
CQC.e(A)cA. (9)

Die Beweise der beiden letzten Relationen liegen auf der Hand und können
unmittelbar an die Definitionen der Operationen C angeschlossen werden.
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3. Die Formeln von J. Steiner

Bezeichnen Ve, Fe und MQ die Maßzahlen des äußeren Parallelkörpers CQ(A) des

konvexen Körpers A, so gelten die nach J. Steiner benannten Parallelformeln

Ve V + Fq + Mq2+ ±f o3, (10)

Fe F-\-2MQ + 47to2, (11)

Me M + 4tiq. (12)

Betreffend den Nachweis dieser Formeln ist folgendes zu sagen: Für konvexe
Polyeder ist die Volumformel (10) direkt ablesbar, wobei die in 1. erörterte Bedeutung

der Maße V, F und M berücksichtigt werden muß. Der äußere Parallelkörper
kann in diesem Fall nämlich in lauter elementare Raumstücke zerlegt werden: in das

ursprüngliche Polyeder, in gerade prismatische Körper, die den Seitenflächen
aufgesetzt sind, in Zylinderkeile, die längs den Kanten eingeschoben sind, und endlich
in Kugelsektoren, die sich bei den Ecken einpassen und zu einer vollen Kugel
zusammengefügt werden können. Durch Approximation eines allgemeineren konvexen
Körpers durch konvexe Polyeder wird dann die Formel (10) verallgemeinert. Die
beiden andern begleitenden Formeln (11) und (12) ergeben sich jetzt notwendig
durch sinngemäße Auswertung des Kompositionsgesetzes (8).

Dem aufmerksamen Leser fällt hier vielleicht auf, daß im Zusammenhang mit den
Steinerschen Formeln nur von den äußeren Parallelkörpern die Rede ist. In der Tat
gelten ähnlich einfache Formeln für die inneren Parallelkörper im allgemeinen nicht.
Immerhin werden wir später einige Ungleichungen betrachten, welche die hier
erwähnte Lücke naturgemäß nur in sehr unvollkommener Weise ausfüllen sollen.

4. Die Steinersehe Symmetrisierung

Betrachten wir, etwa außerhalb eines konvexen Körpers A, eine Ebene co und die
Schar der auf co senkrecht stehenden Geraden g, welche A treffen. Verschieben wir
nun jede Sehne, in welcher die Gerade g den Körper A durchsetzt, längs g in die
bezüglich co symmetrische Lage, so erfüllt die Gesamtheit aller verschobenen Sehnen
wieder einen konvexen Körper A*, der hinsichtlich co symmetrisch ist. Diesen
wohlbekannten Prozeß, nämlich die Steinersche Symmetrisierung bezüglich der Ebene co,

wollen wir, wieder als Operation aufgefaßt, durch das Symbol S bezeichnen, so daß
A* S(A) geschrieben werden kann. — Die Verifikation der obenerwähnten recht
geläufigen Tatsachen können wir dem Leser überlassen.

Im Hinblick auf eine besondere Form des klassischen Prinzips von Cavalieri ist
ohne weiteres klar, daß das Volumen eine Invariante bezüglich der Symmetrisierungs*-
Operation ist, so daß also

VS{A) V{A) (13)

gilt. — Wir werden jetzt noch einen Hilfssatz, den wir etwas später benötigen werden,
ableiten. Es bestehe die folgende Situation: Zwei konvexe Körper A und B sollen
sich in dem natürlich ebenfalls konvexen Durchsehnittskörper AB gegenseitig durch-
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setzen (vgl. Fig. 1). In den Restbereichen A — AB und B — AB seien die beiden
konvexen Körper X und Y enthalten. Wir symmetrisieren jetzt die vier Körper A, B

o.
AB

©
• Fig. 1

und X, Y bezüglich derselben Ebene und bilden sodann die Durchschnittskörper
S(A) S(B) und S(X) S(Y). Nun gilt die folgende Volumrelation

VS(X) S(Y) + V(A B)^V S(A) S(B). (14)

