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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zeitschrift zur Pflege der Mathematsk
und zur Forderung des mathematisch-physikalischen Unierrichis
Organ fiir den Verein Schweizerischer Mathematiklehrer

1. Math. Band 11 Nr. 5 Seiten 89-104 Basel, 15. September 1947

Un peu de mathématiques a propos
d’une courbe plane

(SUITE)

5. En désignant par 7 et 7 les vecteurs de base du systéme de coordonnées introduit
au n° 4, les cotés de P, considérés comme des vecteurs orientés dans le sens positif

de parcours, sont 27,27, -27,—27. Ceux de P, sont Loy (¢+7) 3], ... Ceux

2 2
de stont-é-z,—é—(z-}—y),—g—(t-{-y), —9-(1+27), 3-7,

Bornons nous a ceux dont les composantes ne sont pas négatives, et multiplions
ﬂ
ceux de P, par —-; on obtient une suite de vecteurs qui sera désignées par /T,. Les

suites I1,, II; et Il, sont respectivement:

HO: ; ;:
I: @ t+7 7,
M. 7 2547 P47 f+27 i

D’une maniére générale, la suite I, se déduit de I1,_, en intercalant, dans chaque
intervalle compris entre deux vecteurs consécutifs de I, , la somme de ces deux vecteurs.

Cette loi de formation si simple entraine les conséquences suivantes.
a) Les composantes des vecteurs de I1,, sont des nombres entiers.

En remarquant que 'aire du parallélogramme construit sur les vecteurs aeta+b,
ou sur les vecteurs a + b et b, est égale A I'aire du parallélogramme construit sur les

vecteurs a et b, on voit que:
b) L’aire du parallélogramme construit sur deux vectewrs comsécutifs de I, est égale
a Uunité.
De la résulte: .
c) Les composantes de tout vecteur de IT,, sont des entiers premiers enlre eux.

d) Si le coefficient angulaire d’un cbté de P, est égal & la fraction arréduchbk —, les
2b
projections de ce c6té sur les axes sont égales d 3,, et 3.

En effet, d’apreés c), les projections du vecteurs correspondant de I7,, sont égales a
a et b.
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Suivant Lucas?), nous appellerons suite de BROCOT d’tndice n, et nous désignerons

par B,, la suite des coefficients angulaires des vecteurs de I7,,.
. . 0 1

e) La suite Byseréduita: -, — .
La suite B, est obtenue en prenant B, _, et en intercalant, dans chaque intervalle entre

+d
a+c’

Cela résulte, en effet, directement de la loi de formation des suites I7,. En outre,
d’aprés b) et c), les fractions sont obtenues directement sous forme irréductible.

L, b d -
deux termes consécutifs e de B,,_,, leur médiante

f) Toute fraction de la suite B, est la médiante des fractions voisines.

D’aprés e), cela est exact pour les fractions de B, n’appartenant pas a B,_,. Mais
cela est aussi vrai pour celles qui appartiennent a B,,_,, car si la propriété f) appar-
tient 4 B,_,, elle appartient aussi a B,, comme on le vérifié immédiatement.

g) La différence de deux fractions comsécutives de B, a pour numérateur U'unité, et
pour dénominateur le produit des dénominateurs de ces deux fractions.

. b d . .
Si - et - sont deux fractions consécutives de B,,, on a en effet

car ad — bc = 1 d’apreés b).

h) S¢ :}; est un nombre rationnel compris entre les deux termes consécutifs % et g— de la
suite B,, omay=b+det x=a {c.

En effet, le vecteur entier x 7 + y 7 est égal, d’aprés b), 3 une combinaison linéaire
a coefficients entiers des vecteurs a? + b7 et ¢7 + d7, qui sont des vecteurs consé-
cutifs de I1,. D’aprés I’hypothése, les coefficients de cette combinaison linéaire
sont des entiers positifs, d’ou résulte immédiatement h).

i) Le numérateur ou le dénominateur de toute fraction de B, n’appartemant pas d
B, _, dépasse n — 1.

Cette proposition est vraie pour B1 et s'étend immédiatement de B, ; & B, en
tenant compte de la loi de formation e).

De h) et i) résulte immédiatement :

j) Tout nombre rationnel positif, dont le numérateur et le dénominateur ne dépassent
pas n, appartient & la suite B, .
De.g) et i) résulte encore:

k) La différence de deux termes consécutifs de B, , tous deux nom supérieures @ 1, est
au plus dgale @ .
En effet, 'un de ces termes n’appartient pas 4 B,_,, et son dénominateur est par

suite au moins égal & . La différence est donc une fraction de numérateur 1 et de
dénominateur au moins égal a .

