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El. Math. Band II Nr. 5 Seiten 89-104 Basel, 15. September 1947

Un peu de mathematiques ä propos
d'une courbe plane

(SUITE)

5. En designant par i et f les vecteurs de base du Systeme de coordonnees introduit
au n°4, les cötes de P0, consideres comme des vecteurs Orientes dans le sens positif
de parcours, sont 2 e, 2 -2i,-2j. Ceux de Px sont -j i, j(i +j), -jj, Ceux

de P2 sont Ti, -^ (* + ;), -j (i + f), -^ (t + 2;), -^-j,
Bornons nous ä ceux dont les composantes ne sont pas negatives, et multiplions

3n
ceux de Pn par -y-; on obtient une suite de vecteurs qui sera de*sign£es par JIn. Les

suites II0, TIX et JT2 sont respectivement:

n0: i
^

f,
nx\ t % + j f,
772: T 2T+f T+f t + 2f f.

D'une maniere generale, la suite ITn se deduit de lln„x en intercalant, dans chaque
Intervalle compris entre deux vecteurs consdcutifs deJIn, la sömme de ces deux vecteurs.

Cette loi de formation si simple entraine les cons&juences suivantes.

a) Les composantes des vecteurs de ün sont des nombres entiers.

En remarquant que Faire du Parallelogramme construit sur les vecteurs a et a + bt

ou sur les vecteurs a + betb, est egale ä Taire du Parallelogramme construit sur les

vecteurs a et bf on voit que:

b) L'aire du Parallelogramme construit sur deux vecteurs consdcutifs de JIn est igale
ä Vunite.

Delar£sulte:

c) Les composantes de tout vecteur de TIn sont des entiers Premiers entre eux.

d) Si le coefficient angulaire d'un cöte de Pn est egal ä la fraction irriductiblc --, les
2a 2b

projections de ce cöte sur les axes sont egales ä -^r & ~yT •

En effet, d'apres c), les projections du vecteurs correspondant deün sont egales ä

a et b.
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Suivant Lucas1), nous appellerons suite de Brocot d'indice n, et nous designerons

par Bn, la suite des coefficients angulaires des vecteurs de JTn.

e) La suite B0 se rdduit ä: -. -^.
La suite Bn est obtenue en prenant Bn_ x et en intercalant, dans chaque intervalle entre

deux termes consicutifs — et —de Bn_x, leur mediante —-—.
Cela r&ulte, en effet, directement de la loi de formation des suites /7n. En outre,

d'apres b) et c), les fractions sont obtenues directement sous forme irreductible.

f) Toute fraction de la suite Bn est la mediante des fractions voisines.

D'apres e), cela est exact pour les fractions de Bn n'appartenant pas ä Bn__x. Mais
cela est aussi vrai pour celles qui appartiennent k Bn_x, car si la propriet£ /) appartient

ä Bn_x, eile appartient aussi ä Bn, comme on le v&ifie immediatement.

g) La difference de deux fractions consdeutives de Bn a pour numerateur Vunite, et

pour ddnominateur le produit des ddnominateurs de ces deux fractions.

Si — et — sont deux fractions consecutives de Bn, on a en effet
a c n

d b ad bc 1

c a ac ac *

car ad — bc 1 d'apres b).

h) Si - est un nombre rationnel compris entre les deux termes consdeutifs — et — de la

suite Bn, onay^b-\-detx^a f c.

En effet, le vecteur entier xt + y f est egal, d'apres b), ä une combinaison lineaire
ä coefficients entiers des vecteurs at -f & f et et 4- dj, qui sont des vecteurs consicutifs

de /7n. D'apres l'hypothese, les coefficients de cette combinaison lineaire
sont des entiers positifs, d'oü resulte imm6diatement h).

i) Le numerateur ou le ddnominateur de toute fraction de Bn n'appartenant pas ä

Bn„x ddpasse n — 1.

Cette proposition est vraie pour Bx et s'etend immediatement de Bn_x ä Bn, en
tenant compte de la loi de formation e).

