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et la puissance ne de A, An, par les equations

Le point (x, y) etant situe sur l'arc M0 Mt, le point (xf, yf) est situe* sur l'arc

M0 M h- le point (#(n), y(w)), sur l'arc M0 Af (-^"). Le coefficient angulaire de la

corde passant par M0 et (*(w), y(w)), egal ä —~ tend vers zero pour n oo. La

courbe C a donc une tangente bien determinee au point M0, qui coincide avec Taxe
O x, soit avec le cöte de P0 qui porte M0.

En tenant compte de la proposition etablie au n° 2, on en deduit que, en chacun
des sommets de tous les polygones Qn, la courbe C a une tangente bien determinee, qui
coincide avec le coli correspondant de Pn.

On demontrera au n° 5 que l'angle de deux cötes consccutifs de Pn est au plus egal

a are tg —, et tend par suite vers zero pour n oo. II est aise d'en deduire que la
courbe C a en chaque point une tangente. En effet, etant convexe, la courbe C possede
en chaque point M deux tangentes parfaitement determinees, qui ne sont distinetes
que si M est un point anguleux. Soient a et a + ß les angles qu'elles forment avec 0 x.
L'angle des cötes consecutifs de Pn tangents ä C en deux points situes de part et

d'autre de M etant superieur ä ß, ß est inferieur k are tg — quel que soit n. Donc

ß =40 et M ne peut etre un point anguleux. A cause de la convexite de C, on est
assiifre que la tangente en M varie d'une maniere continue avec M.

Le rayon du cercle tangent a C en M0 et passant par le point (#(n), y(n)) est, comme
le mohtre un calcul imm£diat,

r - *{n)% + y{nY
=: (* + tty)a-t-y'

n 2y{n) l-Vl-y
Si n tend vers l'infini, (x{n), y{n)) tend vers M0 et Rn tend vers zero. Le rayon de
courbure de C est donc nul au point M0.

Comme le rapport des rayons de courbure de deux courbes affines, en deux points
correspondants, est fini et non nul, il resulte immediatement de lä et de la proposition
etablie au n° 2 que le rayon de courbure de C est nul en chacun des sommets de tous les

polygones Qn.
Chaque are de C contenant un sommet de Qn, si n est assez grand, on voit que

sur chaque are de C se trouvent des points oü le rayon de courbure est nul, ou la courbure
est infinie. Aucun are de C ne peut donc £tre analytique. (^4 suivre.)

Georges de Rham, Lausanne.

Eine kennzeichnende Eigenschaft des Kreises

Es sei (£ eine stetige und stetig gekrümmte Kurve und SAB das vom Schnittpunkt
S von zwei Tangenten als Spitze und der Berührungssehne A B als Basis gebildete
«Tangentendreieck». Sind alle Tangentendreiecke gleichschenklig, so ist £ ein Kreis,
wie man durch einfache geometrische Überlegungen sofort einsieht. Wir betrachten
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im folgenden nur die gleichschenkligen Tangentendreiecke Da mit dem festen Winkel

ol an der Spitze und untersuchen, ob sich der Kreis durch diese Dreiecke allein
charakterisieren läßt.

Wir fassen £ als Enveloppe ihrer in der Hesseschen Normalform geschriebenen
Tangenten t(<p) x cos <p -f y sin cp — p((p) — 0 auf. Aus dem Gleichungssystem
t(q>) 0, t'(<p) 0 ergeben sich die Koordinaten des Berührungspunktes und damit
die Parameterdarstellung

x p(<p) cos (p — p'(q>) sin <p, y ^ p((p) sin cp -f p'(q?) cos 9. (1)

Die «Stützfunktion» p(q?) ist unter den gemachten Voraussetzungen stetig und zweimal

stetig differenzierbar. Die Tangenten t(cp) 0 und t(<p +> ß) -¦= 0 mit den

Berührungspunkten A und B schließen den Winkel a =-= 180° ~ ß(ß * 0°, 4= 180°) ein.
Für die Koordinaten ihres Schnittpunktes S gilt:

xs - sin ß ^(9?) sin(99 -f- /?) — £(9? H- ß) sin 9?

ys • sin ß £(9? -f- /J) cos 9? — ^(99) cos (9? + /?).