1) L’angle de deux cités consécutsfs de P, est au plus égal @ arc tg —’17 .

1) Ep. Lucas, Théorie des Nombres, - Paris 1891. G.-H. HALPHEN, Sur des suites de fractions analogues
ala suite de FAreY ((Euvres de G.-H. HALPHEN, t. 11, p. 102-107). - Calcul des rouages par approximation,
nouvelle méthode, par AcHILLE Brocor, horloger, Paris 1862 (cité par HALPHEN et par Lucas).
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A cause de la symétrie de P,, on peut supposer que les coefficients angulaires m,
et m, de ces cotés sont compris entre 0 et 1 (limites non exclues): 0 S m < my <1

Si my—=tga et my=tgph, tg(f —a)— ler’m =My — My S — , d’aprés k),
2
d'ou 0 < B — a < arc tg;lz . C. q.f. d. Cette proposition a été utlllsee au n°4 pour

prouver que la courbe C a une tangente en chaque point.

6. Pour exprimer les coordonnées x et y du point M(¢) de I'arc My M,, ainsi que le
coefficient angulaire m de la tangente en ce point, en fonction du paramétre ¢, déve-
loppons ¢ dans le systéme de numération de base 2:

2—‘17= , By 89 .. (@a; =0 oul).
1

Supposons que le chiffre 1 apparaisse %, fois immédiatement aprés la virgule, et
qu’il y ait ensuite &, fois le chiffre 0, puis %, fois le chiffre 1, etc.:

t=011...1 00...0 11...1 00...0 1...

S et S, pr— et et gt prmsetmemes’

ky ke ky kq

Si ¢ est dyadique, la suite des entiers %; est finie et se termine par le symbole oco.
k, peut étre nul, tandis que &,, &y, ... sont des entiers positifs. En sommant les pro-

s sy s ’ 1 .
gressions géométriques de raison -5 et contenant respectivement k,, k3, &, . . . termes

qui apparaissent ainsi dans le développement de ¢, on obtient I’expression suivante

de ce développement:
1 1 1
t=1- g+ %F7n ~ HFhIA

+..., (1)

série limitée ou illimitée selon que ¢ est dyadique ou non.
Théoréme. Le paramétre ¢ étant donné par le développement (1), le coefficient
angulaire m de la tangente 4 la courbe C au point M(#) est donné par la fraction

continue

1
m=k1+7{;+% +. (2)
. .
Ai' étant la n° réduite de cette fraction continue,
B, 1
P Ry

1

et en convenant que 4,=0, A_; =1, By=1, B, =0, les coordonnées x et y du
point M(¢) sont données par les formules

r= Y (- utdan o)

n=0

y=J (-1 gt )
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Démonstration de la formule (2). Désignons par #, la somme des (n + 1) premiers
termes de la série (1). Remarquons que #, = 1, et convenons que ¢_, = 0.

Nous allons d’abord prouver que le coefficient angulaire m (¢,) de la tangente a C
au point M(¢,) est égal 4

B, ’
mita) = - (2)
La formule (2') est vraie pour n = — 1, puisque, la tangente en M, = M(0) étant

0 . .
confondue avec Ox, m(0) = --. Elle est également vraie pour n = 0, puisque la tan-

gente en M, = M(1) étant paralléle 4 Oy, m(1) = —(1)~

Supposons qu’elle est valable pour n =1, 2, ..., # - 1, et montrons qu’alors elle
I'est encore pour #n.

Par hypothése, on a alors

B, _ B,_
Mm(ty_y) = g:j y o Mlag) = A:_: .

Pour abréger, posons k=%, + --- + k,_,. Comme 2%¢ _, et 2¥¢ _, sont entiers et
2kt — 284, o = (— 1)1, les points M(¢,_,) et M(¢,_,) sont deux sommets consé-
cutifs du polygone Q, (cf. n° 3), M(¢,_,) précédant ou suivant M(¢, ,) selon que %
est pair ou impair.