Wir beweisen nun (14) in der folgenden Weise: Es sei g eine Gerade senkrecht auf
der Symmetrisierungsebene co und es bezeichne s(Z) die Länge der Sehne, welche g
aus dem Körper Z ausschneidet. Aus der Definition der Symmetrisierung folgern wir
unmittelbar, daß

s{S(A) S(B)}=Min{s(A), s(B)}

ist, wobei Min (p, q) die kleinere der beiden Zahlen p und q bedeutet. Nun ist, nach
der bestehenden Situation (vgl. Fig. 1) beurteilt, offenbar

s(A) >s(AB) und s(B) ^s(AB),

und es kann nach der weiter oben stehenden Beziehung

s{S(A) S(B)}^s(AB) + Min{s(A) - s(AB), s(B) - s(AB)}

geschrieben werden. Weiter ist nun

s(A) - s(AB) ^ s(X) und s(B) - s(AB) ^ s(Y),

so daß sich damit

s{S(A) S(B)} ^ s(AB) + Min{s(X), s(Y)}^s(AB) + s{S(X) S(Y)}

ergibt. Nach dem Prinzip von Cavalieri folgt hieraus offenbar die Behauptung (14).

5. Das Kugelungstheorem nach W. Groß

Wir betrachten nun einen eigentlichen konvexen Körper A mit einer innern
Kugel / von positivem Radius mit dem Mittelpunkt Z* Ferner wollen wir eine mit
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/ konzentrische Kugel K vom Radius R einführen, welche das gleiche Volumen
aufweisen soll wie A, so daß mithin

V V(A) V(K) ±j- i?3 (15)

gilt. Nun betrachten wir Körper A* S*(A), welche aus A dadurch hervorgehen,
daß der Reihe nach endlich viele Symmetrisierungen Sx, S2, Sk an Ebenen, die
alle durch Z hindurchgehen, angewendet werden. Die Operation S* kann symbolisch
als Produkt Sk S2 Sx geschrieben werden; insbesondere denken wir uns nun die
unendliche Menge S aller so erreichbaren Körper^*. Für die nachfolgenden Schlüsse

®

Fig. 2

ist es von Bedeutung, sich davon zu überzeugen, daß für alle Körper A* stets / eine
innere Kugel bleibt.

Das im folgenden zu beweisende Kugelungstheorem sagt nun aus, daß sich in dieser
Menge solche Körper finden lassen, welche die oben eingeführte Kugel K beliebig
genau approximieren. Mit andern Worten: Durch endlich viele geeignete Symmetrisierungen

an Ebenen durch das Zentrum Z kann der ursprüngliche, beliebig gestaltete
konvexe Körper beliebig gut aufgekugelt werden.

Wir beweisen zunächst eine sich auf Volumzahlen beziehende Aussage. Bilden wir
für jeden Körper A* der oben erörterten Körpermenge das Volumen V(KA*) des
Durchschnitts des Körpers mit der Kugel K, so erhalten wir eine zweifellos
beschränkte Menge positiver Zahlen. Die Behauptung lautet jetzt, daß für das über
die gesamte Menge der A* genommene Supremum

gilt. supV(A*K)=>V
m

(16)

Beweis: Wir nehmen im Gegensatz zu der Behauptung (16) an, daß

$upV(A*K) V-A (16a)

sei, wobei A > 0 ist. Nun konstruieren wir zwei mit K konzentrische Hilfskugeln P
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P D K > &

und Q, wobei P $.K<fQ (vgl. Fig. 2) und deren Radien so gewählt werden sollen,
daß die Beziehung

0 < V(P) - V(K) V(K) - V(Q) < A (17)

gilt.
Nun wählen wir auf den Oberflächen von P und Q je einen Punkt p und q und

konstruieren die beiden von p und q ausgehenden Tangentialdoppelkegel U und V
an die Inkugel /. Es gibt offenbar zwei ausreichend kleine kongruente Kugeln X
und Y in den Durchschnittsbereichen der Doppelkegel U und V mit den
Kugelschalen P - K und K-Q, also X s* Y und X c £7(P - i£) und Y c F(Ä" - Q)

und es sei V(X) F(Y) #. Nach der Bedeutung des Supremums läßt sich ein

Körper ^4 * aus der betrachteten Körpermenge S so herausgreifen, daß

V(A*K)> V-A-& (18)

gilt. Wie eine einfache Volumbetrachtung lehrt, gibt es auf der Oberfläche von P
einen zu A* gehörenden Punkt p und ebenso auf der Oberfläche von Q einen nicht
zu A* gehörenden Punkt q.

