Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 2 (1947)

Heft: 2

Artikel: Sulle involuzioni cubiche di 2a specie

Autor: Longhi, A.

DOI: https://doi.org/10.5169/seals-12816

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

est unitaire; sa norme N(U) = 1; son conjugué

$$U' = \cos\frac{\varphi}{2} + u\sin\frac{\varphi}{2}.$$

L'équation (5') $p_1 = U' \circ p \circ U$ est équivalente aux formules (3') et (4'). Elle est commode pour la composition de deux ou plusieurs rotations parce que le produit de deux quaternions unitaires est encore unitaire.

Dans son cours dactylographié Vektorielle Geometrie STIEFEL démontre la formule (5') en ramenant la rotation d'angle φ à deux symétries successives relativement à deux plans passant par l'axe et faisant entre eux l'angle $\frac{\varphi}{2}$.

Louis Kollros, Zurich

Sulle involuzioni cubiche di 2ª specie

Scopo di questo articolo è di indicare alcune proprietà dell'involuzione I_3^2 , in un campo binario, strettamente collegate alla sua coppia neutra e ad una notevole terna covariante di elementi.

1. Sopra un ente razionale Ω , semplicemente infinito e irriducibile, si abbia una involuzione I_3^2 d'ordine 3 e di specie 2 (o serie lineare g_3^2), cioè una totalità ∞^2 di terne di elementi individuate ciascuna, in generale, da due di essi.

La I_3^2 possiede, come è noto, tre elementi tripli T_i (i=1, 2, 3) costituenti un gruppo della I_3^2 stessa; e due elementi N_1 , N_2 formanti una coppia neutra, ossia tali da imporre una sola condizione ai gruppi di I_3^2 costretti a contenerli: in tutto il seguito si supporranno distinti (dal punto di vista della geometria sull'ente) tanto N_1 ed N_2 che T_1 , T_2 , T_3 .

Indichi x il parametro di un elemento variabile X di Ω (e così x_i quello di un elemento X_i): cioè, più precisamente, la coordinata proiettiva, in qualunque sistema di riferimento, del punto omologo di X sopra una punteggiata in corrispondenza birazionale con Ω . Allora la I_3^2 si può rappresentare con l'equazione:

$$\lambda_1 (x - t_1)^3 + \lambda_2 (x - t_2)^3 + \lambda_3 (x - t_3)^3 = 0, \tag{1}$$

variando ad arbitrio i coefficienti non tutti nulli λ_1 , λ_2 , λ_3 .

2. La coppia neutra (N_1, N_2) è caratterizzata dalla equivalenza, rispetto alle variabili λ_i , delle due equazioni che si ottengono ponendo nella (1) $x = n_1$ ed $x = n_2$; onde n_1 ed n_2 si determinano mediante le formule:

$$(n_1-t_i)^3=k(n_2-t_i)^3$$
 (i = 1, 2, 3),

insieme col fattore k di proporzionalità. Ne discende che T_1 , T_2 , T_3 formano un gruppo della g_3' che ha per elementi tripli N_1 , N_2 ; e quindi (opportunamente ordinati) un ciclo di ciascuna delle due proiettività cicliche del 3º ordine di elementi uniti N_1 , N_2 . In conclusione:

Teorema I. La coppia neutra (N_1, N_2) dell'involuzione I_3^2 è il covariante Hessiano del gruppo degli elementi tripli T_i (i = 1, 2, 3).

3. Assumendo come fondamentali, nella rappresentazione parametrica di Ω , gli elementi N_1 ed N_2 , e disponendo in modo opportuno dell'elemento-unità, si può supporre, in base al n. 2, che sia $t_i = \varepsilon^i$ (i = 1, 2, 3) con ε radice cubica primitiva di 1; nonchè $n_1 = 0$ e $n_2 = \infty$.

L'equazione (1) di I_3^2 diviene allora:

$$\sum_{i=1}^{3} \lambda_i (x - \varepsilon^i)^3 = 0;$$

e se ne trae che la condizione necessaria e sufficiente affinchè tre elementi X_i di Ω (i=1, 2, 3) appartengano ad un gruppo della I_3^2 è:

$$x_1 x_2 x_3 = 1. (2)$$

4. Essendo Y un qualunque elemento di Ω , non vi è che un elemento Y' tale che il gruppo 2Y + Y' appartenga alla involuzione I_3^2 ; mentre esistono due elementi Y_1 ed Y_2 avanti ciascuno la proprietà che $Y + 2Y_i$ sia un gruppo di I_3^2 : essi coincidono coi punti doppi della g_2' residua di Y rispetto alla I_3^2 .