Le point M(#,) est un sommet du polygone @, , ,, situé entre M(f,_;) et M(z, ,),

—1)n
et comme ¢, =, ; + _(ZTT)E;’ M(t,) et M(¢,_,) sont deux sommets consécutifs de

bty -

Les tangentes a la courbe C aux sommets des polygones inscrits Q coincidant avec
les cbdtés correspondants des polygones P, il résulte des propriétés des suites de
Brocor établies au n° 5 que le coefficient angulaire m(t,) se déduit des fractions
m(t,_,) et m(¢,) en effectuant k, médiations successives, entre m(f,_,) et m(t,_,)
d’abord, puis entre m(¢,_,) et les médiantes successivement obtenues. Ces médiantes
sont

Bn~l -+ Bn—2 2 Bn-—l + Bn—a kn Bﬂ—l + Bn-—z
An—l+An——2 ’ ZAn-l‘*‘An-J ’ e knAﬂ—l+An—2
de sorte que '
ko Bn ,+ B
m t — n~n-1 n—2
( n) knAn—-l + An-—z

et comme, d’apres les formules classiques de la théorie des fractions continues,
Bn =k, Bn-—l + Bn—2 et An = ky An—-l + An—z’

la formule (2') est établie.

La formule (2) est ainsi établie dans le cas ou ¢ est un nombre dyadique, le dévelop-
pement (1) et la fraction continue (2) étant alors limités. Lorsque ¢ n’est pas un
nombre dyadique, la formule (2) se déduit de (2') en faisant tendre » vers l'infini,

—I’-‘- tendant alors par définition vers la valeur de la fraction continue illimitée m, ¢,

n
tendant vers ¢ et m(t,) tendant vers m(f) en vertu de la continuité de la tangente a
C (n°4).
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Démonstration des formules (3) et (4). Soient X, et Y, les projections du vecteur

M(t,_,) M(t,) sur les axes O x et Oy. En convenant comme ci-dessus que ¢_, == 0, il
est clair que les coordonnées x et y du point M (¢) sont données par

) o
- r
:‘:an’ y:‘Z Yno
”n=0 #n=0

séries limitées dans le cas ou ¢ est dyadique.
Or, M(¢,.,) et M(¢,) sont deux sommets consécutifs du polygone @, d’indice

k=Fky+ -+ k,. Ce sont aussi les points milieux de deux c6tés consécutifs du poly-

gone P,. Les coefficients angulaires de ces c6tés de P, étant g":— et g—'f-, leurs

. , 24 24, " "
projections sur O x sont (d’aprés ne 5, d) égales & 3:" et =z

Cela entraine que la projection du vecteur M(¢,_,) M(¢,) sur O x est égale en valeur

nat 4

A . 3 s A >
absolue & —*=—", et comme le signe de cette projection est le méme que celui de

. 4 ' : .
tp — ly_y, sOIt (— 1), ona X, = (--1)® iﬁ'—"—‘%———l, ce qui, substitué dans 1’expression
ci-dessus de x, fournit la formule (3). La formule (4) s’établit de la méme maniére.

7. La fonction ¢ de m, définie par les formules (1) et (2), a été introduite par MiN-
KOWSKI, qui 'a désignée par le symbole ? (point d’interrogation). Avec la notation de
MiNkowsKI, on doit écrire ¢ == 2 ? (m)?).

C’est une fonction croissante; si ¢ est dyadique, m est rationnel, et réciproquement.
M. DENjoY?) a prouvé qu’elle a une dérivée nulle presque partout (c’est-i-dire sauf
sur un ensemble de mesure nulle). I1 est probable que la fonction m de x jouit de

propriétés analogues.
Je me bornerai ici & quelques remarques. On sait qu'un nombre dyadique posséde

deux développements:

t=0a,a; ...4, ;1000 ... et t=0,ayay ...a,;,0111....

Les deux fractions continues correspondantes, représentant le méme nombre m,
sont évidemment égales: I'une se déduit de 'autre en y remplagant le dernier quotient

1 . . ’ ’ L
kR,park,—1+ 4 Le nombre des quotients incomplets &, est augmenté d’une unité,

mais leur somme n’est pas changée. Pour 1'un des deux développements, et pour 'un
seulement, le dernier quotient %, est supérieur a 1: nous pouvons convenir de choisir

celui-1a.
n
Soit £ = 2 k;la somme des quotients incomplets. 2* ¢ étant alors un entier impair,

=1

les premiers polygones P, et Q, qui portent le point M(f) sont ceux d’indice &. Il en

1) H. Minkowski. Zur Geometrie der Zahlen (Verhandlungen des 111. Internationalen Mathematiker-
Kongresses in Heidelberg 1904, p. 171 et 172). Voir aussi: Lours KorLros. Un algorithme pour I’approxi-
mation simultanée de deux grandeurs (Thése présentée A I'Université de Zurich, 1905).

