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und ein Drehmoment um dir 2-Achsc:

t% k q cos ol — 2 mo) üq2 cos2 a.
Betrachten wir vier symmetrische Punkte mx, m2, mz, mA des in Fig. 5 perspektivisch

gezeichneten Ringes K, so haben die entsprechenden CoRiOLisbeschleunigungen
C\) c2> cz i c4 die d°rL ersichtlichen Richtungen, weil cos <x für mx und ra4 positiv, für
m2 und m3 negativ zu setzen ist. Daraus ist schon zu ersehen, daß die Summe der
Drehmomente für den ganzen Ring in bezug auf die y-Achse Null wird, während
dies für die z-Achse nicht der Fall ist. Die Rechnung bestätigt dies und ergibt
folgendes Resultat. Ein Element des Ringes hat das Volumen q q doc, wenn q der
(unendlich kleine) Querschnitt des Ringes ist. Ist ju die Dichte der Masse, so ist
m ii q q den. Somit ist

b^, 2 fjb q qz oj Ü cos a sin endo.,

bz 2 ix q qz co Q cos2 a d<x,

Qy 2j' *>* 2 fi q qz oj ü / cos a sin a da -— 0,
o

I^2==^^= 2juq q*ojÜ J cos2a^a--= 2n/uqqzojü.
o """"""""-——

27zjj,qq2 ist gleich dem Trägheitsmoment des Ringes bezüglich der #-Achse.
Bezeichnen wir dieses mit 0X, so können wir schreiben.

$«= &xÜco.

Bei der Drehung des Ringes K um die y-Achse ist also ein Drehmoment um die
z-Achse von der Größe T>z aufzuwenden. Die Formel für T>z gilt auch, wenn statt
des unendlich dünnen Ringes ein Ring mit endlichem Querschnitt oder eine Scheibe

usw. vorliegt, da man diese Rotationskörper in Elementarringe zerlegen kann. Unter
©x ist dann das Trägheitsmoment des ganzen Rotationskörpers um die x-Achse

zu verstellen. Auf dem oben abgeleiteten Drehmoment beruht bekanntlich die
Wirkung des Kreisels, worauf hier nicht näher eingegangen werden soll. Man erkennt
aber aus obiger Elementarableitung deutlich, daß die Kreiselwirkung ihre Ursache
in der bei der Bewegung des Kreisels auftretenden CoRiOLisbeschleunigung seiner

Massenpunkte hat. W. Michael, Bern

Über eine symbolisch-topologische Formel
In der vorliegenden Note soll eine elementare topologische Formel der ebenen

Geometrie besprochen werden, die an sich keinen dem Topologen unbekannten
Sachverhalt enthüllt, die aber in der nachfolgend erörterten symbolischen Gestalt der

Betrachtung wert ist.
In dieser Form umfaßt die Formel verschiedene kombinatorisch-topologische

Relationen und Aussagen, wie beispielsweise den EuLERschen Polyedersatz, die

Baumrelation, den HELLY-RADONschen Satz sowie zahlreiche kombinatorische
Formeln, wie sie etwa bei der Zerlegung der Ebene durch Geraden auftreten usw.
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Es kann darauf hingewiesen werden, daß die Formel in verschiedenartiger Weise
verallgemeinerungsfähig ist, aber im Hinblick auf den elementaren Charakter der
vorliegenden Arbeit empfiehlt sich die getroffene Spezialisierung.

Die nachfolgenden Untersuchungen beschränken sich auf solche ebene Mengen A,
die sich als Vereinigungsmenge

4=/f1 + ff1 + ...+ A\ (1)

endlich vieler, abgeschlossener, konvexer und beschränkter Mengen Kt darstellen
lassen. In Fig. 1 ist eine solche Menge A dargestellt.

0

Fig. 1

Alle Mengen dieser Eigenschaft bilden ein Mengensystem, das mit zwei Mengen
A und B stets auch die Summe A + B (Vereinigungsmenge) und das Produkt A B
(Durchschnitt) enthält.

Im folgenden bezeichne E immer die gesamte Ebene. Da A abgeschlossen ist,
wird die komplementäre Menge E — A offen sein. Es bedeute nun z(A) die Zerfallszahl

von A, das heißt die Anzahl der verschiedenen Komponenten1), in die sich A
zerlegen läßt; analog bezeichne z(E — A) die Zerfallszahl von E — A, das heißt die
Anzahl der verschiedenen Gebiete2), in die E — A zerlegt werden kann.