In der Tat ist nämlich das Volumen des über K hinausragenden Teils von A*
gleich V — V(A*K) ^ A, somit nach (17) größer als das Volumen der Kugelschale
P — K; hieraus folgt die Existenz eines Punktes p. Andererseits ist das Volumen
des in K enthaltenen Teils von A* gleich V(A*K) ^ V — A, also nach (17) kleiner
als das Volumen der Kugel Q; hieraus folgt die Existenz eines Punktes q. Die beiden
Punkte p und q lassen sich nachträglich identifizieren mit den beiden weiter oben

eingeführten und gleichbenannten Punkten. Aus der Konvexität des Körpers A*
schließt man, daß die der innern Kugel / zugewandte Kappe des Tangentialdoppel-
kegels U ganz zu A* gehört und daß analog die abgewandte Hälfte des Tangential-
doppelkegels V ganz nicht zu A* gehört. Das Gleiche trifft eo ipso zu für die beiden

kongruenten Kugeln X und Y. Also ist X cA* ~ KA* und Y cK - KA*.
Jetzt legen wir eine Ebene co durch Z, welche senkrecht auf der Zentrallinie der

beiden Kugeln X und Y steht und symmetrisieren an co. Nach dem Hilfssatz (14)
hat man nun *

VS(A*) S(K) > V(A*K) + VS(X) S(Y)

und da S(X) S(Y) 9*Xg*Y ist, folgt zunächst

V S(A*) S(K) ^ V(A*K) + #.

Bedenken wir jetzt, daß S(K) K ist, setzen weiter S(A*) ^4** und nehmen
Bezug auf (18), so resultiert

V(A**K) >V-A. (19)

Da nun aber .4** offensichtlich wieder ein Körper der eingangs in Betracht gezogenen
Körpermenge ist, stellt (19) eine gegen (16a) widerspruchsvolle Beziehung dar. Damit

ist erwiesen, daß die an den Kopf des Beweisganges gestellte Gegenannahme
unrichtig ist, und die Behauptung (16) ist sichergestellt.

Mit Berücksichtigung der Konvexität der Körper A* geht aus dem quantitativen
Urteil (16) in einfacher Weise ein qualitatives hervor, nach welchem die beliebig
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gute Approximation der Kugelgestalt zustande kommt. Wir behaupten nämlich:
Zu jedem e > 0 gibt es in der Körpermenge S einen Körper A*, so daß

A*oC_E(K) (20)

gilt. Der postulierte Körper überdeckt also eine Kugel vom Radius R — e. In der Tat:
Wäre diese Aussage falsch, so gäbe es zu jedem Körper A* noch einen Punkt
Z auf der Oberfläche der Kugel C_e(K), der erstens nicht zu A* gehört und zweitens

Fig. 3

die Eigenschaft hat, daß die ihm zugeordnete Stützebene an C_e(K) von K eine

Kugelkalotte vom Volumen d abschneidet, welche mit A* keine Punkte gemeinsam
hat (vgl. Fig. 3). Somit wäre das Volumen V(A*K) nicht größer als V — d, wo d eine

nur von e abhängige positive Größe ist. Dies steht aber im Widerspruch mit der
bewiesenen Relation (16).

6. Ein Hilfssatz über die äußeren Parallelkörper

Durch die Symmetrisierung S gehe der konvexe Körper A über in S(A) und der
äußere Parallelkörper Ce(A) entsprechend in SCQ(A). Bilden wir jetzt noch den
äußeren Parallelkörper CeS(A), so läßt sich — wie wir weiter unten beweisen wer-
den - behaupten, daß

g^ ^ ^^ (21)

ausfällt. Aus (21) folgt im Hinblick auf die Invarianzbeziehung (13J die Volumrelation
#

VCQ(A)^V€QS(A). (22)

Indem wir endlich viele Symmetrisierungen an Ebenen durch das in 5. betrachtete
Inkugelzentrum Z der Reihe nach einwirken lassen, kann die Ungleichung (22)
fortgesetzt angewendet werden, und die Zusammenziehung dieser Ungleichungen führt
auf die für einen beliebigen Körper A* der Körpermenge ® gültigen Beziehung

VCt(A)^VCe(A*). (23)

Beachten wir noch die Existenz eines Körpers A* gemäß (20), so schließt man
zunächst auf ' ir n t a\ -. irr n iv\VCe(A) ;> VCeC„e(K),

El. Math. 3
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und im Hinblick darauf, daß dies für jedes e > 0 richtig bleibt, auf

VCe(A)^_VCe(K). (24)

Damit haben wir einen in der Brunn-Minkowskischen Theorie wohlbekannten
wichtigen Satz gewonnen, wonach das Volumen des äußeren Parallelkörpers eines
konvexen Körpers A nicht kleiner ist als das Volumen der entsprechenden Parallelkugel

der mit A volumgleichen Kugel K.
Der nun zu leistende Nachweis von (21) kann beachtenswert einfach geführt werden.

