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2. y=x4; y' =4x3; y' =12 x2.
Fir x=01ist y'=0 und y"" =0. Fir x40 ist "' > 0. Daher: x=0 st hier Gerad-
stelle und E xtremstelle, weil Waagestelle und keine Wendestelle.

3. y=2x8; y'=32%; y"'=6x.
Fiir x=01ist y'=0, " =0, aber fiir x> 0 ist "’ > 0 und fiir x <0 ist y"* <0, somit
Kurve positiv gekriitmmt fiir positives x und negativ gekriimmt fiir negatives x, da-
her ist x=0 Terrassenstelle.
1

4. y=Vx; ¥ = ——.

y="Vx; v T
x =015t etne Vertikalstelle. Dreht man das Koordinatensystem um 909, so heiBt das,
man ersetze in der Funktionsgleichung x durch (—y) und y durch x. Man erhilt so
die neue Funktionsgleichung y= —x3; die frithere Vertikalstelle ist ]etzt Waage-
stelle und behandelbar. Sie erweist sich als Terrassenstelle.

VikTOrR KRAKOWSKI, Ziirich.

Anwendung der Fourier-Sitze in der Theorie der
Seismographen und Schwingungsmesser

§ 1. Komplexe Darstellung reeller Zahlen
a, b = reelle Zahlen, kR=+ Va%+ b2, x=arctgz,

]= V?f, e = 2,718 . .. = Basis der natiirlichen Logarithmen.
—a+jb=~kel*=Fk (cos x + { sin x).

f=a—jb=Fk-.e % stellt die zu f konjugiert komplexe Zahl dar.

& —2« t+1) ist die komplexe Darstellung der reellen Zahl «.

§ 2. Komplexe Darstellung einer Sinusschwingung

t = Zeit. s = R cos (w ¢ + y) = Sinusschwingung mit der Amplitude R, der Kreis-
frequenz w und der Phase y. (R> 0, w > 0, y reell).
Man setze

I=Rei@ttY) ynd S= % R ¢'¥ = komplexe Amplitude.
Dann ist
= —f (F+ f)
oder
s= G el* + e /v die komplexe Darstellung der Sinusschwingung s.
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§ 3. Komplexes Linienspektrum einer periodischen Funktion

s (2) sei eine reelle stetige Funktion der reellen Variabeln ¢. Die Funktion besitze die
Periode T = %’1 > 0, und das Intervall 0 < ¢ < T zerfalle in endlich viele Teil-
intervalle, in denen s(f) monoton ist. s(f) 14Bt sich in eine Fourier-Reihe entwickeln?):

s(t) = s +§R,, cos (nnt -+ p,).

Die Konstanten s,, R, und y, lassen sich aus s(¢) berechnen. Das n-te Glied der Reihe
soll nach § 2 in komplexer Darstellung geschrieben werden:

s(t) =Gy + 2 (Bn e " + &, 671",
n=1

1 : - 1 .
So=3%0, Cu=-5 R,e'¥n, S, = > R, e 1¥n,

Schreibt man G, = S_,,, so erhilt die Fourier-Reihe die einfache Form

F 0o .
sy =2 Speinn,

n=—00

wobei sich fiir die Berechnung der Konstanten s,, R, und y, die einheitliche Formel

T

7

Sn = % / S(ﬁ') 8"”"06&9, n == O, 1: 2) )

)

ergibt!). Die Zahlenfolge &,, &,, ... ist das komplexe Linienspektrum von s(¢).

§ 4. Kontinuierliches Spektrum einer willkiirlichcn Funktion

* - 00

s(¢) sei eine reelle, stetige Funktion, fiir welche / |s(®)| d existiert. In Analogie

— O

zu § 3 148t sich s(¢) durch ein Fourierintegral darstellen?):

foo

O = [ Sw) el du,

wobei
r 0
1

~ [ S(9) eI ? a9

—00

S(u) =

das komplexe, kontinuierliche Spektrum von s(¢) ist.

