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H. Hapwiaer: (Tber eine symbolisch-topologische Formel 35

und ein Drehmoment um die 2-Achsc:

0, kpcosa-=2mm 2ptcos?a.

Betrachten wir vier symmetrische Punkte m,, m,, m,, m, des in Fig.5 perspekti-
visch gezeichneten Ringes K, so haben die entsprechenden CorioLisbeschleunigungen
€y, €3, C3, ¢4 die dort ersichtlichen Richtungen, weil cos « fiir m, und m, positiv, fir
m, und m, negativ zu setzen ist. Daraus ist schon zu ersehen, da3 die Summe der
Drehmomente fiir den ganzen ‘Ring in bezug auf die y-Achse Null wird, wéihrend
dies fiir die z-Achse nicht der Fall ist. Die Rechnung bestitigt dies und ergibt
folgendes Resultat. Ein Element des Ringes hat das Volumen ¢ g dx, wenn ¢ der
(unendlich kleine) Querschnitt des Ringes ist. Ist x4 die Dichte der Masse, so ist
m = pu q o do. Somit ist
D, =2 uq0e®wfcos asin ada,

0, =2 uq0®wRcos?adax,

2
1“,,==2b,,=2,qu3w9/cosocsinocda:=(),

(1]

2n
’Dz=2bz= Z,uggaw!)./coszocda-:Zn/,tqg*"w.().
()]

27pqp® ist gleich dem Trdgheitsmoment des Ringes beziiglich der x-Achse.
Bezeichnen wir dieses mit @,, so konnen wir schreiben:

D,=0,20.

Bei der Drehung des Ringes K um die y-Achse ist also ein Drehmoment um die
z-Achse von der GroBe D, aufzuwenden. ‘Die Formel fiir D, gilt auch, wenn statt
des unendlich diinnen Ringes ein Ring mit endlichem Querschnitt oder eine Scheibe
usw. vorliegt, da man diese Rotationskérper in Elementarringe zerlegen kann. Unter
@, ist dann das Trigheitsmoment des ganzen Rotationskérpers um die x-Achse
zu verstehen. Auf dem oben abgeleiteten Drehmoment beruht bekanntlich die Wir-
kung des Kreisels, worauf hier nicht nidher eingegangen werden soll. Man erkennt
aber aus obiger Elementarableitung deutlich, daB die Kreiselwirkung ihre Ursache
in der bei der Bewegung des Kreisels auftretenden CoRrioLisbeschleunigung seiner
Massenpunkte hat. W. MiCHAEL, Bern

Uber eine symbolisch-topologische Formel

In der vorliegenden Note soll eine elementare topologische Formel der ebenen
Geometrie besprochen werden, die an sich keinen dem Topologen unbekannten Sach-
verhalt enthiillt, die aber in der nachfolgend erorterten symbolischen Gestalt der
Betrachtung wert ist.

In dieser Form umfaBt die Formel verschiedene kombinatorisch-topologische
Relationen und Aussagen, wie beispielsweise den EuLERrschen Polyedersatz, die
Baumrelation, den HELLY-RADONschen Satz sowie zahlreiche kombinatorische
Formeln, wie sie etwa bei der Zerlegung der Ebene durch Geraden auftreten usw.
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Es kann darauf hingewiesen werden, daB die Formel in verschiedenartiger Weise
verallgemeinerungsfihig ist, aber im Hinblick auf den clementaren Charakter der
vorliegenden Arbeit empfiehlt sich die getroffenc Spezialisierung.

Die nachfolgenden Untersuchungen beschrinken sich auf solche ebene Mengen A,
die sich als Vereinigungsmenge

A=K, + K,+---+ K, (1)

endlich vieler, abgeschlossener, konvexer und beschrinkter Mengen K, darstellen
lassen. In Fig. 1 ist eine solche Menge A dargestellt.

0

Fig. 1

Alle Mengen dieser Eigenschaft bilden ein Mengensystem, das mit zwei Mengen
A und B stets auch die Summe 4 + B (Vereinigungsmenge) und das Produkt A B
(Durchschnitt) enthilt.

Im folgenden bezeichne E immer die gesamte Ebene. Da A abgeschlossen ist,
wird die komplementidre Menge E — A4 offen sein. Es bedeute nun z(4) die Zerfalls-
zahl von 4, das heiBt die Anzahl der verschiedenen Komponenten?), in die sich A
zerlegen lidBt; analog bezeichne z (E — A) die Zerfallszahl von E — A4, das heiBt dic
Anzahl der verschiedenen Gebiete?), in die E — A zerlegt werden kann.