Betrachten wir eine zur Symmetrisierungsebene von S senkrecht stehende
Sehne W von S(A), so entspricht ihr eine auf der durch W hindurchlaufenden Sym-
metrisierungsgeraden g liegende kongruente Sehne W von A. Die beiden äußeren
Parallelkörper CQ(W) und Ce(W) dieser Sehnen, die aus einem Zylinder mit zwei
aufgesetzten Halbkugeln bestehen (vgl. Fig. 4), sind offenbar kongruent, und es ist

SM¥

Fig. 4

CQ(W) SCQ(W). Da natürlich CQ(W) cCQ(A) gilt, hat man CQ(W) c SCe(A).
Demnach wird auch ZCe(W) c SCe(A) gelten, wobei die Vereinigungsmenge auf
der linken Seite in bezug auf alle Sehnen W des Körpers S(A) der oben angegebenen
Lage zu bilden ist; andererseits ist diese Vereinigungsmenge identisch mit der äußeren
Parallelmenge CQS(A), so daß sich also CQS(A) c S Ce(A), d. h. Beziehung (21)

ergibt.

7. Die isoperimetrische Ungleichung

Nun ist die Entwicklung so weit fortgeschritten, daß sich nun mühelos die
isoperimetrische Ungleichung von H. A. Schwarz folgern läßt. Wenn wir, wie bereits in
3., das Volumen des äußern Parallelkörpers mit VQ bezeichnen, so hat man, mit
Rückblick auf die durch (15) festgelegte Bedeutung von R nadi (24) die Beziehung

Vn
An

e^ 3 (R+Q)K (25)

Wird nun der Einsatz gemäß der Steinerschen Formel (10) gemacht, so resultiert

V + Fq + Mq* + -^ e3 ^ -^ R* + 4 n R2e + 4 3iRq* + 4^ q3
J

und hieraus nach den auch im Hinblick auf (15) naheliegenden Kürzungen

F + Mo^4mR* + 4nRQ.
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Lassen wir nunmehr q -> 0 streben, so wird

F ^ 4 n R2. (26)

Wird endlich aus (15) und (26) R eliminiert, so resultiert die isoperimetrische
Ungleichung

F3 ^ 36 n V2. (27)

Eine einfache Verifikation mit den auch in (7) angegebenen Maßzahlen der Kugel
zeigt, daß in (27) bzw. in (1) in diesem Fall das Gleichheitszeichen beansprucht wird.
Daß die Kugel der einzige eigentliche konvexe Körper dieser Eigenschaft ist, folgern
wir aus einer später folgenden Verschärfung.

8. Eine erste Ungleichung von H. Minkowski

Indem wir die soeben bewiesene isoperimetrische Ungleichung (1) für die äußeren
Parallelkörper in Anspruch nehmen, gewinnen wir die nach H. Minkowski benannte
Ungleichung M*>*nF (28)

oder also Ungleichung (2). In der Tat erhält man nach den Steinerschen Formeln
(10) und (11)

Fl - 36 n V2 a0 + ax o + a2 o2 + az q* + a4 o4, (29)

wobei die Koeffizienten des rechtsstehenden Polynoms in der folgenden Tabelle
zusammengestellt sind

aQ F* ~ 36 n V2,

ax 6(MF2-12tzFV),
a2= 12 (M2F - 2 7t F2 - 6 nVM)t (29a)

a3= 8(M*-3tcMF-127z2V),
a^l2n(M2-\7tF).

Soll nun das «Defizit» (29) für beliebig große positive q stets nicht negativ ausfallen,
so muß offenbar «4^0 sein. Damit ist aber (28) bewiesen.