2) A. DENjovy. Sur quelques points de la théorie des fonctions (Compte rendu des séances de I’Académic
des Sciences, Paris, t. 194, p. 44—46 (1932)). — Sur une fonction de MiNkowsk1 (ibid. t. 198, 'p. 4447
(1934)). — Sur les fonctions minkowskiennes (ibid. t. 201‘, p- 584-586 (1935)). — Sur une fonction réelle
de MinkowskI ( Journal de mathématiques pures et appliquées, 1938, p. 105-151)).
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résulte immédiatement la propriété suivante, d’ailleurs connue, des suites de BRocor:
U'indice de la premiére suite de BROCOT qui contient un nombre rationnel donné m est
égal & la somme des quotients incomplets k; du développement de m en fraction continue,
et le rang occupé par ce nombre dans cetle suile est

ho= 2kt =2kt - thn __ Dkt thn | Dkt thy + (- 1),,. .
Proposons nous encore de calculer les entiers &, lorsque x est donné, de maniére 4

pouvoir calculer y et m en fonction de x.
Le rapport du terme général de la série (3) au précédent est

_}" An—H + 4, — 1 (k“ +1)A, ,+A4, 4 _ 1 14 R,
3Fn An—l + Au-—z 3Fn An—l + An—-s 3*n ( 14 An~l ) )
A‘n—l

.« pss 1+4 o - . Z . . px g
Ce rapport est donc inférieur a ;;"" , et par suite inférieur & - si # > 1, inférieur

ou égal 4 1 si #n = 0. Les termes de la série (3) décroissent en valeur absolue.
Soit 2, la somme des # premiers termes de la série (3). x étant compris entre 2,

et 2,,,,ona

A+ A,
|x"2n‘§‘2u+1“2n=—37;"::€‘;';; (5)

et il ne peut y avoir égalité, dans la relation <, que si x =2, ,;, c’est-d-dire si la
suite des %, est limitée et se termine avec %, .
Supposons que la suite des %, ne se termine pas avec k,. On peut alors remplacer n
par # + 1 dans la relation ci-dessus et il vient
An+l+An _— (kn+l+ 1) An+ An—l

]x—-x,.+1|§ 3k,+--'+kn+l’”+; - 3h‘+...+}”+k”+l . (6)

E+ 1A, +A4,_
Posons Fo(é) = ( 3k.+).--':»;,,_.+s :.

Comme on le vérifie aisément, F, (&) décroit de F,(0) 3 0 lorsque £ croit de 0 a oo.
Il en est de méme pour F,,, (&), et comme %,,; = 1, cela entraine

(kn+1)An+Aa—l S ZAn+An—l (7)
3’¢x+---+l¢u+kn,+1 = 3h,+---+h,.+1

et il ne peut y avoir égalité que si k,,, = 1.

D’aprés la remarque faite & propos de (5), il ne peut, d’autre part, y avoir égalité
dans (6) que si la suite des &, est limitée et se termine par %,,;. Dans ce dernier cas,
en adoptant la convention énoncée plus haut, %,,, > 1 et il y a inégalité dans (7).
En définitive, il ne peut donc y avoir égalité A l1a fois dans (6) et dans (7), d’ou résulte

24,+ A,
|x—zf\+ll< 3h+?..+k:+11 . (8)
A+ A4,
Comme |x-2,,+ll=—é—;f;~::;";—;———|x—2,l.
A+ 24
cela entrafne |x— 2| > 3,,"_‘:, ThoaT (9)
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Les inégalités (5) et (9) peuvent s’écrire
Fn(kn+ 1) < lx"“ ):nl éFn(kn)

et, d’apres la propriété énoncée de la fonction F,(£), elles montrent que %, est la
partie entiére de laracine § = £, de I'équation F,(§) = | x— 2, |.

D’aprés (8) olt I'on remplace # par #— 1, on a | x— X, | < F,(1), ce qui montre
que l'entier &, = [£,] est bien au moins égal 4 1 pour n > 1.

Le probléme posé est ainsi résolu. L'équation en &, s’écrit par exemple, comme

. 1 1 A —log(l— =
Fi(&) = 3 et 2, =1, - = 1—x,doué = ———lgo—é—g—)— et B, = [§,]. Ayant déter-
miné %, kA, ..., k,_,, on pourra former la fonction F,(§) et la détermination de

k, se raménera au calcul de la partie entiére de la racine d'une équation de la
forme a& + b = ¢ 3¢, avec des coefficients a, b et ¢ donnés.