De h) et i) r6sulte immediatement:

j) Tout nombre rationnel positif, dont le numdrateur et le ddnominateur ne ddpassent

pas n, appartient ä la suite Bn.
Deg) et i) r6sulte encore:

k) La difference de deux termes consdeutifs de Bn, tous deux non superieures ä 1, est

au plus dgale ä —.
En effet, Tun de ces termes n'appartient pas k Bn_Xt et son d&iominateur est par

suite au moins £gal k n. La difference est donc une fraction de numerateur 1 et de
ddnominateur au moins egal ä n.

I) L'angle de deux cötes consdeutifs de Pn est au plus dgal ä are tg —.

l) Ed. Lucas, Theorie des Nombres, - Paris 1391. G.-H. Halphen, Sur des suites de fractions analogues
äla suite de Farey (CEuvresde G.-H. Halphen, t. II, p. 102-107). - Calcul des rouages par approximation,
nouvelle methode, par Achills Brocot, horloger, Paris 1862 (cite par Halphen et par Lucas).
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A cause de la symetrie de Pn, on peut supposer que les coefficients angulaires mx
et ntt de ces cötes sont compris entre 0 et 1 (Limites non exclues): 0 <S mx < Wg g 1.

Si mx - tg oc et m^ tg ß, tg (ß - a) - x^f™—- ^ ^ ™ Wi S ~ d'apres k),

d'oü 0<jj-a^ are tg - C. q. f. d. Cette proposition a 6te utilisee au n° 4 pour

prouver que la courbe C a une tangente en chaque point.
6. Pour exprimer les coordonnees x et y du point M(t) de l'arc M0 Mx, ainsi que le

coefficient angulaire m de la tangente en ce point, en fonction du parametre t, deve-
loppons t dans le Systeme de numeration de base 2:

OÜ

t^£-£ Q,axa2 (atr-= 0 ou 1).
i

Supposons que le chiffre 1 apparaisse ^t fois immediatement apres la virgule, et
qu'il y ait ensuite k^ fois le chiffre 0, puis kz fois le chiffre 1, etc.:

*-0,ll...l 00... 0 11... 1 00... 0 1...
Rx «2 ^3 ^4

Si t est dyadique, la suite des entiers k, est finie et se termine par le Symbole oo.
^peut etre nul, tandis que k^, kz, sont des entiers positifs. En sommant lespro-

gressions g^ometriques de raison -j- e* contenant respectivement kx, k9, k5,... termes

qui apparaissent ainsi dans le developpement de t, on obtient l'expression suivante
de ce developpement:

t= 1 ~ ~j-+ 2Ä| + itf 2*, + kt + k- + - - (1)

serie ümitee ou illimitee selon que t est dyadique ou non.
Thdoreme. Le parametre t etant donne par le developpement (1), le coefficient

angulaire m de la tangente a. la courbe C au point M(t) est donne par la fraction
continue

"»=*i+i1+i +.. (2)

R
-x2- etant la ne reduite de cette fraction continue,

A„ -*i + *, + 1

et en convenant que AQ 0, A_x =1, B0 1, B_x 0, les coordonnees x et y du
point M(t) sont donnees par les formules

x zw4£&k (3)
»-0 D

B% + ^»-iy=Z(-^W^ft- (4)
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Demonstration de la formule (2). Designons par tn la somme des (n -f 1) premiers
termes de la serie (1). Remarquons que t0 -= 1, et convenons que t„x 0.

Nous allons d'abord prouver que le coefficient angulaire m (tn) de la tangente ä C

au point M(tn) est egal ä

«ftO-^. (2')

La formule (2') est vraie pour n =* — 1, puisque, la tangente en M0 -= M(ö) etant

confondue avec Ox, m(0) y. Elle est egalement vraie pour n -= 0, puisque la

tangente enMx M(\) etant parallele kOy, m(l) -q-.

Supposons qu'elle est valable pour n 1, 2, ?t - 1, et montrons qu'alors eile
Test encore pour n.

Par hypothese, on a alors

** n-l ^ «-2

Pour abr^ger, posons k ^ -f • • • + &„_!. Comme 2* /„__! et 2* tfn_2 sont entiers et
2* *n-i — 2* tfn_2 (— l)n_1, les points M(tn_x) et M(^_2) sont deux sommets conse-
cutifs du polygone Qk (cf. n° 3), M(tn_x) precedant ou suivant M(tn_2) selon que n
est pair ou impair.