Es gilt nun die folgende symbolische Formel

(B — Ky (E— Ky)--- (E - K,) = 2(E — A) — z2(d), (2)

wobei das linksstehende Produkt vollstindig algebraisch zu entwickeln und dann
fiir jeden Summanden O oder 1 zu setzen ist, je nach dem der Summand als Mengen-
produkt interpretiert leer oder nicht leer ist.

Den Beweis der Formel (2) fiithren wir induktiv. Wir nehmen an, ihre Richtigkeit
sei bereits nachgewiesen fiir alle Mengen A’, die sich als Summe von #-1 konvexen
Mengen K, darstellen lassen. Nun setzen wir

A=Ky + Ky 4o+ Ky 3)
(E—K)--(E-K)=EE-K)---(E—K, )~ K,(E—~K,)--- (E~K,_,).

Im ersten Ausdruck der rechten Seite kann der Faktor E offenbar weggelassen
werden, da er den numerischen Wert des nachfolgenden Produktes nicht beeinfluBt.

1) Unter einer Komponente verstehen wir hier cinen gréBten zusammenhingenden Teil.
3) Ein Gebiet ist cine offene zusammenhingende Menge.
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Im zweiten Ausdruck kann ohne EinfluB auf den Produktwert zunichst der Faktor
K, (n — 1)-mal geschrieben werden, so daB jede einzelne Klammer mit diesem Fak-
tor versehen wird. Offensichtlich kann dann

Ky (E - Kl) = (EKn - KiKn)
gosctzt werden. SchlieBlich bleibt die Reduktion
(Elcn - K;K,) = (E - KiKn)

der einzelnen Klammern ohne EinfluBl auf den numerischen Produktwert. In der
Tat ist doch einerseits
(EK”)n—l — En—] — 1,

und andererseits unterscheiden sich alle Entwicklungsglieder der Produkte, die von
diesem ersten Glied verschieden sind, nur durch unterschiedliche Potenzen von K,
mit positiven Exponenten. Somit 148t sich jetzt schreiben

(E-K)--(E-Ky)=(E—-K): - (E-Ku ) — (E- K K,)---(E~ K, ,K,).
Nach der induktiven Voraussetzung wird also
(E—-Ky)---(E-K,)=[2(E-A4")—2(4")] — [2(E - A'K,) —z(4d"K,)]. (4)

Setzen wir fiir eine beliebige Menge A der von uns betrachteten Art

p(4)=2(E - 4)—z(4), (5)
so gilt, wie einc einfache Uberlegung lehrt, das bekannte Additionstheorem
¢(d) +¢(B)=¢(d + B) + ¢(4B). (6)

Mit Riicksicht auf ¢ (K,) = 0 (wegen der vorausgesetzten Natur von K, ist nim-
lich z(K,) — z(E — K,) = 1) folgt jetzt aus (4)

(E— Ky (E-K,) =)+ K, —g A" K,)=p(d"+ K,),

oder also
(E - Ky)---(E—K,)=g(d).
Damit ist gezeigt, da die Formel (2) auch fiir alle Mengen A4 richtig ist, die sich
als Summe von n konvexen K, darstellen lassen. Der induktive Beweis ist jetzt

vollstindig, da die Formel (2) fiir # = 1 sicher in trivialer Weise richtig ist.
Wir gehen nun dazu iiber, einige Anwendungen und Folgerungen der allgemeinen

symbolischen Formel (2) zu besprechen.

1. Streckenkomplexe

Ein Streckenkomplex der Ebene, das heiBt ein endliches System von Strecken
(Kanten), die bis auf gemeinsame Endpunkte (Ecken) punktfremd sind, ist offenbar
cine spezielle Menge der von uns betrachteten Art. InFig. 2 ist ein derartiger ‘Strecken-
komplex abgebildet. 4

Die konvexen Mengen K,, aus denen sich die Menge 4, das heiBt der Strecken-
komplex zusammensetzt, sind die einzelnen Kanten.
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Die Anzahl der Kanten sei mit %, die Anzahl der Ecken mit ¢ bezeichnet. Ferner
bezeichne ¢, die Anzahl derjenigen Ecken von 4, in welchen genau » Kanten zu-

sammenstoBen.

Fig. 2 Fig. 3
Es gelten dann die Beziehungen
6=61+82+83+-“, 2k301+282+3e3'+‘"‘. (7)

Um das Produkt in Formel (2) zu ermitteln, rechnen wir vorbereitend folgen-
des aus:

Et=1

K, + .

K,K,+ =(§)‘7z+(3)"a+
Kkt =t (s

LR R A I I N © Tee 8 B 4 6 ¢ 9 s 0 e s s e e e a0

So ergibt sich denn zunichst
(E—-—K)(E-K,) ...(FE—-K,)
S ) P T G e

oder also nach (2)
2(E—A)—2z(A)=1—k+e+2¢;+ 34+ ---,
und endlich unter Beriicksichtigung der Beziehungen (7):
2(E-A)—z(A)=1+k—c. (8)

Mit (8) haben wir eine allgemeine fopologische FFormel fiir Streckenkomplexe er-
halten?).

