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et la puissance n® de A, A™, par les équations

X tny ¥y
x(") - y(”) — 3—”— .

3

Le point (x, y) étant situé sur I'arc My, M,, le point (x’, y') est situé sur l'arc
1 . . 1) ‘i .
My M (—,—) le point (x™, y™), sur I'arc Mg M (-3—,,—) . Le coefficient angulaire de la

corde passant par M, et (™, y™), égal 4 —;_:*ny , tend vers zéro pour # = oco. La
courbe C a donc une tangente bien déterminée au point M, qui coincide avec I'axe
0 x, soit avec le coté de P, qui porte M,.

En tenant compte de la proposition établie au n° 2, on en déduit que, en chacun
des sommels de tous les polygones Q, , la courbe C a une tangente bien déterminée, qui
coincide avec le coté correspondant de P, .

On démontrera au n° 5 que I'angle de deux c6tés consécutifs de P, est au plus égal

. 1 . ’ . I ] ’ L.}
4 arctg—, et tend par suite vers zéro pour # = co. Il est aisé d’en déduire que la

courbe C a en chaque point une tangente. En effet, étant convexe, la courbe C posséde
en chaque point M deux tangentes parfaitement déterminées, qui ne sont distinctes
que si M est un point anguleux. Soient « et « + § les angles qu’elles forment avec O x.
L’angle des cOtés consécutifs de P, tangents a C en deux points situés de part et

. N 1 .
d’autre de M étant supérieur a g, B est inférieur A arc tg ~ quel que soit . Donc

B =0 et M ne peut étre un point anguleux. A cause de la convexité de C, on est
assuré que la tangente en M varie d’une maniére continue avec M.
Le rayon du cercle tangent & C en M, et passant par le point (x*, y{™) est, comme
le montre un calcul immédiat,
_ A0, (v k) oyt
n— Zy(”) - 2.3‘".y

Si # tend vers l'infini, (x™, y™) tend vers M, et R, tend vers zéro. Le rayon de
courbure de C est donc nul au point M.

Comme le rapport des rayons de courbure de deux courbes affines, en deux points
correspondants, est fini et non nul, il résulte immédiatement de 14 et de la proposition
é¢tablie au n° 2 que le rayon de courbure de C est nul en chacun des sommets de tous les
polygones Q,, .

Chaque arc de C contenant un sommet de Q,, si # est assez grand, on voit que
sur chaque arc de C se trouvent des points ot le rayon de courbure est nul, ons la courbure
est infinte. Aucun arc de C ne peut donc étre analytique. (A suivre.)

GEORGES DE RHAM, Lausanne.

B e —,

Eine kennzeichnende Eigenschaft des Kreises

Es sei @ eine stetige und stetig gekriimmte Kurve und S 4 B das vom Schnittpunkt
S von zwei Tangenten als Spitze und der Berithrungssehne 4 B als Basis gebildete
«Tangentendreieck». Sind alle Tangentendreiecke gleichschenklig, so ist € ein Kreis,
wie man durch einfache geometrische Uberlegungen sofort einsieht. Wir betrachten
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im folgenden nur die gleichschenkligen Tangentendreiecke D, mit dem festen Win-
kel « an der Spitze und untersuchen, ob sich der Kreis durch diese Dreiecke allein
charakterisieren 1481.

Wir fassen € als Enveloppe ihrer in der Hesseschen Normalform geschriebenen
Tangenten #(¢) = x cos @ + ysin g — p(¢) =0 auf. Aus dem Gleichungssystem
Hp) = 0, t'(p) = O ergeben sich die Koordinaten des Berithrungspunktes und damit
die Parameterdarstellung

x=p(p)cos @ — p'(p) sing, y=p(p) sin g+ p'(g) cos ¢. (1)

Die «Stiitzfunktion» p(¢) ist unter den gemachten Voraussetzungen stetig und zwei-
mal stetig differenzierbar. Die Tangenten #(¢) = 0 und #(¢ + 8) == 0 mit den Be-
rithrungspunkten 4 und B schlieBen den Winkel « = 180° — 8 (8 + 0° = 180°) ein.
Fiir die Koordinaten ihres Schnittpunktes S gilt:

% - sin f = p(p) sin(p + B) — p(p + f) sin ¢
ys - sin B = p(p + B) cos ¢ — p(p) cos(p + B).