Die Berührungsstrecke SA |/(#s — ^)2 -h (ys — y^)2 läßt sich ausrechnen, da die

Quadratwurzel aufgeht. Man findet

SA d(w) -£i"(p+ ®-ZJW) cos P " ft'(P)sin ß
(2)W' sin ß ' * '

Ersetzt man <p durch 9? + ß und gleichzeitig ß durch — ß, so ergibt sich die
Berührungsstrecke auf der zweiten Tangente

SB p((p) ~ p(<p 4" ß) cos ß + ^'(y j ß} sin /j
(31

sin ß ' **'

Die Vorzeichen der Wurzeln sind dabei so gewählt worden, daß für p(tp) — R (Kreis)
(2) und (3) denselben Wert d R tg /?/2 2? ctg oc/2 annehmen. Jetzt verlangen wir,
daß SB Su4 ^(9?) für alle 99 gilt. Drückt man p(<p + /?) mit (2) durch £(9?) und

p'(y) aus, differenziert nach 99 und setzt in (3) ein, so ergibt sich als Differentialgleichung

der Stützfunktion bei gegebener «Distanzfunktion» d(<p)

p" + p=*d.ctS£-d'. (4)

Nach einer bekannten Übungsaufgabe der Differentialrechnung ist q =- p" + p der

Krümmungsradius der Kurve mit der Parameterdarstellung (1). Ist also d konstant,
das heißt d' =- 0, so ist auch q konstant. Es gilt somit der Satz:

Sind alle Tangentendreiecke Da kongruente gleichschenklige Dreiecke mit dem Schenkel

d, so ist (£ ein Kreis mit dem Radius R — d tg oc/2.

Ist die rechte Seite von (4) eine nach Voraussetzung stetige Funktion f(<p), so

läßt sich die allgemeine Lösung von (4) in der Form

p((p) =- Cx cos <p -f- C2 sin cp + I f(t) sin (9; — t) dt

darstellen, wo Cx und C2 Integrationskonstanten sind. Zur Probe differenziere man
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nach der bekannten Formel

f v(<p) | v

I u(tp) u

Setzt man den Ausdruck für p(<p) in (2) und (3) ein, so folgt aus der Forderung
SA - SB

j f(t) $in((p + ß-t)dt+ f f(t) sin (<p - t) dt
<p tp

q,+ß

--= 2 cos 4-' I /(*) sin^ -f- y - t) dt - 0,

das heißt bei festem ß muß für jeden endlichen Wert von cp gelten

//(?+ 2 -*)sin*&-0. (5)
-?/2

Jede derartige Funktion /(2) liefert eine Kurve (£ mit gleichschenkligen Tangentendreiecken

Da. Die Gleichung von (£ ergibt sich aus (1) in der Form1)

x Cx -- - / /(<) sin t dt, y — C2 -= / /(*) cos 2dtf.

Für die Bogenlänge von <p =- 9?0 an findet man den Ausdruck s / /(9?) ^9?.

Beispiele:

1. f(t) at. Die Bedingung (5) ist nur erfüllt, wenn

/' R R RR
z sin z dz =¦ 2 sin y — /? cos y =- 0, d. h. tg y y.

-pf/2

Nach passender Wahl von Cx und C2 erhält man die Parameterdarstellung:

x a<p cos 9? — a sin 9?, y — a cp sin 97 + # cos 9?.

Das ist die im Punkt (Q/a) beginnende Evolvente des Kreises xz + y2 a2. Die
Bedingung für gleiche Berührungsstrecken, tg ß/2 /?/2, läßt sich unmittelbar in der
Form a 9? -f # tg /?/2 a (9? -f ß) — a tg ß/2 an einer Figur ablesen. Dem ersten
möglichen Winkel ß 514°54' entspricht a - 25°6'.

2. /|Eft/+6l2, Man erhält wieder die Bedingung tg ß/2 ß/2, und als

Parameterdarstellung :

x (b cp% -f- a tp — 2 b) cos <p — (2 b cp -f ß) sin 9?

y - (6 9?2 + a cp — 2 &) sin q> -f (2 6 9p -f- ä) cos 99.

l) Dieselbe Darstellung besitzen alle Kurven, die ihren eigenen Evoluten ähnlich sind. Vergleiche
G. Loria, Spezielle algebraische und transzendente ebene Kurven, 2. Auflage, Bd. II, S. 256.
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Das ist die Evolvente der Kreisevolventen1), bei der die Abwicklung mit der

Fadenlänge a im Punkt (- 2 6/0) des Kreises x2 + y2 4 b2 beginnt.

3. f(t) cekt. Die Bedingung (5) geht über in

m
0 fe~kzsinzdz~- ^-^y [ 2 cos |- Sin (* -§-) - 2 k sin -| Cos (* -|)]»

das heißt Tg (* ß/2) -= k • tg 0/2 oder Tg w - 2//? tg 0/2 w mit w - £ ß/2. Diese

Gleichung hat nur für ß > 2n von Null verschiedene Lösungen. Als Parameterdar-
stellung erhalten wir

(kz -f 1) x ceh<p (cos cp - k sin 9?)

(&2 f- 1) y - c*** (& cos <p -f sin 9?).