1) Man vergl. z. B. E. GoursaT, Cours d’Analyse, Bd. I, Seite 484~502, Gauthier-Villars, Paris 1933.
%) R. CouranTt und D. HiLBerT, Methoden der mathematischen Physik, Band I, Seite 58-69, Springer
Berlin 1931.
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§ 5. Systeme mit Frequenzcharakteristik

Eine zeitlich verinderliche GriBe s(f) wirke auf ein « System» I"und steuere vermit-
telst dieses Systems eindeutig eine zweite GroBe k(f). Beispielsweise ist s(f) die Ver-
tikalkomponente der Verschiebung des Bodens aus der Ruhelage wihrend eines Erd-
bebens, I"ein Vertikalseismograph, () der Ausschlag des Zeigers des Seismographen!).

Das System habe die grundlegende Eigenschaft, daB einer Sinusschwingung im
Sinnevon § 2 s = R cos (w ¢ 4 ) als Eingang eine Sinusschwingung # = G cos (w ¢ + ¢)

mit gleicher Frequenz als Ausgang entspricht, wobei das Verhiltnis 7('?— der Amph-

tuden und die Phasenverschiebungen ¢ — y nur von w, nicht aber von R und y ab-
hingen, also

%— = g(w) = Amplitudencharakteristik des Systems /.
e—p=yxw= Phasencharakteristik des Systems /.

Schreibt man wie in § 2 die Sinusschwingungen komplex, also
‘ ~ . 1
s=ee;wt+ee—lwt' 6=‘§‘R8’v,

h=$eiv1Heio,  §=Ger,

so ist das Verhiltnis der komplexen Amplituden

$

-..6... = %ei(e"V’) —_ q ell= q(w)

eine komplexe Zahl q, die nur von w abhingt und komplexe Frequenzcharakteristik
des Systems I" genannt werden soll. Die Transformation des Eingangs s in den Aus-
gang h durch das System I" im Falle einer Sinusschwingung ist daher mathematisch
nichts anderes als die Multiplikation der komplexen Amplitude & des Eingangs mit
der Zahl q.

q ist zundchst nur fiir w > 0 definiert.

Fir w <0 sei ¢g(w)=¢q(—w),

2 (@) =-y(- o),
woraus g(— o) = q(w) folgt.

Vom System mit der Frequenzcharakteristik q werde ferner vorausgesetzt, dal es
additiv wirke, das heiBt, entsprechen den Eingingen s,, s,, ..., s; die Ausginge
hy, hy, . ., ke, so soll dem Eingang a;s;,+ a3s; + - + a;s; der Ausgang
ayhy + aghy + - - - + a,h; entsprechen, wo a,, a,, ..., a; willkiirliche Konstante be-
deuten. Die Additivitat gelte auch fiir Fourierreihen und Fourierintegrale, das heiBt,
ist der Eingang s(¢) im Sinne von § 3 eine periodische Funktion mit dem Linienspek-
trum S, respektive im Sinne von § 4 eine Funktion mit dem kontinuierlichen Spek-
trum S(«), so ist der Ausgang eine periodische Funktion mit dem Linienspektrum

1) Die Verwendung von Fourier-Integralen in der Theorie der Seismographen ist beschrieben in
W.T. BorNn und J. M. KENDALL, Application of the Fourier-Integral to some geophysical instrument
problems. Geophysics, Vol. V1, 1941, S. 105-115.
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q(# 7) - S, respektive dem kontinuierlichen Spektrum q(u) - S(u). Es ergibt sich
also folgende Gegeniiberstellung von Eingéingen mit den zugehérigen Ausgingen:

Eingang s Ausgang h

Sy . hz, l=‘“1,2,...,k,
k 13

Zal 3 Zaz i,

=1 =1

+ & ‘ + x

3o 5 awne,em,

7= — 00 "= —00
+,.°° + %0
/ S(u) e du / q(%) S(u) e’ du.