Le point M(tn) est un sommet du polygone Qk + kn situe entre M(tn_x) et M(tn_2),

et comme tn £„_! H—^pr"» ^(*n) e* ^(^n-i) sont deux sommets consecutifs de

Les tangentes ä la courbe C aux sommets des polygones inscrits Q coincidant avec
les cötes correspondants des polygones P, il resulte des proprietes des suites de

Brocot etablies au n° 5 que le coefficient angulaire m(tn) se deduit des fractions
m(tn_x) et m(tn) en effectuant kn mediations successives, entre m(tn_x) et m(tn_2)

d'abord, puis entre m(tn_x) et les mediantes successivement obtenues. Ces mediantes
sont

Bn_x+ Bn_2 2 Bn_x + Bn_2 kn Bn_x + Bn_2

An_x+ An_2 * 2 An__xY An_2 y ' knAn_x + An_2
de sorte que

**. // ^ ^n Bn_x + Bn~2

et comme, d'apres les formules classiques de la theorie des fractions continues,

Bn K Bn„x + Bn_2 et An^ knAn^x + An_2,

la formule (2') est etablie.
La formule (2) est ainsi etablie dans le cas oü t est un nombre dyadique, le developpement

(1) et la fraction continue (2) etant alors limites. Lorsque t n'est pas un
nombre dyadique, la formule (2) se deduit de (2') en faisant tendre n vers l'infini,
jD*

-j2- tendant alors par definition vers la valeur de la fraction continue illimitee m, tn

tendant vers t et m(tn) tendant vers m(t) en vertu de la continuite de la tangente ä

C(n°4).
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Demonstration des formules (3) et (4). Soient Xn et Yn les projections du vecteur
M(tn_x) M(tn) sur les axes Ox et Oy. En convenant comme ci-dessus que t_x--0, il
est clair que les coordonnees x et y du point M(t) sont donnees par

Oü oo

n~[) n - 0

series limitees dans le cas oü t est dyadique.
Or, M(tn_x) et M(/n) sont deux sommets consecutifs du polygone Qk d'indice

k kx-\ h kn. Ce sont aussi les points milieux de deux cötes consecutifs du poly-

gone Ph. Les coefficients angulaires de ces cötes de Pk etant -vn-l-et j^, leurs
2 A 2 A

projections surO* sont (d'apres n°5, d) egales k —j^ et —p2-.

Cela entraine que la projection du vecteur M(tn_x) M(tn) sur Ox est egale en valeur
A -\- A

absolue k —rt~k—-, et comme le signe de cette projection est le meme que celui de

A 4- A
*n ~ tn-i> soit (- l)n> onaIB= (— l)n W~13X—-, ce qui, substitue dansl'expression
ci-dessus de x, fournit la formule (3). La formule (4) s'etablit de la meme maniere.

7. La fonction t de m, definie par les formules (1) et (2), a ete introduite par
Minkowski, qui l'a designee par le Symbole (point d'interrogation). Avec la notation de
Minkowski, on doit ecrire t— 2 (m)1).

C'est une fonction croissante; si t est dyadique, m est rationnel, et redproquement.
M. Denjoy2) a prouve qu'elle a une derivee nulle presque partout (c'est-ä-dire sauf
sur un ensemble de mesure nulle). II est probable que la fonction m de x jouit de

proprietes analogues.
Je me bornerai ici k quelques remarques. On sait qu'un nombre dyadique possede

deux developpements:

t 0, ax a2 av_x 1000 et t^Q,axat ap_x Olli

Les deux fractions continues correspondantes, representant le meme nombre m,
sont evidemment egales: l'une se deduit de l'autre en y remplacant le dernier quotient

kn par kn — 1 + y. Le nombre des quotients incomplets kt est augmente d'une unite,

mais leur somme n'est pas changee. Pour Tun des deux developpements, et pour Tun
seulement, le dernier quotient kp est superieur k 1: nous pouvons convenir de choisir
celui-lä.

n

Soit k 2Jki la somme des quotients incomplets. 2* / etant alors un entier impair,
*-i

les premiers polygones Pn et Qn qui portent le point M(t) sont ceux d'indice k. II en

*) H. Minkowski. Zur Geometrie der Zahlen (Verhandlungen des 111. Internationalen Mathematiker-
Kongresses in Heidelberg 1904, p. 171 et 172). Voir aussi: Louis Kollros. Un algorithme pour l'approxi-
mation simultanee de deux grandeurs (These presentee ä l'Universit^ de Zurieb, 1905).

