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In den Endpunkten einer festen Basis wird je ein Transporteur angebracht und
mittels der Funktionen a = 27 bzw. = 2 ¢ beziffert. Zwei bewegliche gerade Leitern
sind um einen Punkt drehbar, auf beiden wird die Funktion » = 22 dargestellt, wobei
der gemeinsame Drehpunkt der Nullpunkt ist und als Einheitsstrecke die oben gewihlte
Basis beniitzt wird. Der Gebrauch des Nomogramms ist leicht verstindlich.

WiLLt Lissy, Winterthur.

Aufgaben

Awufgabe 15. Dieim Intervall | ¥ — x4| < a eindeutige Funktion y = f(*) mit y, = f(x,)
bestimme eine im Intervall |y — y,| < b eindeutige Umkehrfunktion » = ¢(y). Wenn
die Funktion y = f(») an der Stelle x, differenzierbar ist mit der Ableitung f'(x,) = 1,
ist dann auch die Umkehrfunktion an der Stelle y, differenzierbar ? Mit anderen Worten:
Wenn das Bild der Funktion y = f(#) im Punkte (%,, ¥,) eine unter 45° geneigte Tan-
gente besitzt, hat dann auch das Bild der Umkehrfunktion ¥ = ¢(y) im entsprechenden
Punkte eine Tangente ? P. FINSLER.

Erste Losung. Die aufgeworfene Frage ist zu verneinen. Funktionsbeispiel :
Es bezeichne f, (n=1, 2, 3,...) die Folge derjenigen rationalen Zahlen g des
Intervalls 0 < g < 1, fiir welche die Gleichung

x+ 2x*=f

keine positive rationale Losung x aufweist. Um einzusehen, daB eine unendliche Menge
derartiger Zahlen B existiert, geniigt es beispielsweise, zu verifizieren, daB alle Zahlen

1
p:.—_-—ST k=1,2,3,-.-

jedenfalls zu dieser Menge gehoren. Es sei ferner a,(z = 1, 2, 3, ...) die Folge der ratio-
nalen Zahlen des Intervalls -% < a < 1. (Die Zahlen der vorliegenden abzdhlbar unend-

lichen Mengen werden in irgendeiner an sich beliebigen Weise numeriert.) Nun geben
wir die Funktion durch die folgende Vorschrift: Es sei

(% fiir irrationale ¥ des Intervalls 0 < ¥ < 1
1
x + 2 x? fiir rationale x des Intervalls 0 v < 5
F(x) = ¢ 1
Ba fiir ¥ = a, des Intervalls 7<% =1
— F(—x) fiir negative ¥ desIntervalls — 1 < » <,0.

Die Funktion y = F(x) bildet das Intervall —1 < ¥ < 1 eindeutig auf das Intervall
—1< y <1 ab, so daB sie dort eine eindeutige inverse Funktion ¥ = F*(y) zuliBt.

1 1
Nun ist F(0) = 0 und F’(0) = lim Fix) = 1; dagegen ist F*(0) =0 und F* (Tﬁc_) >
z-+0

(k=1,2,3,...), so daB F*(y) bei y = 0 unstetig, also auch nicht differenzierbar ist.

Die hier erorterte Funktion stellt somit ein Gegenbeispiel im Sinne der Aufgabe mit
a=>b= 1lund 5, = y, = Odar. H. HADWIGER, Bern.
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. . 1
Zweite Losung. Es sei xg =1, vy = f(%,) = 7 Man bestimme fiir n = 1, 2, 3, ... die

Werte von x,,, ¥, aus den Gleichungen

1 2
f1=0, Fu 1= Fan3 T T Fani1 = Fyno1 — Fanog,

L

Vin-3= ¥an—3. Van-1= 7 ¥an-1
3 1 L+ 4%, -3
¥p= 5 ¥ym = Hyp_gt 7 F4ng2 = 2 ,
1 2
Yin-g=%4n— 1, Yan =7 Fint2-
s " 1
Setzt man fiir x5, | < ¥ < x9,,,4: 1%) = You_1+ 5 (¥ — #24-)
1
und ebenso fiir x5, .4 < ¥ < ¥5,,: %) = You+ 5 (¥ — %34),