Es gilt nun die folgende symbolische Formel

(E - Kt) (E-Kt)-(E- Kn) z{E-A)- z(A), (2)

wobei das linksstehende Produkt vollständig algebraisch zu entwickeln und dann
für jeden Summanden 0 oder 1 zu setzen ist, je nach dem der Summand als Mengenprodukt

interpretiert leer oder nicht leer ist.
Den Beweis der Formel (2) führen wir induktiv. Wir nehmen an, ihre Richtigkeit

sei bereits nachgewiesen für alle Mengen A', die sich als Summe von n-1 konvexen
Mengen K4 darstellen lassen. Nun setzen wir

A' K1+K, + ...+ Kn.1. (3)

{E-K1)...[E-Kn) E{E-K1)...{E-Kn_1)-Kn(E-K1)...(E-KH_x).
Im ersten Ausdruck der rechten Seite kann der Faktor E offenbar weggelassen
werden, da er den numerischen Wert des nachfolgenden Produktes nicht beeinflußt.

*) Unter einer Komponente verstehen wir hier einen größten zusammenhangenden Teil.
3) Ein Gebiet ist eine offene zusammenhängende Menge.
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Im zweiten Ausdruck kann ohne Einfluß auf den Produktwert zunächst der Faktor
Kn (n - l)-mal geschrieben werden, so daß jede einzelne Klammer mit diesem Faktor

versehen wird Offensichtlich kann dann

Kn(E-Kt) (EKn~KtKn)
gesetzt werden Schließlich bleibt die Reduktion

(EKn~KtKn) (E-KtKn)
der einzelnen Klammern ohne Einfluß auf den numerischen Produktwert. In der
Tat ist doch einerseits

(EKn)»-i En-* l,
und andererseits unterscheiden sich alle Entwicklungsgheder der Produkte, die von
diesem ersten Glied verschieden smd, nur durch unterschiedliche Potenzen von Kn
mit positiven Exponenten Somit laßt sich jetzt schreiben

(E - Kx) ..¦(E~Kn) (E-Kl)...(E- K^) -(E-K,Kn)... (E - K^KJ.
Nach der induktiven Voraussetzung wird also

(E - A\) •••(£- Kn) [*(£- A') - z(A')] -[«(&- A'Kn) -z(A'Kn)] (4)

Setzen wn für eine beliebige Menge A der von uns betrachteten Art

y(A) z(E-A)-z(A), (5)

bo gilt, wie eine einfache Überlegung lehrt, das bekannte Additionstheorem

<p(A) + f(B) (p(A + B)+<p(AB) (6)

Mit Rücksicht auf (p (K„) 0 (wegen der vorausgesetzten Natur von #„ ist nämlich

z(Kn) - z{E- Kn) 1) folgt jetzt aus (4)

(E-KX)--.(E- K„) ^<p(A') + <p(Kn) - f (A'Kn) =<p(A'+ Kn),

oder also

(b -KJ.-iE-KJ-ipiA).
Damit ist gezeigt, daß die Formel (2) auch für alle Mengen A richtig ist, die sich

als Summe von n konvexen Kt darstellen lassen. Der induktive Beweis ist jetzt
vollständig, da die Formel (2) fur n 1 sicher in trivialer Weise richtig ist.

Wir gehen nun dazu über, einige Anwendungen und Folgerungen der allgemeinen
symbolischen Formel (2) zu besprechen.

1 Streckenkomplexe

Em Streckenkomplex der Ebene, das heißt ein endliches System von Strecken

(Kanten), die bis auf gemeinsame Endpunkte (Ecken) punktfremd sind, ist offenbar
eine spezielle Menge der von uns betrachteten Art InFig 2 ist ein derartiger Streckenkomplex

abgebildet.
Die konvexen Mengen Kit aus denen sich die Menge A, das heißt der Streckenkomplex

zusammensetzt, sind die einzelnen Kanten.
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Die Anzahl der Kanten sei mit k, die Anzahl der Ecken mit e bezeichnet. Ferner
bezeichne ev die Anzahl derjenigen Ecken von A, in welchen genau v Kanten
zusammenstoßen.

Fig. 2 Fig. 3

Es gelten dann die Beziehungen

c ex + e2 + e3 + • • •, 2k cx + 2e2 + 3e3 + • • •. (7)

Um das Produkt in Formel (2) zu ermitteln, rechnen wir vorbereitend folgendes

aus:
£*-1
A\+... ----k

K1Kt+--- {l)e*+{2)ea + •••

K1KtKa+ ¦¦¦ {l)e3+&C*+---

So ergibt sich denn zunächst

(£ - A'x) (E - A'2) ...(£- A\)

-i-*+(i)^+[ß)-(ä)]'.+[e)-G)+ß)]^+-.
oder also nach (2)