2) A. Denjoy. Sur quelques points de la theorie des fonctions (Compte rendu des seances de l'Academie
des Sciences, Paris, t. 194, p. 44-46 (1932)). - Sur une fonction de Minkowski (ibid. t. 198, p. 44-47
(1934)). - Sur les fonctions minkowskiennes (ibid. t. 201, p. 584-586 (1935)). - Sur une fonction reelle
de Minkowski (Journal de mathematiques pures et appliquees, 1938, p. 105-151)).
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resulte immediatement la propriete suivante, d'ailleurs connue, des suites de Brocot:
l'indice de la premibre suite de Brocot qui contient un nombre rationnel donne m est

egal ä la somme des quotients incomplets kt du developpement de m en fraction continue,
et le rang occupd par ce nombre dans cette suite est

h ^ 2*t= 2*1 + ••• + ** — 2k*+ ", + *H 2*» + ••• + *¦• - h (-l)w.
Proposons nous encore de calculer les entiers kt lorsque x est donne, de maniere ä

pouvoir calculer y et m en fonction de x.
Le rapport du terme general de la serie (3) au precedent est

AlttL±An_ Ä JL <*» + *) An-i + An_s _ J_ /j +
i + An~% 3**» An-i + An-2 3*«

x An-t
s*n-l

1 + k 2
Ce rapport est donc inferieur k —^, et par suite inferieur k y si n > 1, inferieur

ou egal k 1 si n 0. Les termes de la serie (3) decroissent en valeur absolue.
Soit En la somme des n premiers termes de la serie (3). x etant compris entre En

et 27n+1, on a

\x^En\^\En^En^^±^ (5)

et il ne peut y avoir egalite, dans la relation- ^, que si x =En+x, c'est-ä-dire si la
suite des kt est limitee et se termine avec kn.

Supposons que la suite des kt ne se termine pas avec kn. On peut alors remplacer n
par n + 1 dans la relation ci-dessus et il vient

I r* | < An+i+ An (^n+l + 1) An -f An_x
\x ^mi|^ 3*l + "+*« + *„+i 3*1 + ••• + *n + *n-M * W

Posons F (£) (l4" ^^n-l+^n-a

Comme on le verifie aisement, Fn(g) decroit de Fn(0) k 0 lorsque f croit de 0 ä oo.
II en est de meme pour FÄ+1(f)f et comme kn+x ^ 1, cela entraine

(*»+iMfi+^w-i 2An+ An_x
3*. + --. + *» + Vm ^ 3*1 + —+ *» + l K ]

et il ne peut y avoir egalite que si An+1 1.

D'apres la remarque faite k propos de (5), il ne peut, d'autre part, y avoir egalite
dans (6) que si la suite des kt est limitee et se termine par kn+x. Dans ce dernier cas,

en adoptant la Convention enoncee plus haut, kn+x > 1 et il y a inegalite dans (7).
En definitive, il ne peut donc y avoir egalite k la fois dans (6) et dans (7), d'oü resulte

l*-^il<-?££ter- W

Comme \x-ZM\= ££*X -\*~2.\.
cela entraine |*-g.l> i'+tM,^ ¦ (9)
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Les inegalites (5) et (9) peuvent s'ecrire

Fw(*n-f 1)<|*~ 2n\£Fn(kJ
et, d'apres la propriete enoncee de la fonction Fn(£), elles montrent que kn est la
partie entiere de la racine f fn de l'equation Fn(f) | x — En |.

D'apres (8) oü l'on remplace n par n — 1, on a | x — En | < F„(l), ce qui montre
que l'entier kn [fn] est bien au moins egal k 1 pour n > 1.

Le probleme pose est ainsi resolu. L'equation en £x s'ecrit par exemple, comme

FS) 3V et E1 - 1, -V ^ 1 ~ *- d'°ü f, ^oyf^1 et *i ' ^J- Ayant d6ter-

mine &x, ^, Än-1, on pourra former la fonction Fn(£) et la determination de
kn se ramenera au calcul de la partie entiere de la racine d'une equation de la
forme a f -f b c 3*, avec des coefficients a, 6 et c donnes.