9. Der Inkugelradius

Es sei / eine Inkugel des konvexen Körpers A; ihr Radius sei r. Wie man in enger
Anlehnung an die Beziehungen (8) und (9) leicht feststellt, ist die äußere Parallelkugel

Ce(J) eine Inkugel des äußeren Parallelkörpers CQ(A). In gleicher Weise sieht
man leicht ein, daß für 0 <£ q ^ r die innere Parallelkugel C_e(J) eine Inkugel des
inneren Parallelkörpers C_e(A) darstellt. Bezeichnen wir also die Inkugehradien der
Parallelkörper CQ(A) und C_e(A) mit rQ und r_Q, so gelten die nachfolgenden
einfachen Relationen

rQ~r+q (O^q); r„e~r-o (Q^g^r), (30)

welche erkennen lassen, daß der Inkugelradius ein Funktional des konvexen Körpers
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ist, der vom Paralleloperator C in der denkbar einfachsten Weise beeinflußt wird. Es
ist deshalb ohne weiteres anzunehmen, daß der Inkugelradius mit den drei fundamentalen

Maßzahlen des Körpers Beziehungen eingeht, die insbesondere beim Studium
der äußern und innern Parallelschar deutlich und wirksam in Erscheinung treten.
Da ein analog einfaches Gesetz, wie es durch (30) dargetan ist, etwa beim Umkugel-
radius im allgemeinen nicht gilt, läßt sich das gleiche für den Umkugelradius nicht
sagen.

Im folgenden werden wir in bezug auf den Inkugelradius r ein im Rahmen unserer
Theorie nützliches System von Ungleichungen entwickeln. Um die hierzu erforderlichen

Beweise vorzubereiten, muß hier etwas über Stützebene und Stützgröße eines
konvexen Körpers A gesagt werden.

Unter einer Stützebene Ü von A verstehen wir eine Ebene, welche die beiden
folgenden Eigenschaften hat: 1. Q hat mit A Punkte gemeinsam; 2. A liegt ganz in
einem der beiden abgeschlossenen Halbräume, deren Durchschnitt ü ist.

Zu jeder Raumrichtung (Richtungseinheitsvektor) gibt es eine und nur eine
Stützebene, so daß die vorgegebene Raumrichtung in denjenigen Halbraum weist, der als
offener Halbraum keinen Punkt von A enthält. Der nichtnegative Abstand p dieser
Stützebene von einem zu A gehörenden Punkt Z wollen wir Stützgröße (Stützfunktion)

nennen; diese ist nach vorstehendem offensichtlich eine eindeutige Funktion
der Raumrichtung. Es ist ohne weiteres klar, daß für zwei konvexe Körper A und B
die Beziehung Ao B dann und nur dann gilt, wenn für einen geeignet gewählten
Aufpunkt Z die beiden Stützgrößen p und q von A und B bezüglich Z für jede
Raumrichtung der Bedingung p ^ q genügen.

Für die folgenden Ausführungen ist es zweckdienlich, den Aufpunkt Z mit dem

Mittelpunkt einer Inkugel / zu identifizieren.
Nun wollen wir zunächst die Einwirkung des Paralleloperators C auf die

Stützgrößen erwähnen. Unmittelbar aus den Definitionen können die beiden folgenden
Beziehungen gewonnen werden: Für jede einzelne Raumrichtung gilt

Pe=P + Q'> P-Q^p-Q, (O^g^r) (31)

wobei pe bzw. p_Q die Stützgrößen der Parallelkörper CQ(A) bzw. C_e(A) bezeichnen.
Beachte auch, daß nach den vorstehenden Ausführungen über die Inkugel zu allen

Körpern der äußeren und inneren Parallelschar Inkugeln einer konzentrischen Schar

gehören. Dieses gemeinsame Zentrum Z ist der Aufpunkt, auf welchen sich (31) und
die folgenden Ausführungen beziehen.

Nun wollen wir zeigen, daß die folgenden Ungleichungen gelten: Für jede
Raumrichtung ist / 0\ / 0\P,£p(l + i)l P-9^P[l-f). (O^Q^r) (32)