*(£ - -4) - z(A) - 1 - k + £2 + 2^ + 3*4 + • • •,

und endlich unter Berücksichtigung der Beziehungen (7) :

z(E - A)-z(A) l + k -c. (8)

Mit (8) haben wir eine allgemeine topologische Formel für Streckenkomplexe
erhalten1).

l) Ist z die Anzahl der zusammenhängenden Teile des Streckenkomplexes A, so nennt man

fA — z+k-e
die «Zusammenhangszahl» von A Vgl. D. Konig, Theorie der endlichen und unendlichen Graphen,

Leipzig 1936, S. 53.
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2. Baumrelatwn

Für Bäume, das heißt für zusammenhangende kreislose Streckenkomplexe muß
in (8) z(A) z(E - A) 1 gesetzt werden. So ergibt sich die Baumrelation1)

1 + k v 0. (9)

In Fig. 3 ist ein Baum abgebildet.

3. Eulerscher Polyedersatz

Wir betrachten einen Streckenkomplex, der das stereographische Bild des Kantensystems

eines konvexen Polyeders darstellt
Ein derartiges Kantenbild entsteht auf die nachfolgend beschriebene Weise.

* Werden die durch die Seitenflächen des Polyeders bestimmten Ebenen mit Ex, E2,
Ef bezeichnet, so zerlegt jede Ebene Et den Raum in einen positiven und einen

negativen Halbraum, wobei der positive Halbraum das Polyeder enthalten soll.
Es sei nun 5 ein innerer Punkt des Durchschnittes des zu Ex gehörenden negativen
Halbraums mit den positiven Halbräumen der übrigen Ebenen E2 Ef. Durch
Strahlen durch S als Projektionszentrum kann nun der mit Ex punktfremde Teil
der Polyederoberfläche eindeutig auf das Innere der in Ex liegenden Seitenfläche
abgebildet werden. Der Rand dieser Seitenfläche geht außerdem punktweise in sich
über. Das so entstehende Abbild des Kantensystems des Polyeders ist ein schlichter
Streckenkomplex in der Ebene Ex.

Jedes von einem geschlossenen Streckenzug umrandete beschrankte Teilgebiet
entspricht einer nicht in Ex liegenden Seitenfläche des Polyeders. Endlich kann
man noch das übrigbleibende unbeschränkte äußere Teilgebiet des Streckenkomplexes

<ler in Ex liegenden Seitenfläche entsprechen lassen.
Offenbar ist dann z(A) 1 und z(E — A) /, wobei / die Anzahl der

Seitenflächen des Polyeders bezeichnet. Aus der Beziehung (8) resultiert nun die bekannte
Eulerscä^ Formel2)

/-* + 2. (10)

4. Zerlegungsformel

Wir betrachten ein System von n konvexen beschränkten Mengen Kt, von denen

je 2 einen nicht leeren, dagegen je 3 einen leeren Durchschnitt haben. Ihre
Vereinigungsmenge A wird offenbar zusammenhängend sein, so daß z(A) » 1 ist. In
dem hier betrachteten Sonderfall wird der Wert des linksstehenden Produktes in (2)

i-«+(;)
sein, so daß sich also die Formel ergibt:

z(E-il)~2-» + ß).

*) Vgl. über diesen Satz von Listing die Ausfuhrungen bei D. Konig (oben zitiert), S. 51.

2) Vgl. zum Beispiel den einfachen Beweis in D. Hilbert-S. Cohn-Vossen, Anschauliche Geometue,
Berlin 1932, S. 255-25G.
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Dies bedeutet:
«n konvexe beschränkte Mengen, von denen je zwei, aber keine drei, einen nicht leeren

Durchschnitt haben, zerlegen die Ebene1) in
ri* - 3 m + 4

2

Gebiete2)». Vergleiche hierzu die Fig. 4 und 5.

Fig. 4 Fig. 5

5. Kelly-Radonscher Satz

Wir betrachten ein System von n konvexen beschränkten Mengen Kx, von denen
je 3 einen nicht leeren Durchschnitt haben. Im Falle n ^> 4 wählen wir ein beliebiges

Teilsystem von 4 Mengen Kt aus und setzen nach unserer Formel (2)

(E - Kx) (E - K2) (E - Kz) (E - KJ z(E - A) -z(A).
Da offenbar A zusammenhängend ist, wird z(A) 1 sein. Weil A beschränkt

ist, muß ferner z(E — A) ^ 1 ausfallen, so daß mit Rücksicht auf die oben
gegebenen Bedingungen

sein muß. Hieraus folgt nun
KXK2KZK4 1,

so daß also je 4 Mengen K4 des Systems einen nicht leeren Durchschnitt haben
müssen. — Nun betrachten wir im Falle n J> 5 ein Teilsystem von 5 beliebig
ausgewählten Mengen Kx und bilden die 4 konvexen Durchschnittsmengen

KXK5, KtKh, KZK5, KAK$.