8. En projetant sur un axe fixe les vecteurs de la suite II,,, on obtient des suites de
nombres qui, d’aprés BACHMANN, ont été considérées notamment par STERN?!). La
suite des projections sur O y est particuliérement intéressante, désignons-la par U,.

Considérons d’autre part la suite de nombres entiers %, (h = 0, 1, 2, ...) définie
par les conditions suivantes:

10 Uy = 0et Uy = 1, 2“ Ugp = Uy, 30 Ug gty = Up -+ Up_y-
Les premiers termes de cette suite, que ’on désignera par U, sont:
0112132314352534154738572 ...

Je dis que la suite U, des projections sur Oy des vecteurs de la suite I1,, se compose des
2" + 1 premiers termes de la suite U, soit des nombres u, (h =0, 1, ..., 2"),

En effet, cela est vrai pour U,, et si c’est vrai pour U,_,, ce l'est aussi pour U,
comme on le vérifie immédiatement en remarquant que, d’aprés 2° et 39, u,,,,
= Uy, + Ugp.q, €t €n tenant compte de la loi de formation de 17, énoncée au n®5.

Cherchons a calculer directement %, en fonction de 4. A cet effet, posons, /;.../,
étant des entiers positifs:

H({l ... 1) = 2hte bl bt bl o (0 20 g (= 1),
On a évidemment
H(ll P lﬂ) == 21"’ H(ll PR lﬂ“l) + ('"" 1)”,

formule qui permettrait de définir la fonction H par récurrence, en convenant que
H =1 pour n = 0.

On établit sans aucune difficulté la proposition suivante:

Lemme. A tout entier positif impair 4 correspondent deux suites finies d’entiers
positifs 2, ... /,, et deux seulement, telles que

H{l, ...1L,)=h.
Dans l'une de ces suites, le dernier terme /, est supérieur 4 1. L’autre suite est alors
(,..., 4, — 1, 1) et contient un terme de plus.

1) Voir P. BAcHMANN, Niedere Zahlentheorie (Enzyklopadie der math. Wissenschaften, I, C. 1), ol sont
cités, A coté du Mémoire de STERN, d'autres travaux sur le méme sujet de HerMES et EBi1sensTEIN, Voir
aussi Pouvrage de Lucas cité plus haut.
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Désignons encore par C(l, ...1,) le cumulant défini par la relation de récurrence
Cly...L)=0C@ ... ;) +C{l ...1,,)

en convenant que C = 1 pour n =0 et C = 0 pour n = — 1, de sorte que C(l,) == /;.
Le probléme posé est alors résolu par le théoréme suivant.

Théoréme. Sih=H({ ... L), wn=Cly...15).

Démonstration. Pour n = 0, h =1 et u, = 1, de sorte que le théoréme est exact;
de méme pour # =1, puisque A=2'—1 et wuy = ugl + tl_g= 1+ thoi—1_; = 1

+14ug—2_=14+1+14ug-3_43=--c=1014uy=1»1.
Supposons-le établi pour n =1, 2,..., » — 1 et vérifions qu'’il est encore valable
pour 7.

En posant A'=H(, ..., ), on a h=2MK + (— 1)* et, par hypothése,
uy =C(ly...1,_,). D'aprés 2° et 39, 4 étant impair, on a
Up = Upypy + Upy = Uy + Uglnpr o) = i+ Ugln—Lyry (= + = = by thy 4~ g (_qyn.
Or, B4+ (—1)n=2m—H(... b, g), dou wuy,gm=Cl...0_,)
et uy,=0,C(...0h ) +Cl...1,_g) =C(... 1), ce qui achéve la démonstration.

L’une des propriétés les plus frappantes de la suite U, mentionnée par BACHMANN
(loc. cit.), peut aisément se déduire de la. C’est celle exprimée par le théoréme suivant.

THEOREME. a et b étant deux entiers positifs premiers entre eux, le nombre b apparait
dans la suste U une fois et une seule suivi de a, et une fois et une seule précédé de a.

Démonstration. Si h=H(l,...1,)), h— (—1)* =2 H(,...1, ), et d’aprés le
théoréme précédent u, = C(},...1,) et w,__yym = C(,;... 1, ), d’ol résulte

A
u Clyob) g, L (10)

Uy_—yn Clhe . dny)

en vertu des propriétés bien connues des cumulants.