Der Beweis der ersten Ungleichung in (32) ergibt sich unmittelbar aus der Formel
(31) für p und der Bemerkung, daß natürlich p ^ r ist. Die zweite Ungleichung von
(32) ist weniger trivial. Hier hilft die folgende Überlegung: Für einen Kappenkörper
Ä® der Kugel (vgl. Fig. 5) gilt in der zu beweisenden Ungleichung wohl das
Gleichheitszeichen, da der innere Parallelkörper eines solchen Kappenkörpers Ä° ähnlich
zu A° ist, wobei der gemeinsame Inkugelmittelpunkt Ähnlichkeitszentrum ist. Gehen

wir nun zu einem allgemeineren konvexen Körper A, so läßt sich von einem zu A
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gehörenden Punkt der Stützebene ein Tangentialkegel an die Inkugel legen. So werden

wir gewahr, daß A einen Kappenkörper A° enthält, der die gleiche Inkugel und
zu der betrachteten Raumrichtung die gleiche Stützgröße p aufzuweisen hat. Da
nun offenbar C_e(A) d C_q(A°) gilt, wird zunächst p_Q^p<L6 sein; nach der

vorstehenden Bemerkung aber ist p°_Q p° (l —^-j. Mit der Bemerkung, daß ja p° p

ist, schließt sich der Beweis für die zweite Ungleichung in (32).
Nun ziehen wir aus diesen wegbereitenden Relationen wichtigere Folgerungen.

Zunächst folgt aus (32), daß

C9(A)c(l + j)A; C_9(A)o(l-±)A (O^q^t) (33)

gilt; hierbei bezeichnet X A den mit A ähnlichen und ähnlich gelegenen Körper, mit

Fig. 5

dem Inkugelmittelpunkt Z von A als Ähnlichkeitszentrum und der linearen
Vergrößerung X. Im Hinblick auf die Monotonie der Maßzahlen (6) schließt man auf das
Bestehen der folgenden Ungleichungen

Fe ZF(l + tfl F_e^F(l-±J;
M,^Af(l+f); M_e^M(l-j-).

(34)

(35)

(36)

10. Parallelungleichungen

Die nachfolgend angeführten Ungleichungen für die Maße der äußeren und inneren
Parallelkörper ergeben sich als einfache Folgerungen aus den bisherigen Hauptresultaten.

Es handelt sich um die Relationen, welche diejenigen des Systems (34), (35)
und (36) in gewissem Sinne ergänzen, nämlich um

Fe S (VF + ]/Ä^qY; F_e g(VF-Y4uQ)»;

V, >

MQ ^ M + 4tzq; M_ \M — 4ftQ.

(37)

(38)

(39)
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Die hier an erster Stelle gesetzten Ungleichungen für die Maßzahlen der äußeren
Parallelkörper ergeben sich dadurch, daß man in den Steinerschen Formeln (10), (11)
und (12) die bei den Potenzen q, q2 stehenden Koeffizienten gemäß den Ungleichungen

(27) und (28) ersetzt. — Die an zweiter Stelle aufgeführten Ungleichungen für
die inneren Parallelmaße lassen sich dadurch gewinnen, daß man die oben erörterten
Ersetzungen in den Relationen

V_Q +F_eQ + M_gQ2+lfo*^V,
F.Q +2M_eQ + 4no2 ^F,
M_q-\-4tiq ^M,

die sich aus (9) ebenfalls mit Verwendung der Steinerschen Formeln ergeben, in
gleicher Weise durchführt.

11. Eine Verschärfung der isoperimetrischen Ungleichung

Um eine an sich instruktive Verschärfung der isoperimetrischen Ungleichung (1)

zu gewinnen, wählen wir als Ausgangspunkt die folgende Volumformel

r

V^fp^dq, (40)
o

deren Richtigkeit für konvexe Polyeder mühelos eingesehen werden kann.
Hierbei bezeichnet r wie weiter oben den Inkugelradius. Verwenden wir nun die

sich in (38) vorfindende Ungleichung

F^^(VF-V47^Q)2 (41)

für die innere Paralleloberfläche, so erreicht man

V ^ rF- V4^Fr2 + ^f f3 (42)

oder auch
VF* - )/36lrä V ^ (VF- V4^r)*. (43)

Da für a ^ b ^ 0 noch a2 ~- b2 ^ (a — b)2 gilt, läßt sich aus (43) die hier in
Aussicht gestellte Verschärfung (3)

F* ~ 36n V2 ^ (\/F- V4n*Y (44)

folgern. — Da offenbar für jeden von der Kugel verschiedenen eigentlichen konvexen
Körper F > 4 % r2 sein wird, läßt sich jetzt der Schluß ziehen, daß in der isoperimetrischen

Ungleichung (1) das Gleichheitszeichen bei solchen Körpern nur im Falle der
Kugel gelten kann. Damit ist das isoperimetrische Problem vollständig gelöst.

H. Hadwiger, Bern.
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