Setzt man k tg /j -= In A, q> + p - &, c
CQg

so wird # -= ^4* cos 1?, y -Absind oder r ^ A9,

das ist die Polargleichung einer logarithmischen Spirale2). Aus den obenstehenden
Formeln folgt, daß es zu jedem vorgegebenen Tangentenwinkel a logarithmische
Spiralen gibt, für die alle Tangentendreiecke Da gleichschenklig sind. Die Berührungspunkte

liegen dabei auf verschiedenen Windungen.
1 2 fa 750

Zahlenbeispiel: a -= 30°, ß 510°, Tg w - —~- • w 0,839 w

w 0,773, k - 0,174, A -1,19

r - 1,19*

4. f(t) sin at (a > 1). Aus (5) wird nach kurzer Rechnung

sin kip^- ksinip, wo ^ =- ^ (a — 1) ß, k - -__-j- 3).

Als Kurvengleichung erhält man mit R 2a, r ~ a + 1, (a -f- 1) 99 ^= #

*(*) 2"(Ä=Tr) r [<Ä - r> sin t? ~ r sin ~=^*|,
y(*) üir^yv 1<Ä- ')cos# + rcos /ef-*|.

Das ist die Parameterdarstellung einer gemeinen Hypozykloide. Sie ist ähnlich zur
Hypozykloide mit dem Festkreisradius R und dem Rollkreisradius r.

Zahlenbeispiel: k 1,5, a 5, y 3,646, 0 - 1,823 104° 28', a - 75° 32'.

Das ist die dem regulären Sternfünfeck entsprechende fünfspitzige Hypozykloide.

1) Vergleiche Loria, a. a. O., S. 148.
2) Aus der allgemeinen Formel für die Bogenlänge ergibt sich sofort die naturliche Gleichung Q ¦» k s.
3) Diese Bedingung kann auch in der Form tg a ß/2 a tg ß/2 geschrieben werden. Sie erweist sich als

notwendig und hinreichend dafür, daB die vom Scheitel S beschriebene «isoptische» Kurve eine zur Ausgangskurve

ahnliche Kurve ist. Bei der logarithmischen Spirale gilt dies für jeden Winkel ß bzw. oc.

(6)
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ol muß der Schnittwinkel in den Doppelpunkten sein1). Wir zeigen zur Probe, daß

allgemein einer der Schnittwinkel in einem Doppelpunkt von (6) ein gleichschenkliges
Tangentendreieck Da liefert, sofern a eine ganze Zahl von der Form 4 m ± 1 ist. Das
mit (6) gebildete Gleichungssystem x(&x) x(&2), y(&x) y(#2), &x* #2 erhalt nach
goniometrischer Umformung die Gestalt

(R~r) siny (&x~ &2) cosy (&x + #2) r sin ^~ (&x-&2) cos4=^ (*i + #2)

- (Ä - r) sin \ (&x - #2) sm y (&x + &2) r sm -y^- (&x - &J sin ^~ (&x + &2),

daraus durch Division

- tg| (h + »t) tg -^ (*, + »2), also *, + *,= -™

Da sin -^- sin —^— tz, #r — #2 (a -f 1) (<px — 9?2) (a -f 1) 0, wo 0 einer der

Schnittwinkel im Doppelpunkt ist, erhält man

- (/c - r) sm y (a -f-1) 0 r sm ^ 0

oder (a - 1) siny (a 4- 1) (tt - 0) (a -f 1) sin y (a - 1) (n - ß).

Setztman y (a - 1) fr - 0) *, y (a + 1) (* - 0) v, 1= *^-} *,

so folgt sin Aj u £ sm w

also w y, das heißt n — 0 0, <x rc — 0 0, w. z. b. w.

Ernst Trost, Zürich.

Kleine Mitteilungen

I Dte trigonometrischen und hyperbolischen Funktionen

P. Rossier hat im Heft 5 (Bd. 1) der Elemente die Differentialgleichung der
Funktionen sm x und cos x aus ihren Additionstheoremen hergeleitet Es ist nicht ohne
Interesse, den umgekehrten Weg einzuschlagen, das heißt, aus der Differentialgleichung
allem auf die charakteristischen Eigenschaften dieser Funktionen zu schließen. Dies
sei im folgenden für die trigonometrischen und hyperbolischen Funktionen gemeinsam
durchgeführt.

Wir gehen aus von der Differentialgleichung

y"(*H *y(*) 0 mit k= ± 1. (1)

Bekanntlich besitzt (1) für willkürlich vorgeschriebene Anfangsbedingungen v(0), y'(0)
genau eine Lösung, die sich über den ganzen Bereich — oo < x < -f- oo erstreckt

l) Die Spitzen der von S beschriebenen ähnlichen Hypozykloide liegen in den Doppelpunkten der

ursprünglichen
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