Die Berithrungsstrecke SA4 = }/(x, — %)% + (y; — ¥,)? 1aBt sich ausrechnen, da dic
Quadratwurzel aufgeht. Man findet

SA = d(g) = P9 T A =Pl cosf=pllg)sinf @)

sin f§

Ersetzt man ¢ durch ¢ + f# und gleichzeitig # durch — f, so ergibt sich die Beriih-
rungsstrecke auf der zweiten Tangente

s Plo) —ple+ Bjcosf+p'(p+ B)sinf 3)
sin 8
Die Vorzeichen der Wurzeln sind dabei so gewihlt worden, dal fiir p(¢) — R (Kreis)
(2) und (3) denselben Wert d = R tg /2 = R ctg «/2 annehmen. Jetzt verlangen wir,
daB SB = SA4 = d(¢) fiir alle ¢ gilt. Driickt man p(p + ) mit (2) durch p(p) und
p'(p) aus, differenziert nach ¢ und setzt in (3) ein, so ergibt sich als Differential-
gleichung der Stiitzfunktion bei gegebener «Distanzfunktion» d(g)

Pt p=doctgl—d. (4)

Nach einer bekannten Ubungsaufgabe der Differentialrechnung ist g == "' + p der
Kriimmungsradius der Kurve mit der Parameterdarstellung (1). Ist also 4 konstant,
das heiit d' == 0, so ist auch p konstant. Es gilt somit der Satz:

Sind alle Tangentendreiecke D, kongruente gleichschenklige Dretecke mit dem Schen-
kel d, so ist € ein Krevs mit dem Radius R — d tg o /2. :

Ist die rechte Seite von (4) eine nach Voraussetzung stetige Funktion f(g), so
148t sich die allgemeine Lésung von (4) in der Form

q
p(p) = Cicos @ + Cysin g + / f(2) sin(g — 1) dt

o

darstellen, wo C, und C, Integrationskonstanten sind. Zur Probe differenziere man
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nach der bekannten Formel

v(¢) v
d - - dv du " OF(t,
dp ‘ / £(e, fl))dt} =gy Flg) — 5o Flu,o)+ [ - ()((p ?) g,

(@) "

%

Setzt man den Ausdruck fiir p(¢) in (2) und (3) ein, so folgt aus der Forderung
54 .- SB

o+ o+8
| 1ysintp + p—tyde+ [ fig)sin (p— 1) ds

P+

= 2 cos {f—/ 1(?) sin(tp—i—g“—t) dt =0,
¢

das heilt bei festem 8 mulB fiir jeden endlichen Wert von ¢ gelten
 Bl2
[ Ho+ 5 —2)sinzdz =0, (5)
-2
Jede derartige Funktion f(f) liefert eine Kurve € mit gleichschenkligen Tangenten-
dreiecken D, . Die Gleichung von € ergibt sich aus (1) in der Form?)
P ¥

x- Co= - [[()sintdt, y—Cy= | [(t)costat.

v %

Po @

4
Iiir die Bogenldnge von ¢ = ¢, an findet man den Ausdruck s = / He) dop.

@o

Beispiele:
1. f(¢) = at. Die Bedingung (5) ist nur erfiillt, wenn
" .
‘/zsinzdzzzZsing—wﬁco&——gzo, d.h. tg5=-.
—pl2

Nach passender Wahl von C; und C, erhidlt man die Parameterdarstellung:
¥ ~a@cose—asing, y=a@sing+ acose.
Das ist die im Punkt (0/a) beginnende Evolvente des Kreises x% + y2 = a%. Die Be-
dingung fiir gleiche Beriihrungsstrecken, tg f/2 = /2, 1aBt sich unmittelbar in der
Form a ¢ + a tg /2 = a (p + B) — a tg B/2 an einer Figur ablesen. Dem ersten mog-
lichen Winkel g = 514954’ entspricht a = 25°6'.
2. f(t) = at+ bt: Man erhilt wieder die Bedingung tg /2 = /2, und als Para-
meterdarstellung:
x= (bep?+ap—2b)cosp — (2bg + a)sin ¢
y= (bop?+ aqp—2b)sin o+ (2bg + a) cosg.

1} Dieselbe Darstellung besitzen alle Kurven, die ihren eigenen Evoluten &hulich sind. Vergleiche
G. Lor1a, Spezielle algebraische und transzendente ebene Kurven, 2. Auflage, Bd. II, S. 256,
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Das ist die Evolvente der Kreisevolventen!), bei der die Abwicklung mit der
Fadenlidnge a im Punkt (— 26/0) des Kreises x% 4 y? = 4 b2 beginnt.

3. f(#) = ce*t. Die Bedingung (5) geht iiber in

0 - 7Z~kz sin z dz - k%—ﬁf IZcos —g— Sin (k —fzi) — 2 ksin g~ Cos (k %)] ,
L

das heiBt Tg (k B/2) = k- tg /2 oder Tgw == 2/8tg /2 - w mit w = k B/2. Diese
Gleichung hat nur fiir # > 2z von Null verschiedene Losungen. Als Parameterdar-
stellung erhalten wir

(k2 + 1) x - - ce*? (cos @ -- ksin @)
(k% + 1) y == ce*® (k cos ¢ + sin ¢).

kp
Setzt man k-tgu—=Ind, p+up-=9, ¢ -’

cosu’
so wird x:-=A%cos P, y = A’sind oder r==A4?,

das ist die Polargleichung einer logarithmischen Spirale?). Aus den obenstehenden
Formeln folgt, daB es zu jedem vorgegebenen Tangentenwinkel a logarithmische
Spiralen gibt, fiir die alle Tangentendreiecke D, gleichschenklig sind. Die Beriithrungs-
punkte liegen dabei auf verschiedenen Windungen.