1) Ist z die Anzahl der zusammenhingendcen Teile des Streckenkomplexes 4, so nennt man
B=z+k—e
die «Zusammenhangszahls von A. Vgl. D. Kénig, Theoric der cndlichen und uncndlichen Graphen,
Leipzig 1936, S. 53.
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2. Baumrelation

Fiir Baume, das heilt fiir zusammenhingende kreislose Streckenkomplexe muf3
in (8) z(4) = 2(E — A) = 1 gesetat werden. So crgibt sich die Baumrelation!)

L+k—c=0. 9)
In Fig. 3 ist ein Baum abgebiidct. .

3. Eulerscher Polyedersalz

Wir betrachten einen Streckenkomplex, der das stereographische Bild des Kanten-
systems eines konvexen Polyeders darstellt.

Ein derartiges Kantenbild entsteht auf dic nachfolgend beschriebene Weisc:
Werden die durch die Seitenflichen des Polyeders bestimmten Ebenen mit E,, I,,
... E; bezeichnet, so zerlegt jede Ebene E; den Raum in einen positiven und einen
negativen Halbraum, wobei der positive Halbraum das Polyeder enthalten soll.
Es sei nun S ein innerer Punkt des Durchschnittes des zu E, gehérenden negativen
Halbraums mit den positiven Halbrdumen der iibrigen Ebenen E, ... E,. Durch
Strahlen durch S als Projektionszentrum kann nun der mit E, punktfremde Teil
der Polyederoberfliche eindeutig auf das Innere der in E, liegenden Seitenfliche
abgebildet werden. Der Rand dieser Seitenfliche geht auBerdem punktweise in sich
iiber. Das so entstehende Abbild des Kantensystems des Polyeders ist ein schlichter
Streckenkomplex in der Ebene E;.

Jedes von einem geschlossenen Streckenzug umrandete beschrinkte Teilgebict
cntspricht einer nicht in E, liegenden Seitenfliche des Polyeders. Endlich kann
man noch das ibrigbleibende unbeschrinkte duBere Teilgebiet des Streckenkom-
plexes der in E, liegenden Seitenfliche entsprechen lassen.

Offenbar ist dann z(4) =1 und z(E — A4) = f, wobei f die Anzahl der Seiten-
flichen des Polyeders bezeichnet. Aus der Beziehung (8) resultiert nun die bekannte

EULERsche Formel?)
f—k+e=2. (10)

4. Zerlegungsformel

Wir betrachten ein System von n# konvexen beschrinkten Mengen A,, von denen
je 2 einen nicht leeren, dagegen je 3 einen leeren Durchschnitt haben. Ihre Ver-
einigungsmenge A wird offenbar zusammenhingend sein, so daBl z(4) =1 ist. In
dem hier betrachtéten Sonderfall wird der Wert des linksstehenden Produktes in (2)

1—n+(})
sein, so daB sich also die Formel ergibt:

2(E—A)=2-n+(}).

1) Vel. iiber diesen Satz von ListiNG die Ausfithrungen bei D. KONIG (oben zitiert), S. 51.
%) Vgl. zum Beispiel den cinfachen Beweis in D. HILBERT-S. Conn-VosseN, Anschauliche Geometrie,

Berlin 1932, S. 256-256.
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Dies bedeutet:
«n konvexe beschrinkte Mengen, von denen je zwei, aber keine drei, einen nicht leeren
Durchschnitt haben, zerlegen die Ebene!) in

n:—~3n+4

2

-

Gebiete?)». Vergleiche hierzu die Fig. 4 und 5.

AN e

Fig. 4 Fig. 5
5. Helly- Radonscher Satz

Wir betrachten ein System von » konvexen beschrinkten Mengen K, von denen
je 3 einen nicht leeren Durchschnitt haben. Im Falle » = 4 wihlen wir ein belie-
biges Teilsystem von 4 Mengen K, aus und setzen nach unserer Formel (2)

(E—K)(E—Ky)(E—K;) (E—-Ky)=z(E—A4)—z(4).

Da offenbar A zusammenhingend ist, wird z(4) = 1 sein. Weil A beschrinkt
ist, muB ferner z(E — 4) = 1 ausfallen, so daB mit Riicksicht auf die oben gege-
benen Bedingungen

= )+ ()- () + KKk 20

sein muB. Hieraus folgt nun

so daB also je 4 Mengen K; des Systems einen nicht leeren Durchschnitt haben
miissen. — Nun betrachten wir im Falle n = 5 ein Teilsystem von 5 beliebig aus-
gewdhlten Mengen K, und bilden die 4 konvexen Durchschnittsmengen

KK, KyK;, K.K,, K,K;.