Supposons b > a, ce qui est permis. Remarquons que, d’aprés 2° et 39, si 4 est
impair, , est supérieur A %, , et & «,,,, de sorte que les indices 4 tels que u, — b
et ,_, = a ou u,,, = a sont nécessairement impairs. Remarquons aussi que deux
termes consécutifs de la suite U sont nécessairement premiers entre eux.

14 A b
Cela posé, pour trouver un rang A tel que u,=b et w,_, = a, développons - - en

fraction continue de maniére a avoir un nombre pair de quotients incomplets. Soient
b, byq, ..., I ces quotients. Comme b > a, [, > 0. En posant » = H(l,...1,), on
a en vertu de (10), » étant pair, u, = b et u,_, = a.

C’est la seule solution. En effet, supposons que u, = b et u,_, = a. D’apres le
lemme ci-dessus, il existe un systéme d’entiers positifs en nombre pair, et un seul,
bL...l,, telque h=H(l,...1,). Daprés (10), , .../, sonf les quotients incomplets

de % et la valeur de 4 est par suite identique a celle déterminée ci-dessus.

Pour déterminer un rang 4’ tel que %,. = b et u,-,, = a, on partira du développe-
ment de% en fraction continue avec un nombre impair de quotients incomplets, et
la démonstration s’achéve comme ci-dessus.
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Sih=H(,...l,),nétantpair,on a ' == H(1,l, — 1,l,...0,) on H(ly+ 1,03...1,)
selon que !/, > 1oul, = 1, d’oli résulte immédiatement la relation 4 + A’ = 241 — 211
entre les rangs 4 et A’, I désignant la somme !/, + - - - + [, des quotients incomplets
de %. ,

Comme on I'a remarqué ci-dessus, la projection sur Oy du vecteur de rang 4 de la
suite IT,,, c’est-a-dire le m° terme de la suite U,, est égale & u,. Par raison de

symétrie, la projection sur O x de ce méme vecteur est égale a la projection sur Oy du

vecteur de rang 2™ — h de la méme suite I7,,, soit & wym_,. Par conséquent, le terme de
, "

rang h de la suite de BRocoT M,, est égal a . C’est aussi la valeur de m (-—ZL)

Ugm_ 2m
Cette remarque permet de retrouver aisémen’t lgs propriétés des suites de Brocor,
ainsi que la formule (2) du n? 6.

Dans un autre article, je montrerai que la courbe C, ainsi que les fonctions %, y et
m de ¢ du n® 6, appartiennent  une classe assez vaste de courbes et de fonctions qui
peuvent étre définies par des équations fonctionnelles. La fonction m(f), par exemple,
satisfait aux équations

1+¢ (N m)

m(5)=14m) et m(g)= s
et c’est la seule fonction définie et continue pour 0 < ¢ < 1 jouissant de cette pro-
priété. GEORGES DE RHAM, Lausanne.

Elementare Ableitung der Coriolisbeschleunigung

in der Ebene und im Raume
(Nachtrag zur Abhandlung in Band II, Heft 2, Seite 31-35)

Bei der Aufstellung der Formel

€ = 20,4 SIn §

fir die Coriolisbeschleunigung im Raume, wurde iibersehen, daB in den vorher be-
handelten Beispielen fiir die Ebene nur der Fall betrachtet wird, da8 die relative
Geschwindigkeit radial beziiglich des Drehpunktes des «mitfithrenden» Systems ge-
richtet ist. Die obige Formel erscheint daher nur fiir den Fall bewiesen, daB die re-
lative Geschwindigkeit im Raume in einer Ebene durch die Momentanachse liegt,
d. h. daB sie die Momentanachse schneidet, wie dies im zuletzt behandelten Beispiel
des genannten Aufsatzes zutrifft. Fiir den allgemeinen Fall, daB die relative Ge-
schwindigkeit beziiglich der Momentanachse auBer einer radialen und einer achsialen
auch eine fransversale Komponente aufweist, mufl die Giiltigkeit obiger Formel
(auf elementarem Wege) noch nachgewiesen werden.

Zu dem Zwecke betrachten wir zunichst den einfachen Sonderfall in der Ebene
(siehe Fig. 1), wo sich ein Massenpunkt m mit der konstanten Relativgeschwindigkeit
v, auf einer Kreisbahn K bewegt, die ihrerseits mit der konstanten Winkelgeschwindig-
keit @ um ihren Mittelpunkt O dreht, so daB ein «mitfiihrender» Punkt des Systems

EL Math. 7
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