1
so geniigt die Funktion y = f(#) in den Intervallen |¥ — 2| < 1, |y — ¥l __S__-—z- den
verlangten Bedingungen,' die Umkehrfunktion ist aber an der Stelle y, = 7 nicht stetig

1
und folglich nicht differenzierbar. Im Intervall |x — #,| < > verlduft das Bild der

1
Funktion ¥ = f(x) monoton steigend zwischen der Parabel y = - #* und ihrer Tangente

y=x— 1 und zwar mit der Steigung 0,5 und Sprungstellen vom Punkte x; = 0,5,

2 »
vg= 0,125 der Parabel aus bis zum Punkte #,, y, und von da bis zum Punkte
x,=1,5, y,=1 der Tangente. P. FINSLER, Ziirich.

Aufgabe 20. Man beweise fiir die Eulersche Gerade g des Dreiecks mit den Seitena, b, c:
1. g ist dann und nur dann parallel zur Seite 4, wenn

a%(2a% — b? — c%) = (b* — c9)1, (b + c)

2. g ist dann und nur dann Ecktransversale, wenn das Dreieck entweder rechtwinklig
oder gleichschenklig ist.

3. Bildet man aus zwei Seiten des Dreiecks und einer zu g parallelen Geraden ein
neues Dreieck, so ist seine Eulersche Gerade parallel zur dritten Seite des urspriing-
lichen Dreiecks (Satz von ZEEMAN). —

Wie lassen sich einfach Dreiecke mit zu einer Seite paralleler Eulerscher Geraden
konstruieren ? ERNsST TRrROST.

Losung. Beweis von 1. und 2. (Lésung nach L. KierrFER, Luxemburg):
1. Im Dreieck A BC sei H der Hohenschnittpunkt, S der Schwerpunkt und M der
Mittelpunkt von BC = a. g ist dann und nur dann parallel zu a, wenn

AH:h,=AS:AM =2:3,

Man findet
__bcosa _ bccosa

AH = sinff =k,

Die zu beweisende Beziehung ergibt sich nach einiger Umformung, indem man cos a
und A2 durch a, b, ¢ ausdriickt.
Zur verlangten Konstruktion geniigt es, auf A, den Punkt H entsprechend obigem
Verhiltnis anzunehmen und das Dreieck durch Wahl einer zweiten Hohe festzulegen.
2. Die Bedingungen sind offenbar hinreichend. Liegen umgekehrt H, S, A auf einer
Geraden und ist H + A, so fillt A, mit der Schwerlinie AS zusammen, das heiBt
AB = AC. 1st H = A, sosind b und ¢ Héhen, das heiBt . BAC = 90°,
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Beweis von 3 (Losung des Aufgabenstellers):
Liegt a auf der x-Achse eines Koordinatensystems und sind tg f bzw. — tg y dic
Steigungen von ¢ bzw. b, so findet man nach einiger Rechnung fiir g die Steigung

Ist tg B+tgy= |/f{ y = 60°% so wird ¢ = 60° das heiBt unabhdingig von B. In diesem
Fall bildet eine Parallele zu g mit @ und b ein gleichseitiges Dreieck, in dem die Eulersche
Gerade unbestimmt ist. Das ist ein Grenzfall des Satzes von ZEEMAN. Der allgemeinc

Beweis folgt fiir tg y + /3 aus
tgptgy —3 _ tg B.
tgy —tgy

Bemerkung : Die Bedingung tg f tg y = 3 fiirg||a ist identisch mit der aus 1. folgenden
Beziehung 3 cos a = 2 sin 8 sin y.

Awufgabe 24. Es bezeichne A4 eine abgeschlossene Menge auf der Peripherie des Ein-
heitskreises und 4,, 0 S « < 2z, die durch eine positive Drehung um den Winkel «
um den Kreismittelpunkt aus 4 hervorgehende kongruente Menge. Kann man zu jedem
beliebig kleinen & > 0 noch eine Menge 4 vom MaB M(4) < ¢ angeben, so daB8 fiir
simtliche Drehwinkel 0 < o < 2 7 stets 4 -4+ 0 ist. H. HADWIGER.

