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In den Endpunkten einer festen Basis wird je ein Transporteur angebracht und
mittels der Funktionen a 2 t bzw. ß 2 a beziffert. Zwei bewegliche gerade Leitern
sind um einen Punkt drehbar, auf beiden wird die Funktion x zz dargestellt, wobei
der gemeinsame Drehpunkt der Nullpunkt ist und als Einheitsstrecke die oben gewählte
Basis benützt wird. Der Gebrauch des Nomogramms ist leicht verständlich.

Willi Lüssy, Winterthur.

Aufgaben

Aufgabe 15. Die im Intervall | x — x01 ^ a eindeutige Funktion y f(x) mit y0 f(x0)
bestimme eine im Intervall \y — y0\ ?Lb eindeutige Umkehrfunktion x <p(y). Wenn
die Funktion y f(x) an der Stelle x0 differenzierbar ist mit der Ableitung f (x9) 1,
ist dann auch die Umkehrfunktion an der Stelle yQ differenzierbar Mit anderen Worten:
Wenn das Bild der Funktion y f(x) im Punkte (x0, y0) eine unter 45° geneigte
Tangente besitzt, hat dann auch das Bild der Umkehrfunktion x q>(y) im entsprechenden
Punkte eine Tangente P. Finsler.

Erste Lösung. Die aufgeworfene Frage ist zu verneinen. Funktionsbeispiel:
Es bezeichne ßH (n 1, 2, 3, die Folge derjenigen rationalen Zahlen ß des

Intervalls 0 < ß ^ 1, für welche die Gleichung

x + 2x2= ß

keine positive rationale Lösung x aufweist. Um einzusehen, daß eine unendliche Menge
derartiger Zahlen ß existiert, genügt es beispielsweise, zu verifizieren, daß alle Zahlen

/>=sV *= 1.2.3....

jedenfalls zu dieser Menge gehören. Es sei ferner a^w 1, 2, 3, die Folge der

rationalen Zahlen des Intervalls -r- < a ^ 1. (Die Zahlen der vorliegenden abzählbar unendlichen

Mengen werden in irgendeiner an sich beliebigen Weise numeriert.) Nun geben
wir die Funktion durch die folgende Vorschrift: Es sei

r für irrationale x des Intervalls 0 < x < 1

F(x) {
x + 2 x% für rationale x des Intervalls 0 <£ x <* -j
ßn für x äjj des Intervalls -j < x <£ 1

— F(—x) für negative x des Intervalls — 1 ^ x <r.O.

Die Funktion y F(x) bildet das Intervall - 1 <^ x <J 1 eindeutig auf das Intervall
— 1 <J y <J 1 ab, so daß sie dort eine eindeutige inverse Funktion x F*(y) zuläßt.

Nun ist F(0) - 0 und F'(0) hm —^- -> 1; dagegen ist F*(0) 0 und F* (-^) > y
(k =» 1, 2, 3, so daß F*(y) bei y 0 unstetig, also auch nicht differenzierbar ist.
Die hier erörterte Funktion stellt somit ein Gegenbeispiel im Sinne der Aufgabe mit
a b — 1 und x0 y9 - 0 dar. H. Hadwiger, Bern.
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7weite I omng Es sei x0 1, v0 f(x0) — Man bestimme für n 1, 2, 3, die

Werte von #n yw aus den Gleichungen

_
{

_ 2
*t _ 0 r4n-l~ <,r4>i-,l+ 2' *4»+l X*n-\ ~~ x\n-'\ *

_
1 2

v4n ** r4» 3' v4»-l ~ 9 *4*»~1 »