8. En projetant sur un axe fixe les vecteurs de la suite /7n, on obtient des suites de
nombres qui, d'apres Bachmann, ont ete considerees notamment par Stern1). La
suite des projections sur Oy est particulierement interessante, designons-la par Un.

Considerons d'autre part la suite de nombres entiers uh (h — 0, 1, 2, definie

par les conditions suivantes:

1° u0 =- 0 et ux 1; 2° u2h - uh; 3° u2h+x - uh + u^_x.

Les premiers termes de cette suite, que l'on designera par U, sont:

0112132314352534154738572
Je dis que la suite Un des projections sur 0 y des vecteurs de la suite IIn se compose des

2n + 1 Premiers termes de la suite U, soit des nombres uh (h 0, 1, ,2n).
En effet, cela est vrai pour U0, et si c'est vrai pour Un_x, ce Test aussi pour Un

comme on le verifie immediatement en remarquant que, d'apres 2° et 3°, u2h+x

w2Ä + u2h+2, et en tenant compte de la loi de formation de IIn enoncee au n°5.
Cherchons ä calculer directement uh en fonction de h. A cet effet, posons, lx... ln

etant des entiers positifs:

H(lx... /n)-2/« *" "* - 2/« + --*/n + IV 2/»-f-(-l)».
On a evidemment

tf(/1...g^2/»i/((l...C) + (- i)».

formule qui permettrait de definir la fonction H par recurrence, en convenant que
H ¦= 1 pour # 0.

On etablit sans aucune difficulte la proposition suivante:

Lemme. A tout entier positif impair h correspondent deux suites finies d'entiers

positifs lx ln, et deux seulement, telles que

H(lx...ln)^h.
Dans l'une de ces suites, le dernier terme ln est superieur k 1. L'autre suite est alors

(h> ...,/„— 1,1) et contient un terme de plus.

l) Voir P. Bachmann, Niedere Zahlentheorie (Enzyklopädie der math. Wissenschaften, I, C 1), oü sont

cites, a cöte du Memoire de Stern, d'autres travaux sur le meme sujet de Hermes et Eisenstein. Voir
aussi Touvrage de Lucas cit6 plus haut.
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Designons encore par C(lx ln) le cumulant defini par la relation de recurrence

C(l1...l„) lnC(l1...ltt_1) + C(l1...l^2)
en convenant que C 1 pour n 0 et C 0 pour n — 1, de sorte que C(/x) /x.

Le probleme pose est alors resolu par le theoreme suivant.

Thdoüme. Si h - JI& /n), % C(lx ln).

Demonstration. Pour n 0, h 1 et «x 1, de sorte que le theoreme est exact;
de m^rne pour n 1, puisque Ä 2* — 1 et uh ug + «2/-2==: 1 + ^V-1-! 1

+ 1 + W2/-2_1 1+1 + 1 + U^-S_x =-.. /+ «0 /.

Supposons4e etabli pour n 1, 2,..., » — 1 et verifions qu'il est encore valable

pour n.
En posant h' H(lx Z^), on a A 2/wA' + (— l)n et, par hypothese,

uw C(lx... ln-x). D'apres 2° et 3°, h etant impair, on a

% %4-l + %_i %' + %W+2(-l)n "*' + W2fn-lA'+(-l)n= ' ' ' k «*' -t %' » (-l)n •

Or, Ä'+(-l)" 2*«-#&.../„_,), d'oü ^(-Dn-^C^.../^,)
et uh ln C(lx... ln_x) + C(/x... ln_2) C(/x... /n), ce qui acheve la demonstration.

L'une des proprietes les plus frappantes de la suite U, mentionnee par Bachmann
(loc. cit.)> peut aisement se deduire de lä. C'est celle exprimee par le theoreme suivant.

Th£or£me. a et b etant deux entiers positifs Premiers entre eux, le nombre b apparait
dans la suite U une fois et une seule suivi de a, et une fois et une seule precede de a.

Demonstration. Si h H(lx... ln), h- (- l)n - 2'» H(lj... ln_x), et d'apres le
theoreme precedent uh C(lx... ln) et %_{_])n C(lx... ln_x), d'oü resulte

uh_{_1)n
~ C(lx.. .ln_x) '» + ln_x +.. i ^+ h

en vertu des proprietes bien connues des cumulants.