Natiirlich ist dabei vorauszusetzen, daB q(w) so beschaffen ist, daB die Fourierreihe
und das Fourierintegral fiir den Ausgang 4 konvergieren.

§ 6. Zusammensetzung von Systemen

I, sei ein System mit der Frequenzcharakteristik g, , I, ein zweites System mit der
Frequenzcharakteristik g,. Die Systeme seien so beschaffen, daB man den Ausgang
des ersten Systems als Eingang fiir das zweite beniitzen, das heiBt die Systeme zu-
sammensetzen kann. Offenbar hat das zusammengesetzte System ebenfalls eine Fre-
quenzcharakteristik, namlich q, - g,. Als Beispiel sei ein Seismograph mit galvano-
metrischer Registrierung genannt. I} ist das Seismographenpendel, I', das Galvano-
meter. Der Ausgang von I ist der Ausschlag des Pendels relativ zum Gestell. Auf
dem Seismographenpendel ist eine Induktionsspule befestigt. Sie schwingt im Felde
eines auf dem Gestell montierten Magneten. Wird die Spule mit dem Galvanometer
zu einem Stromkreis geschlossen, so bilden I'y und [, ein zusammengesetztes System.

§ 7. Experimentelle Bestimmung der Frequenzcharakteristik

Fiir die experimentelle Bestimmung der Frequenzcharakteristik eines gegebenen
Systems I" seien folgende beiden Verfahren genannt:
a) Man beniitzt als Eingang Sinusschwingungen verschiedener Frequenzen w und

beobachtet Amplitude und Phasenverschiebung des Ausgangs. Sind G und §) die kom-

plexen Amplituden des Eingangs und Ausgangs, so ist q(w) = —g— die gesuchte Cha-

rakteristik.

b) Man beniitzt als Eingang eine geeignete willkiirliche Funktion s(f) im Sinne von
§ 4. Man registriert sowohl s(¢), wie den zugehorigen Ausgang A(¢). Nach § 4 bestimmt
man die Spektren S(») und $() des Eingangs und des Ausgangs. Dann ist

aw) = 2.

Ist I"ein Seismograph, so kann man bei beiden Verfahren einen Schwingungstisch,
auf den der Seismograph gestellt wird, beniitzen. Der Ausschlag s(/) des Schwin-

gungstisches ist der Eingang von I'.
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§ 8. Bestimmung der wahren Bodenbewegung aus den Registrierungen von Seismographen

Es sei die Aufgabe gestellt, mit Hilfe von Seismographen die Bodenbewegungen
zu bestimmen, die bei einem Erdbeben auftreten oder die durch Sprengungen, Stra-
Benverkehr usw. erzeugt werden. Eine Betrachtung der dabei auftretenden Ampli-
tuden und Wellenlingen zeigt, daB man in der Regel annehmen darf, daB3 das Boden-
stiick, auf dem der Seismograph steht, lediglich translatorische Bewegungen ausfiihrt,
das heiBt die Wirkung der Dyeh- und Neigungsbewegungen auf den Seismographen
dagegen vernachladssigbar sind. Auch vom Gestell des Seismographen, das mit dem
Boden fest verbunden gedacht wird, ist daher vorausgesetzt, dafl es ausschlieBlich
translatorische Bewegungen ausfiihre. Die raumlichen Bewegungen des Bodenstiickes
werden beschrieben, indem man die Projektionen irgendeines Punktes des Boden-
stiickes auf drei im Raume feste Achsen verfolgt. Gewo6hnlich werden zwei zueinander
senkrecht stehende horizontale Achsen und eine vertikale Achse gewihlt. Wihrend
der Bodenbewegung bewegen sich die drei Projektionen des Punktes auf den drei
Achsen. Ihre Abszissen, Komponenten der Bodenbewegung genannt, sind drei Funk-
tionen der Zeit, die zu bestimmen sind. Zur Bestimmung dieser Funktionen werden
auf dem Bodenstiick drei Seismographen aufgestellt, deren Arbeitsrichtungen mit
den drei Achsenrichtungen zusammenfallen, also z. B. ein Vertikal-Seismograph, ein
NS-Seismograph und ein EW-Seismograph. Ist s(¢) eine der drei Komponenten der
Bodenbewegung, I" der Seismograph mit der zugehorigen Arbeitsrichtung, so ist s(¢)
der Eingang von I'. Der Ausgang A(#) ist die Registrierung des Seismographen.
Diese ist gegeben, ebenso wird die komplexe Frequenzcharakteristik q(w) des Seismo-
graphen als bekannt vorausgesetzt. Zu bestimmen ist s(¢).