3
_

1 1 + /4 ^.-2-3
*2 2' r4n ~" Xt*-2 *~ 2' *4*+2 — 2

1 _
* 2

>'4n-2~ *4» ~" x» V\n ~ ~2 xAn+2

Setzt man für x2n_x ^x < *2n+3 f(x) y2n_x -f y (* - x2„_r)

und ebenso für *2n+4 < * ^ x2n f(x) y2n V -j(x - x2n)t

so genügt die Funktion y f(x) in den Intervallen |# — x0\ ^ 1, \y — y0|^-x- den
1 *

verlangten Bedingungen, die Umkehrfunktion ist aber an der Stelle y0 « ~ nicht stetig
1

und folglich nicht differenzierbar Im Intervall | x — x01 g ~ verlauft das Bild der

Funktion y f(x) monoton steigend zwischen der Parabel y -r- x% und ihrer Tangente
1 ^

y # —— f und zwar mit der Steigung 0,5 und Sprungstellen vom Punkte x% =» 0,5,

v, 0,125 der Parabel aus bis zum Punkte x0, y0 und von da bis zum Punkte
*2 ~ 1» 5» V« 1 der Tangente. P Finsler, Zürich.

A ufgabe 20 Man beweise für die Eulersche Gerade g des Dreiecks mit den Seiten a, b, c
1 g ist dann und nur dann parallel zur Seite a, wenn

a*(2a» - 6» - c») (b* - e1)1 (b * c)

2 g ist dann und nur dann Ecktransversale, wenn das Dreieck entweder rechtwinklig
oder gleichschenklig ist

3 Bildet man aus zwei Seiten des Dreiecks und einer zu g parallelen Geraden em
neues Dreieck, so ist seine Eulersche Gerade parallel zur dritten Seite des ursprünglichen

Dreiecks (Satz von Zeeman) —
Wie lassen sich einfach Dreiecke mit zu einer Seite paralleler Eulerscher Geraden

konstruieren Ernst Trost

Lösung. Beweis von 1. und 2. (Lösung nach L Kieffer, Luxemburg)
1 Im Dreieck ABC sei H der Hohenschnittpunkt, S der Schwerpunkt und M der

Mittelpunkt von BC a g ist dann und nur dann parallel zu a, wenn

4H ha AS AM =2 3.
Man findet

b cos a bc cosaAH^ sm ß ha

Die 7M beweisende Beziehung ergibt sich nach einiger Umformung, indem man cos oc

und h\ durch a, b, c ausdruckt
Zur verlangten Konstruktion genügt es, auf ha den Punkt H entsprechend obigem

Verhältnis anzunehmen und das Dreieck durch Wahl einer zweiten Hohe festzulegen.
2 Die Bedingungen sind offenbar hinreichend. Liegen umgekehrt H, S, A auf einer

Geraden und ist H * A, so fallt ha mit der Schwerlinie AS zusammen, das heißt
AB AC Ist H A, so sind b und c Höhen, das heißt <£ BAC — 90°.
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Beweis von 3 (Lösung des Aufgabenstellers):
Liegt a auf der x-Achse eines Koordinatensystems und sind tg ß bzw. — tg y die

Steigungen von c bzw. 6, so findet man nach einiger Rechnung für g die Steigung

g^ tgß-tgy •

Ist tg ß 4* tg y » j/3, y 60°, so wird g> 60°, das heißt unabhängig von ß. In diesem
Fall bildet eine Parallele zu g mit a und 6 ein gleichseitiges Dreieck, in dem die Eulersche
Gerade unbestimmt ist. Das ist ein Grenzfall des Satzes von Zeeman. Der allgemeine
Beweis folgt für tg y =# (/Taus

tgyt.gy-3
tg^-tgy X8P*

Bemerkung: Die Bedingung tg ß tg y 3 für g\a ist identisch mit der aus 1. folgenden
Beziehung 3 cos oc 2 sin ß sin y.

Aufgabe 24. Es bezeichne -4 eine abgeschlossene Menge auf der Peripherie des
Einheitskreises und Aa, 0 <^ * < 2n, die durch eine positive Drehung um den Winkel a
um den Kreismittelpunkt aus A hervorgehende kongruente Menge. Kann man zu jedem
beliebig kleinen e > 0 noch eine Menge A vom Maß M(A) < e angeben, so daß für
sämtliche Drehwinkel 0 <£ oc <Zn stets A *Aa * 0 ist. H. Hadwiger.