Lésung. Man wihle auf dem Einheitskreis E einen abgeschlossenen Bogen B von
der Linge b, 0 < b < ¢, und auf dem Komplementirbogen E — B endlich viele Punkte
Py, P,, ..., P,, welche diesen in Bogen, deren Lingen kleiner als b sind, teilen. Dann
ist A=B + P, + Py+ -+ P, eine Punktmenge mit den geforderten Eigenschaften.

Anmerkung: Es scheint mir bemerkenswert, daB es auf dem Einheitskreis auch ab-
geschlossene Punktmengen vom linearen MaBe 0 gibt, die ebenfalls die Eigenschaft
besitzen, daB die durch Drehung um den beliebigen Winkel « aus der urspriinglichen
Menge A4 hervorgehende Menge A4, mit 4 gemeinsame Punkte hat. Man betrachte etwa
das Cantorsche triadische Diskontinuum D, bestehend aus allen reellen Zahlen des
Intervalls 0 < » < 1, die wenigstens eine triadische Entwicklung mit lauter Ziffern 0
und 2 (also ohne die Ziffer 1) aufweisen. 4 sei die Menge aller Einheitskreispunkte,
deren Argumente die mit 2 7 multiplizierten Zahlen von D sind. A4 ist eine abgeschlos-
sene Menge vom MaBe 0. Um zu zeigen, daB 4 -4, + 0 fiir jeden beliebigen Winkel a,
mul man offenbar beweisen, daB es zwei Punkte von 4 gibt, deren Argumente sich um
a unterscheiden. Dies bedeutet aber, da3 man zu jeder reellen Zahla, 0 < a < 1 zwei
Zahlen b und ¢ des Diskontinuums D aufweisen muB, fiir die 4 = ¢ — b. Dazu betrachtet
man die 4riadische Entwicklung von a und bildet daraus die triadische Entwicklung
von b folgendermaBen:

1. An jeder Stelle, wo bei a die Ziffer 0 steht, setzt man bei & die Zitfer 2.

2. An jeder Stelle, wo bei a die Ziffer 2 steht, setzt man bei b die Ziffer 0.

3. An denjenigen Stellen, wo a die Ziffer 1 aufweist, setzt man bei b abwechslungs-
weise die Ziffern 0 und 2, das heiBt: an der Stelle, wo bei a erstmals die Ziffer 1 vor-
kommt, setzt man bei b die Ziffer 0; an den weiteren Stellen, wo bei a die Ziffer 1
vorkommt, setzt man bei b entweder 2 oder 0, je nachdem bei a vor dieser Stelle eine
ungerade oder eine gerade Anzahl von Ziffern 1 vorkommt (gleichgiiltig, ob dazwischen
auch noch Ziffern 0 oder 2 vorkommen).

Es ist leicht einzusehen, daB nicht nur die so konstruierte Zahl b, sondern auch
¢ = a + b eine Zahl von D ist. ALice RotH, Bern.

Aufgabe 28. Eine Parabel ist durch zwei Punkte, 4 und B, und die zugehorigen
Tangenten, die sich in T schneiden mdgen, bestimmt. Man beweise die Richtigkeit der
folgenden Konstruktion der Kriimmungskreise in 4 und B:

Man zeichne das Rechteck iiber AT, dessen Gegenseite durch B geht. Dann verlin-
gere man AT um sich selbst iiber T hinaus bis C und ziehe durch C die Normale zur
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Rechtecksdiagonale aus A. Ihr Schnittpunkt mit der Parabelnormalen in A ist das
Kriimmungszentrum fiir 4.

Ferner zeige man: Die drei Parabeln, von denen jede zwei Seiten eines Dreiecks in
der Mitte beriihrt, oskulieren sich paarweise, und die Kriimmungsradien in den Osku-
lationspunkten verhalten sich wie die Kuben der Dreiecksseiten. A. StoLL.