Fiir die Registrierung 4(¢) seien folgende drei Moglichkeiten betrachtet: a) reine
Sinusschwingung, b) periodische Bewegung, c) unperiodische Bewegung. Nach
§ 5 ist die entsprechende Bodenbewegung s(¢) sofort bestimmbar:

a) Gegeben die komplexe Amplitude § von A(f), ferner die Frequenz w. Dann ist

S = 6%7 die komplexe Amplitude von s, also
$ 9

S(t) £ We““—}— We—iwl.

b) Das komplexe Linienspektrum von 4 ist

T
53n=—];,—/h(t9)e“j””0dt9, n=01 2, ...,
0

T = Periode von 4()), n= -

q(s;”n) ist das komplexe Linienspektrum von s, so daBl
2 g
= —n_ jinnyt 2
i —.,.‘i‘:,o amm & ist.

c) Das kontinuierliche Spektrum der Registrierung 4 ist

.
S =7 | hO)e I ds,

-00
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dasjenige von s demnach Blu) und

q(u)
H
s(t) :'—/ D04) iui gy

§ 9. Bestimmung der Frequénzcharakteristik aus der Differentialgleichung
der Bewegungen des Seismographen
Die Bewegungsgleichung des Seismographen habe die Form
dazh dih ds d#s

ah
b°h+b1W+b2?F+...+b1—i[1~:cos+cl_27+..' ‘LC"‘W'

by, by, ..., b3; ¢, ¢4, ..., ¢, seien reelle Konstante.
B(x) = by + by x + -+« + by &%,
Clx)=co+cyx+---4c, 2"

Nimmt man fiir s eine reine Sinusschwingung mit der willkiirlichen Frequenz w an,
so JaBt sich die Bewegungsgleichung erfiillen, wenn fiir 4 eine Sinusschwingung der
gleichen Frequenz gewihlt wird. Sind & und § die komplexen Amplituden von s und
h, so ergibt das Einsetzen in der Bewegungsgleichung

9 B(jw)=6-C(j w).
Setzt man noch voraus, daB das Polynom B(x) keine rein imaginiren Wurzeln
. .. 9 _ Clw)
besitzt, so 1st€— Blo) "
Der Seismograph ist dann im Sinne von § 5 ein System mit der Frequenzcharakteristik
Cjw)
9(@) = Bjo) -

Folgende Spezialfille seien erwédhnt:
Mechanisch registrierender Seismograph:
boh + by I g o
Elektrischer Induktionsseismograph:
boh + by o by = ey s

F. GAssMANN, Ziirich

(Mitteilung Nr. 7 aus dem Institut fiir Geophysik
der Eidg. Technischen Hochschule)

Summary:

A paper by W. T. Born and ].M. Kendall "Application of the Fourief Inte_gral to
some geophysical instrument problems™ has been followed-by some consxderatxops on
the application of the Fourier Integral and the Fourier Series to the theory of seismo-
graphs and vibrographs. The frequency characteristic is s?ated for the case in which
the differential equation of the seismographic movements is known and possesses the

form mentioned in § 9.
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