Lösung. Man wähle auf dem Einheitskreis E einen abgeschlossenen Bogen B von
der Länge b, 0 < b < e, und auf dem Komplementärbogen E — B endlich viele Punkte
Pv P%, Pn, welche diesen in Bogen, deren Längen kleiner als b sind, teilen. Dann
ist A »B -f* Pi + Pf+ ••• + Pn eine Punktmenge mit den geforderten Eigenschaften.

Anmerkung: Es scheint mir bemerkenswert, daß es auf dem Einheitskreis auch
abgeschlossene Punktmengen vom linearen Maße 0 gibt, die ebenfalls die Eigenschaft
besitzen, daß die durch Drehung um den beliebigen Winkel oc aus der ursprünglichen
Menge A hervorgehende Menge Aa mit A gemeinsame Punkte hat. Man betrachte etwa
das Cantorsche triadische Diskontinuum D, bestehend aus allen reellen Zahlen des
Intervalls 0 <£ x 5£ 1, die wenigstens eine triadische Entwicklung mit lauter Ziffern 0
und 2 (also ohne die Ziffer 1) aufweisen. A sei die Menge aller Einheitskreispunkte,
deren Argumente die mit 2 n multiplizierten Zahlen von D sind. A ist eine abgeschlossene

Menge vom Maße 0. Um zu zeigen, daß A • Aa * 0 für jeden beliebigen Winkel oc,

muß man offenbar beweisen, daß es zwei Punkte von A gibt, deren Argumente sich um
oc unterscheiden. Dies bedeutet aber, daß man zu jeder reellen Zahl a, 0 <£ a :g 1 zwei
Zahlen b und c des Diskontinuums D aufweisen muß, für die a c — b. Dazu betrachtet
man die-triadische Entwicklung von a und bildet daraus die triadische Entwicklung
von b folgendermaßen:

1. An jeder Stelle, wo bei a die Ziffer 0 steht, setzt man bei b die Zitfer 2.
2. An jeder Stelle, wo bei a die Ziffer 2 steht, setzt man bei b die Ziffer 0.
3. An denjenigen Stellen, wo a die Ziffer 1 aufweist, setzt man bei 6 abwechslungs-

weise die Ziffern 0 und 2, das heißt: an der Stelle, wo bei a erstmals die Ziffer 1

vorkommt, setzt man bei b die Ziffer 0; an den weiteren Stellen, wo bei a die Ziffer 1

vorkommt, setzt man bei b entweder 2 oder 0, je nachdem bei a vor dieser Stelle eine
ungerade oder eine gerade Anzahl von Ziffern 1 vorkommt (gleichgültig, ob dazwischen
auch noch Ziffern 0 oder 2 vorkommen).

Es ist leicht einzusehen, daß nicht nur die so konstruierte Zahl b, sondern auch
c a + b eine Zahl von D ist. Alice Roth, Bern.

Aufgabe 28. Eine Parabel ist durch zwei Punkte, A und B, und die zugehörigen
Tangenten, die sich in T schneiden mögen, bestimmt. Man beweise die Richtigkeit der
folgenden Konstruktion der Krümmungskreise in A und B:

Man zeichne das Rechteck über A Tt dessen Gegenseite durch B geht. Dann verlängere

man A T um sich selbst über T hinaus bis C und ziehe durch C die Normale zur
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Rechtecksdiagonale aus A. Ihr Schnittpunkt mit der Parabelnormalen in A ist das
Krümmungszentrum für A.

Ferner zeige man: Die drei Parabeln, von denen jede zwei Seiten eines Dreiecks in
der Mitte berührt, oskulieren sich paarweise, und die Krümmungsradien in den Osku-
lationspunkten verhalten sich wie die Kuben der Dreiecksseiten. A. Stoll.

