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faßt, und zwar sollen ihre Scheitel durch diese Affinität in die Scheitel der
vorgelegten Hyperbel übergeführt werden. Die affine Transformation besteht dann
darin, daß die Ebene der gleichseitigen Einheitshyperbel so verzerrt wird, daß jede
zur Hauptachse parallele Strecke auf die «-fache Länge ausgedehnt und zugleich jede
zur Nebenachse parallele Abmessung auf das 6-fache gestreckt wird. Jede in der Ebene
der gegebenen Hyperbel liegende Figur hat dann einen (a b)-mal so großen Flächeninhalt

wie diejenige Figur, aus der sie durch die affine Transformation der Ebene der
gleichseitigen Einheitshyperbel entstanden ist.

Die Sehne der gegebenen Hyperbel, die im Abstand x parallel zur Nebenachse

gezogen wurde, geht sodann bei dieser affinen Verzerrung aus der im Abstand —

parallel zur Nebenachse verlaufenden Sehne der gleichseitigen Einheitshyperbel hervor.

Hat die betrachtete Sehne der gegebenen Hyperbel die Länge 2 y, so ist 2 -jr-

die Längenmaßzahl der entsprechenden Sehne der gleichseitigen Einheitshyperbel.
Der zu dieser Sehne gehörige Sektor der gleichseitigen Einheitshyperbel, dessen
Flächeninhalt

V arcosh-J In (-J + f)
beträgt, wird dann durch die benutzte affine Transformation in den ursprünglich
gegebenen Hyperbelsektor übergeführt. Sein Inhalt ist demnach

H ab cp ab arcosh -—• abln (—- + 7-).

Arnulf Reuschel, Wien.

Zur Fadenkonstruktion von Graves

Wird um eine Ellipse E ein geschlossener Faden der festen Länge L gelegt und durch
einen sich bewegenden Stift S gespannt, so beschreibt S eine zu E konfokale Ellipse E'.
Für diese von Graves angegebene Verallgemeinerung der «Gärtnerkonstruktion» der
Ellipse sind verschiedene Beweise angegeben worden1). Neben Ableitungen, die
elliptische Integrale bzw. elliptische Koordinaten verwenden, gibt es anschauliche
Beweise, die mit iniinitesimalgeometrischen Methoden zeigen, daß die Normale in einem
Punkt S von E' den Winkel der von S an E gezogenen Tangenten halbiert. Dadurch
ist aber bekanntlich die zu E konfokale Ellipse durch S charakterisiert. Man erkennt
sofort, daß die erwähnte Eigenschaft der Normalen in einem Punkt von E' bestehen

bleibt, wenn man E durch allgemeinere geschlossene konvexe Kurven ersetzt. Wir
geben für diese Tatsache einen analytischen Beweis für den Fall, daß E eine stetige
Tangente und überall positive, stückweise stetige Krümmung hat, und zeigen, daß

£' unter diesen Voraussetzungen eine Eilinie ist, das heißt, stetige Krümmung besitzt.

l) F. Dingeldey, Kegelschnitte und Kegelschnittsysteme. Enzyklopädie der math. Wissenschaften III,
2., 1., S. 1S0-122. - F. Klein, Vorlesungen über höhere Geometrie, 3. Aufl., S. 35. - J. L. Coolidge,
"History of the conic sectk»as. Oxford 184§, S. 121»
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Wir stellen E durch die Stützfunktion p(<p) als Hüllkurve ihrer Stützgefaden
x cos (p + y sin 9? — p(<p) 0 dar. Dann ist p(<p) p(<p -f 2 n) > 0 stetig und stetig
differenzierbar und Q p"(<p) + p((p) > 0 ist der zur Stützgeraden <p gehörige
Krümmungsradius, während

2w 2tt

U=fed<p=fp(v)dv*)

den Umfang von E darstellt. Der Schnittpunkt S der Stützgeraden <p und q> + ß hat
die Koordinaten

xs "^g- {/>(?>) sin i<P + ß) ~ f>i<P + ß) sin ?>},

rs ¦gjp IX? + ß) cos ?> - £(9?) cos (<p + ß)}.