Von diesen haben nach dem soeben bewiesenen Sachverhalt je 3 Mengen einen
nicht leeren Durchschnitt und daher müssen nach dem gleichen Sachverhalt alle

J) Eine abgeschlossene Menge A zerlegt die Ebene E in m Gebiete, wenn die komplementäre Menge E-Ä
in m Gebiete zerfallt.

2) Die hier geläste Aufgabe steht im engen Zusammenhang mit der Anzahlbestimmung der Gebiete,
in die die Ebene durch « Geraden in allgemeiner Lage zerlegt wird. Vgl. E. Steinitz, Vorlesungen ut>cr
die Theorie der Polyeder, Berlin 1934, S. 274.
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4 Mengen einen nicht leeren Durchschnitt haben, dies bedeutet jedoch, daß die
5 Mengen Kx, K2, Kz, KA> K5 einen nicht leeren Durchschnitt haben So kann man
analog welterschließen Dies bedeutet

<sWenn von n komexen beschrankten Mengen je drei einen nicht leeren Durchschnitt
haben, so haben alle n Mengen einen nicht leeren Durchschnitt »

Dies ist bekanntlich eine etwas spezialisierte Fassung des Hell\-Radonsc/^w
Satzes für die Ebene1) H Hadwiger, Bern

Kleine Mitteilungen
Über die Voraussetzungen für die Beweisbarkeit einiger Satze der Infinitesimalrechnung

K Rt TDtMFisxER zeigte in seinem Aufsatz < Zur Infinitesimalrechnung» in den Seme
sterberichten der Universität Munster, 8 Semester 1935/6, Seite 87, daß gewisse Teile
der Differential- und Integralrechnung unabhängig vom Vollstandigkeits- oder Can-
torschen Axiom aufgebaut werden können Dazu gehören insbesondere die Regeln über
das Differenzieren von Summen, Produkten und Quotienten sowie der ganzen rationalen

Funktionen Ferner ist z B eine Funktion stetig (e — <5-Bedmgung) in einem
Punkte, wenn sie dort differenzierbar ist, sie wachst in jenem Punkte, wenn y' >0 ist

Beim Zeichnen von Funktionsbildern wird nun im Mittelschulunterncht ganz
selbstverständlich benutzt, daß eine Funktion die in einem abgeschlossenen Intervall überall
eine positive Ableitung besitzt, dann monoton wachst und man kann sich fragen, ob
sich das nicht ohne Vollstandigkeitsaxiom beweisen ließe Die üblichen Beweise verwenden

dazu den Mittelwertsatz, der mit dem Satz von Rolle und dieser wieder mit dem
Satz vom Maximum bewiesen wird Zur Herleitung des letzteren aber verwendet man
die Definition einer Zahl mittels einer Schachtelung, also letzten Endes das Cantorsche
Axiom Daß dieses nun tatsächlich für einen allgemeinen Beweis notig ist, zeigt
folgendes Beispiel

«Zahlen» seien alle rationalen Zahlen und nur diese In diesem Bereich gelten alle
Axiome betreffend einen geordneten Korper sowie das Axiom von Eudoxos

Nun definieren wir eine Funktion für alle (rationalen») Werte von 0 bis 2 wie io\\$,
Es sei

f(x) x für alle x, deren Quadrat <2 ist,
/(#) x — 2 für alle x, deren Quadrat >2 ist

Diese Funktion besitzt folgende Eigenschaften
1 Sie ist «stetig» im ganzen Intervall <0, 2>, da es ja um jedes x im Inneren des

Intervalles em Intervall gibt m dem die Punktion durch einen der beiden obigen
Ausdrucke allein definiert ist

2 Sie ist 0 in den Endpunkten des Intervalle* < 0, 2 >

3 Sie ist stetig differenzierbar im Intervall < 0, 2 >

f'(x) ist überall gleich 1, also positiv

Dagegen sieht man sofort
I Die Funktion ist nicht gleichmaßig stetig im Intervall < 0 2 >

II Sie besitzt dann weder em Maximum noch em Minimum
III Der Mittelwertsatz ist für das ganze Intervall sowie für gewisse Teilmtervalle nicht

erfüllt
IV Die Funktion nimmt im Intervall <, 0, 2 > nicht monoton zu

1) Vgl J Rauon, Mengen konvexer Korper, die einen gemeinsamen Punkt enthalten, Math Ann 83,

113-115, 1921, F Hellv, Über Mengen komexer Korper mit gemeinschaftlichen Punkten, Jber DMV
32, 175-176, 1923
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