Aufgabe 29. Einem Dreieck können Ovale umschrieben werden, indem man über den
Seiten als Sehnen Parabelbogen «zeichnet, die sich in den Ecken berühren. Man zeige,
daß genau eines dieser Ovale stetig gekrümmt ist. Für welche möglichst umfassende
Teilmenge der Ovale ist das Oval mit stetiger Krümmung durch minimalen Flächeninhalt

ausgezeichnet E. Trost.
Aufgabe 30. Einem Dreieck vom Flächeninhalt F sollen drei Parabelbogen so

eingeschrieben werden, daß jeder zwei Dreiecksseiten in Eckpunkten berührt. Man berechne
den Inhalt der sieben Flächenstücke, in die das Dreieck aufgeteilt wird. E. Trost.

Berichte

Vortrag von Prof. Dr. H. Hopf im Mathematischen Kolloquium Winterthur (16.6.47) über
Einige geometrische Eigenschaften stetiger Funktionen.

Den Ausgangspunkt zu den Ausführungen von Herrn Prof. Dr. Hopf bildete eine
Verallgemeinerung des Theorems von Rolle, die von P. Lew stammt und so lautet :

Satz 1. Jede Kurve, die für 0 g x ^ 1 durch eine stetige Funktion y =* f(x) mit
/(0) /(l) dargestellt wird, besitzt für jede natürliche Zahl n wenigstens eine horizontale

Sehne der Länge 1/n.
Der Beweis ist ganz elementar. - Der Satz gewinnt dadurch an Interesse, daß

anderseits folgendes gilt:
Satz V. Zu jeder reellen Zahl s, 0 < s < 1, welche nicht von der Form s « 1/n mit

natürlichem n ist, gibt es eine Kurve von der im Satz 1 genannten Art, welche keine
horizontale Sehne der Länge s besitzt.

Der Beweis erfolgte durch explizite Konstruktion eines Beispiels.
Der Satz 1 kann als Korollar eines allgemeineren Satzes aufgefaßt werden: Für eine

stetige Funktion f(x), die die Voraussetzung des Satzes 1 erfüllt, verstehen wir unter Sf
die Menge der reellen Zahlen, welche als Längen der horizontalen Sehnen der durch
y ss f(x) gegebenen Kurve auftreten, und unter Sf die Menge aller anderen nichtnegativen

reellen Zahlen. Dann gilt:
Satz 2. Die Menge Sf ist «additiv-abgeschlossen», das heißt aus aeSf, b e Sf folgt

a -f- b e Sf. (aeM soll heißen, daß a in M enthalten ist.)
Daß Satz 1 aus Satz 2 folgt, ist sehr leicht zu sehen. — Satz 2 läßt sich auch so

formulieren: Ist c =* a -f b, c b Sf, so ist a e Sf oder b e Sf; für den Beweis darf man c=i
annehmen, also:

Satz 2'. f erfülle die Voraussetzungen von Satz 1; dann gibt es für jedes a zwischen
0 und 1 entweder eine horizontale Sehne der Länge a oder eine horizontale Sehne der
Länge 1 — a.

Dieser Satz wiederum ist eine leichte Folgerung aus dem nachstehenden Satz A,
der fast trivial ist:

Satz A. Auf einer Kreislinie K sei eine stetige Funktion / gegeben; dann existiert zu
jeder positiven Zahl a, die kleiner ist als die Länge von K, ein solcher Teilbogen pq von
K,d*ßf(p) f(q) ist.

Es erhebt sich die Frage, ob sich der Satz A, der als die Quelle der Sätze 2', 2 und 1

gelten kann, auf mehr Dimensionen verallgemeinern läßt, also insbesondere, ob die
Kugelfläche ähnliche Eigenschaften besitzt wie diejenige, die durch den Satz A von


	Aufgaben