Für die entsprechenden Berührungsstrecken haben wir folgende allgemein gültigen
Formeln angegeben2) (ß =t= n n)

d^ iEJ {*>& + 0 ~ * ^ cos ^ ~ t'M sinfi'

d^+fi==ikß W - *to+0cos 0 + ^+fisin # •

Es ist somit

%) + <% + 0 {^ + ß) + P(f)} tg{ + P'(q> + ß) - fif).
d(<p + ß)- iifp) {p(q>) - p(<p + ß)} Ctg -f. + p'(<p + ß) + p'ffp),

(1)

(2)

2

und für die Länge des von S aus um E gelegten Fadens findet man

•p+ß

L=U + {p(<p + ß) + p(<p)} tg |. -/>(*) & *). (3)

<P

Ist Z, konstant, so wird durch diese Gleichung der Winkel ß als stetige Funktion von
<p bestimmt. Differentiation von (3) nach <p liefert nämlich unter Berücksichtigung
von (1) und (2)

d(cp + ß)- d(<p) + ß'Hfp + ß) 0*). (4)
Setzt man

«*> T^ßß W* + » + «*» - P (* + 4) '

so folgt mit (4) und (1)

wobei P nach der Variabein t cp + ß/2 differenziert ist. Wir fassen in Verbindung

*) Es ist ds Qdq>. p"{<p) ist integrierbar in 0^9? ^2 n, als beschränkte Funktion mit nur endlich
vielen Unstetigkeitssteilen, während die Integralfunktion p'{q>) nach Voraussetzung stetig ist.

2) Vgl. E. Trost, Eine kennzeichnende Eigenschaft des Kreises. El. Math. 2, Heft 4, S.76 (1047).
8) Diese Formel zeigt, daß der Winkel a 180° - ß, unter dem M von E' aus gesehen wir<J* nur 4ann

ein relatives Extremum erreicht, wenn die Beruhrungsstrecken einander gleich sincj.
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mit (3) P(t) als Stützfunktion einer Kurve E* auf und erhalten als Koordinaten des
allgemeinen Punktes von E*

x P(t) cos t - P'(t) sin t xs,

y P(t) sin * + P'(*)cos* ys,

das heißt J£* ist mit E' identisch. Die Normale in S hat somit den Richtungswinkel
cp + ß/2, w. z. b. w.

Ähnlich wie oben findet man mit (2)

P"(a i ß\(l i ß'\- »'(y+W-^y) /i i H P d(<p+ß)-d(<p)
\^i"2/\ 2/^ 2sin£/2 \li"2//"t'2* 2sin/?/2

Hieraus ergibt sich mit (2) und (4) ein stetiger Krümmungsradius für E*:

n* _ p(A p"m L_ * d(cp) d(<p + ß)
8 ^W + P W~ sin 0/2 'd(9)+ ,*(*+/*) >0-

2£* ist also eine Eilinie. Schreibt man diesen Ausdruck in der Form

* ±L_L1^1(1 1 _a

q* 2 U(y) + d(<p+ß) jC0S2 '

wo a 180° — ß der Winkel zwischen den Berührungsstrecken d(cp) und d(cp -f /?)

ist, so erhält man folgende geometrische Deutung: Die in den Berührungspunkten
mit E auf d(<p) und d(<p + ß) errichteten Lote schneiden auf der Normalen in S zwei
Stücke SA und SB heraus, deren harmonisches Mittel der Krümmungsradius q* ist,
das heißt, der Krümmungsmittelpunkt ist der vierte harmonische Punkt zu S und A,
B. Für die Ellipse (d(q>) + d(q> + ß) rt + r2 2 a) ist dieser Satz sowie auch die
Formel für o* längst bekannt1). Macht man von dieser Tatsache Gebrauch, so kann
man natürlich die oben durch Rechnung gefundene Verallgemeinerung auch
«elementar» ableiten. Man lege zu diesem Zweck den Faden um ein konvexes Polygon.
Vom Stift wird offenbar eine aus Ellipsenbögen zusammengesetzte Kurve beschrieben.
Die Tangente ist stetig in den Übergangsstellen, die Krümmung hingegen nicht.
Diese Unstetigkeit verschwindet, wenn man das Polygon in eine glatte Kurve ohne
geradlinige Stücke übergehen läßt. Ernst Trost, Zürich.

Das Hornersche Schema für komplexe Funktionswerte
Zur Berechnung der Funktionswerte ganzer rationaler Funktionen mit reellen

Koeffizienten wird wohl stets das ungemein praktische Hornersche Schema2)
verwendet. Weniger bekannt scheint zu sein, daß L. Coixatz3) gezeigt hat, daß sich
dieses Schema für die Berechnung der Funktionswerte solcher Funktionen an einer
komplexen Stelle #0 *= u + vi abändern läßt. Es sei

f(x) % #» + % xn~l + a* xn~% + • • • + a^x x+an; (ak reell)

*) Vgl. DlNGELDEY, 1. C, $. 73.
1) W. G» Horner, Transaction, London 1819.
8) Das Hornersche Schema für komplexe Wur«ela. Z. angew. Math. Mech., 29, Nr. 4 (1940).
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