Supposons b > a, ce qui est permis. Remarquons que, d'apres 2° et 3°, si h est

impair, uh est superieur k uh_x et k uh+x, de sorte que les indices h tels que uh~b
et uh_x aou t*^! a sont necessairement impairs. Remarquons aussi que deux
termes consecutifs de la suite U sont necessairement premiers entre eux.

Cela pose, pour trouver un rang h tel que uh-^ b et uh_x^= a, developpons -- en

fraction continue de maniere a avoir un nombre pair de quotients incomplets. Soient
K» ^n~i > • • • > h ces quotients. Comme b > a, ln > 0. En posant h H(lx .../„), on
a en vertu de (10), n etant pair, uh b et uh_x a.

C'est la seule Solution. En effet, supposons que uh b et %_! a. D'apres le
lemme ci-dessus, il existe un Systeme d'entiers positifs en nombre pair, et un seul,

lx... lni tel que h H^... /n). D'apres (10), tn.. .lx sont les quotients incomplets

de ~ et la valeur de h est par suite identique k celle determinee ci-dessus.

Pour determiner un rang h' tel que %> 6 et uWJtl ~ a, on partira du developpement

de — en fraction continue avec un nombre impair de quotients incomplets, et

la demonstration s'acheve comme ci-dessus.
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Si * H(lx ...ln),n etant pair, onaÄ' H(l, lx~-l,l2... ln) ou H(l2 + 1, l9... ln)

selon que lx> 1 ou lx 1, d'oü resulte immediatement la relation h + h' 2t+1 — 21"1

entre les rangs /* et A', / designant la somme lx-\ h ln des quotients incomplets

Comme on l'a remarque ci-dessus, la projection sur Oy du vecteur de rang h de la
suite IIm, c'est-ä-dire le me terme de la suite Um, est egale k uh. Par raison de

symetrie, la projection sur Ox de ce meme vecteur est egale ä la projection sur Oy du
vecteur de rang 2m — h de la meme suite IIm, soit k u2m_h. Par consequent, le terme de

rang h de la suite de Brocot Mm est egal ä w* C'est aussi la valeur de my^m/•
Cette remarque permet de retrouver aisement les proprietes des suites de Brocot,
ainsi que la formule (2) du n° 6.

Dans un autre article, je montrerai que la courbe C, amsi que les fonctions x, y et
m de t du n° 6, appartiennent k une classe assez vaste de courbes et de fonctions qui
peuvent etre definies par des equations fonctionnelles. La fonction m(t), par exemple,
satisfait aux equations

,(±±±)-l + .» et »(|) ^_
et c'est la seule fonction definie et continue pour 0 <£ t < 1 jouissant de cette pro-
priete. Georges de Rham, Lausanne.

m\

Elementare Ableitung der Coriolisbeschleunigung
in der Ebene und im Räume

(Nachtrag zur Abhandlung in Band II, Heft % Seite 31-35)

Bei der Aufstellung der Formel

c -^ 2ojvrelsin d

für die Coriolisbeschleunigung im Räume, wurde übersehen, daß in den vorher
behandelten Beispielen für die Ebene nur der Fall betrachtet wird, daß die relative
Geschwindigkeit radial bezüglich des Drehpunktes des «mitführenden» Systems
gerichtet ist. Die obige Formel erscheint daher nur für den Fall bewiesen, daß die
relative Geschwindigkeit im Räume in einer Ebene durch die Momentanachse liegt,
d. h. daß sie die Momentanachse schneidet, wie dies im zuletzt behandelten Beispiel
des genannten Aufsatzes zutrifft. Für den allgemeinen Fall, daß die relative
Geschwindigkeit bezüglich der Momentanachse außer einer radialen und einer achsialen
auch eine transversale Komponente aufweist, muß die Gültigkeit obiger Formel
(auf elementarem Wege) noch nachgewiesen werden.

Zu dem Zwecke betrachten wir zunächst den einfachen Sonderfall in der Ebene
(siehe Fig. 1), wo sich ein Massenpunkt m mit der konstanten Relativgeschwindigkeit
vm auf einer Kreisbahn K bewegt, die ihrerseits mit der konstanten Winkelgeschwindigkeit

co um ihren Mittelpunkt 0 dreht, so daß ein «mitführender» Punkt des Systems

El. Math. 7
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