Aufgabe 29. Einem Dreieck kénnen Ovale umschrieben werden, indem man iiber den
Seiten als Sehnen Parabelbogen+zeichnet, die sich in den Ecken beriihren. Man zeige,
daB genau cines dieser Ovale stetig gekriimmt ist. Fiir welche méglichst umfassende
Teilmenge der Ovale ist das Oval mit stetiger Kriimmung durch minimalen Flichen-
inhalt ausgezeichnet ? E. TrosrT.

Aufgabe 30. Einem Dreieck vom Flicheninhalt F sollen drei Parabelbogen so ein-
geschrieben werden, daB jeder zwei Dreiecksseiten in Eckpunkten beriihrt. Man berechne
den Inhalt der sieben Fliachenstiicke, in die das Dreieck aufgeteilt wird. E. TrosT.

Berichte

Vortrag von Prof. Dr. H. HorF im Mathematischen Kolloquium Winterthur (16.6.47) iiber
Einige geometrische Eigenschaften stetigey Funktionen.

Den Ausgangspunkt zu den Ausfiihrungen von Herrn Prof. Dr. HopF bildete eine
Verallgemeinerung des Theorems von ROLLE, die von P. LEvy stammt und so lautet:

Satz 1. Jede Kurve, die fiir 0 < ¥ < 1 durch eine stetige Funktion y = f(¥) mit
f(0) = f(1) dargestellt wird, besitzt fiir jede natiirliche Zahl » wenigstens eine horizon-
tale Sehne der Linge 1/x.

Der Beweis ist ganz elementar. — Der Satz gewinnt dadurch an Interesse, da
anderseits folgendes gilt:

Satz 1’. Zu jeder reellen Zahl s, 0 < s < 1, welche nicht von der Form s = 1/# mit
natiirlichem # ist, gibt es eine Kurve von der im Satz 1 genannten Art, welche keine
horizontale Sehne der Linge s besitzt.

Der Beweis erfolgte durch explizite Konstruktion eines Beispiels.

Der Satz 1 kann als Korollar eines allgemeineren Satzes aufgefaBt werden: Fiir eine
stetige Funktion f(#), die die Voraussetzung des Satzes 1 erfiillt, verstehen wir unter S,
die Menge der reellen Zahlen, welche als Liangen der horizontalen Sehnen der durch

y = f(x) gegebenen Kurve auftreten, und unter §, die Menge aller anderen nichtnega-
tiven reellen Zahlen. Dann gilt:

Satz 2. Die Menge S, ist «additiv-abgeschlossen», das heiBt ausae S,, be S, folgt
atbe :S; (a ¢ M soll heiBen, dal 4 in M enthalten ist.)

Daf8l Satz 1 aus Satz 2 folgt, ist sehr leicht zu sehen. — Satz 2 148t sich auch so for-
mulieren: Ist c=a + b, ce¢ S,, so ist ae S, oder be S;; fiir den Beweis darf man c =1
annehmen, also:

Satz 2’. f erfiille die Voraussetzungen von Satz 1; dann gibt es fiir jedes a zwischen
0 und 1 entweder eine horizontale Sehne der Linge @ oder eine horizontale Sehne der
Linge 1 — a.

Dieser Satz wiederum ist eine leichte Folgerung aus dem nachstehenden Satz A,
der fast trivial ist:

" Satz A. Auf einer Kreislinic K sei eine stetige Funktion f gegeben; dann existiert zu
jeder positiven Zahl a, die kleiner ist als die Linge von K, ein solcher Teilbogen ﬁ von
K, daB f(p) = f(q) ist.

Es erhebt sich die Frage, ob sich der Satz A, der als die Quelle der Sdtze 2, 2und 1
gelten kann, auf mehr Dimensionen verallgemeinern 148t, also insbesondere, ob die
Kugelfliche dhnliche Eigenschaften besitzt wie diejenige, die durch den Satz A von
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