0
Zahlenbeispicl: o — 309, f— 5100, Tgw— -5 .1y—0,830w
00773, k0174, 4 -1,19

r = 1,19?

4. f(t) =sin at (@ > 1). Aus (5) wird nach kurzer Rechnung

sinky=~Fhsiny, wo gp-= 1(aulﬁ km—?—t—-l-ﬁ),

a—1
Als Kurvengleichung erhilt man mit R = 2a, r=a+1, (a+ 1) p =&

() = 55— {(R — 7) sin ¢ — 7 sin ~——¥~ 19',

-1 [ (6)
() -- SE=A7 1(R —7)cos P+ rcos ---— 19]

Das ist die Parameterdarstellung einer gemeinen Hypozyklmde. Sie ist dhnlich zur
Hypozykloide mit dem Festkreisradius R und dem Rollkreisradius 7.

Zahlenbeispiel: k=15, a=35, =3,646, f=1823=104%28", a = 75°32".
Das ist die dem reguldren Sternfiinfeck entsprechende fiinfspitzige Hypozykloide.

1) Vergleiche Loria, a.a. 0., S. 148,

2) Ausder allgemeinen Formel fiir die Bogenlinge ergibt sich sofort die natiirliche Gleichung g = k s.

3) Diese Bedingung kann auch in der Form tga /2 = « tg /2 geschrieben werden. Sie erweist sich als not-
wendig und hinreichend dafiir, daB die vom Scheitel S beschriebene «isoptische» Kurve eine zur Ausgangs-
kurve ahnliche Kurve ist. Bei der logarithmischen Spirale gilt dies fir jeden Winkel f bzw. a.
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« muB der Schnittwinkel in den Doppelpunkten sein!). Wir zeigen zur Probe, daB all-
gemein einer der Schnittwinkel in einem Doppelpunkt von (6) ein gleichschenkliges
Tangentendreieck D, liefert, sofern a eine ganze Zahl von der Form 4 m + 1 ist. Das
mit (6) gebildete Gleichungssystem x(&,) = x(8y), y(#,) = y(%,), & + I, erhilt nach
goniometrischer Umformung die Gestalt

(R—7) sin 5 (8 — 8) cos 5 (B, + B) = 7 sin o (3, — B) cos oot (3, + B)

— (R—7)sing (8 — 8 sin 1 (8 + 8) = 7sin 5= (9 — ) sin L (3, + By,
daraus durch Division

1 R~ 2
—tg5 (P +3) =tg —-2~;—-r- (B + 9y), also Py + Oy = -—r'
. ¥R . R—v» S

Da sin—p-=sin——a, $—dh=(@+1)(p,—¢)=(a+1)B, wo B einer der
Schnittwinkel im Doppelpunkt ist, erhdlt man

...(R——r)sin—;—(a+1)ﬂ=rsin(Rﬂrgja%—l)ﬂ
oder (a—1)sing(a+1) (x—B) = (@+ 1 sing (a—1) (x—f).
Setzt man 5 (@—1)(r—P) =%, @+l (-P=v, —=ori_k

so folgt sin R« = ksin u
also w=1v, dasheiBt n—f=8, a=a-f=24, w.z.b.w.

Ernst TROST, Ziirich,

Kleine Mitteilungen

I. Die trigonometrischen und hyperbolischen Funktionen

P. RossiER hat im Heft 5 (Bd. 1) der Elemente die Differentialgleichung der Funk-
tionen sin ¥ und cos ¥ aus ihren Additionstheoremen hergeleitet. Es ist nicht ohne
Interesse, den umgekehrten Weg einzuschlagen, das heiBt, aus der Differentialgleichung
allein auf die charakteristischen Eigenschaften dieser Funktionen zu schlieBen. Dies
sei im folgenden fiir die trigonometrischen und hyperbolischen Funktionen gemeinsam
durchgefiihrt.

Wir gehen aus von der Differentialgleichung

y'(x)+ ky(x¥) =0 mit k= 4 1. (1)

Bekanntlich besitzt (1) fiir willkiirlich vorgeschriebene Anfangsbedingungen ¥(0), y’(0)
genau eine Losung, die sich iiber den ganzen Bereich — 0o < ¥ < + oo erstreckt.

1) Die Spitzen der von S beschriebenen dhnlichen Hypozykloide liegen in den Doppelpunkten der
urspriinglichen.
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