Von diesen haben nach dem soeben bewiesenen Sachverhalt je 3 Mengen einen
nicht leeren Durchschnitt und daher miissen nach dem gleichen Sachverhalt alle

" 1) Eine abgeschlossene Menge 4 zerlegt die Ebene E in m Gebiete, wenn die komplementiire Menge E—-4
in m Gebiete zerfilit.

2) Die hier geloste Aufgabe steht im engen Zusammenhang mit der Anzahlbestimmung der Gebiete,
in die die Ebene durch n# Geraden in allgemeiner Lage zerlegt wird. Vgl. E. SteiNiTz, Vorlesungen iiber
die Theorie der Polyeder, Berlin 1934, S. 274,
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4 Mengen einen nicht leeren Durchschnitt haben; dies bedeutet jedoch, daB die
5 Mengen K, K,, K,, K, K; einen nicht leeren Durchschnitt haben. So kann man
analog weiterschlieBen. Dies bedeutet:

«Wenn von n konvexen beschrinkten Mengen je drei einen nicht leeven Durchschnitt
haben, so haben alle n Mengen etnen nicht leeren Durchschnilt.»

Dies ist bekanntlich eine ctwas spezialisiertc Fassung des HELLY-RADONschen
Satzes fiir die Ebene!). H. HADWIGER, Bern

Kleine Mitteilungen

Uber die Voraussetzungen fiir die Beweisbarkeil einiger Sdtze der Infinitesimalyechnung

K. REIDEMEISTER zeigte in seinem Aufsatz « Zur Infinitesimalrechnung » in den Seme-
sterberichten der Universitit Miinster, 8. Semester 1935/6, Seitc 87, daB gewissc Teile
der Differential- und Integralrechnung unabhingig vom Vollstindigkeits- oder Can-
torschen Axiom aufgebaut werden kénnen. Dazu gehdren insbesondere die Regeln iiber
das Differenzieren von Summen, Produkten und Quotienten sowie der ganzen ratio-
nalen Funktionen. Ferner ist z. B. eine Funktion stetig (¢ — §-Bedingung) in einem
Punkte, wenn sie dort differenzierbar ist, sie wiachst in jenem Punkte, wenn y’ >0 ist.

Beim Zeichnen von Funktionsbildern wird nun im Mittelschulunterricht ganz selbst-
verstdndlich beniitzt, daB eine Funktion, die in einem abgeéschlossenen Intervall iiberall
eine positive Ableitung besitzt, darin monoton wichst, und man kann sich fragen, ob
sich das nicht ohne Vollstindigkeitsaxiom beweisen lieBe. Die iiblichen Beweise verwen-
den dazu den Mittelwertsatz, der mit dem Satz von Rolle und dieser wieder mit dem
Satz vom Maximum bewiesen wird. Zur Herleitung des letzteren aber verwendet man
die Definition einer Zahl mittels ciner Schachtelung, also letzten Endes das Cantorsche
Axiom. DaB dieses nun tatsichlich fiir einen allgemeinen Beweis notig ist, zeigt fol-
gendes Beispiel. .

«Zahlen » seien alle rationalen Zahlen und nur diese. In diesem Bereich gelten alle
Axiome betreffend einen geordneten Korper sowie das Axiom von Eudoxos.

Nun definieren wir eine Funktion fiir alle (rationalen!) Werte von 0 bis 2 wie folgt:
Es sei

f(x) = x fiir alle », deren Quadrat <2 ist,

f(x) = » — 2 fiir alle x, deren Quadrat >2 ist.

Diese Funktion besitzt folgende Eigenschaften:

1. Sie ist «stetig» im ganzen Intervall (0,2), da es ja um jedes ¥ im Inneren des
Intervalles ein Intervall gibt, in dem die Funktion durch einen der beiden obigen Aus-
driicke allein definiert ist.

2. Sie ist 0 in den Endpunkten des Intervalles {0, 2).

3. Sie ist stetig differenzierbar im Intervall <0, 2).

f'(#) ist iiberall gleich 1, also positiv.

Dagegen sieht man sofort:
. Die Funktion ist nicht gleichmiBig stetig im Intervall (0, 2>.
II. Sie besitzt darin weder ein Maximum noch ein Minimum.
III. Der Mittelwertsatz ist fiir das ganze Intervall sowie fiir gewisse Teilintervalle nicht
erfiillt.
IV. Die Funktion nimmt im Intervall {0, 2> nicht monoton zu.

h -Vgl. J. Ravon, Mengen konvexer Korper, die einen gemeinsamen Punkt enthalten, Math. Afin. 83,
113-115, 1921; E. Herry, Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten, Jber. D.M.V.
32, 175-176, 1923.
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