Per brevità si diranno: Y' l'elemento coniugato di Y nell'involuzione I_3^2 ; e Y_1 , Y_2 i due elementi anticoniugati di Y in I_3^2 .

Si può notare che in ciascun elemento della coppia neutra cadono il coniugato e gli anticoniugati dell'altro; e che ogni elemento triplo di I_3^2 è insieme il coniugato di sè stesso ed uno dei suoi anticoniugati.

Dalla (2) si desumono le seguenti espressioni dei parametri di Y', Y_1 , Y_2 in funzione del parametro di Y:

$$y' = \left(\frac{1}{y}\right)^2$$
, $y_1 = +\sqrt{\frac{1}{y}}$, $y_2 = -\sqrt{\frac{1}{y}}$.

Ne deriva (n. 3) che gli elementi Y', Y_1 , Y_2 riempiono un gruppo della I_8^2 quando y' y_1 $y_2 = 1$, cioè se $y^3 = -1$; confrontando questa equazione con l'altra $x^3 = 1$ che fornisce (n. 3) i parametri degli elementi tripli T_4 , si conclude:

Teorema II. Il sostegno Ω (n. 1) dell'involuzione I_3^2 possiede tre elementi, E_1 , E_2 , E_3 caratterizzati dalla proprietà che l'elemento coniugato¹), in I_3^2 , di E_k e i due elementi anticoniugati¹) di E_k stesso, costituiscono insieme un gruppo Γ_k (k = 1, 2, 3) della I_3^2 .

Tali elementi E_1 , E_2 , E_3 sono ordinatamente i coniugati armonici, su Ω , degli elementi tripli T_1 , T_2 , T_3 di I_3^2 rispetto alla coppia neutra (N_1, N_2) : che è l'Hessiano della terna $(E_1E_2E_3)$, oltreche (Teor. I) della terna $(T_1T_2T_3)$. Ciascuna di queste due terne di elementi è il covariante cubico dell'altra: così che E_k e T_k separano armonicamente tanto E_r ed E_s che T_r e T_s , qualunque sia la permutazione r, s, k degli indici 1, 2, 3.

Il gruppo Γ_k si dirà annesso all'elemento E_k .

5. Risulta dal n. 4 che, essendo $(-\varepsilon^k)$ il parametro dell'elemento E_k , quelli degli elementi E'_k , E_{k1} , E_{k2} , rispettivamente coniugato e anticoniugati di E_k , sono ε^k , $i \varepsilon^k$, $-i \varepsilon^k$ (ove $i^2 = -1$). Dunque (n. 3) è $E'_k \equiv T_k$; e inoltre:

¹⁾ Nel senso dianzi precisato.

$$(N_1 N_2 E_{k1} E_{k2}) = (E_k E'_k E_{k1} E_{k2}) = -1.$$

Quindi:

Teorema III. Il coniugato (n. 4), nell'involuzione I_3^2 , di ogni elemento E_k è l'elemento triplo T_k : che coi due elementi E_{k1} , E_{k2} anticoniugati di E_k in I_3^2 costituisce il gruppo Γ_k di I_3^2 annesso ad E_k (Teor. II); mentre E_k è l'anticoniugato di T_k diverso (n. 4) da T_k medesimo. La coppia neutra (N_1, N_2) , la coppia (E_k, T_k) e l'altra (E_{k1}, E_{k2}) si separano armonicamente a due a due (k = 1, 2, 3).

Il prodotto dei parametri di E_1 , E_2 , T_3 vale:

$$(-\epsilon)(-\epsilon^2)(\epsilon^3)=1.$$

Pertanto (n. 3):

Teorema IV. Il gruppo, dell'involuzione I_3^2 , passante per due qualunque E_r ed E_s dei tre elementi E_1 , E_2 , E_3 (Teor. II) e il gruppo Γ_k annesso al terzo E_k (Teor. II e III) hanno in comune l'elemento triplo T_k di I_3^2 .

L'equazione del gruppo Γ_k degli elementi T_k , E_{k1} , E_{k2} essendo:

$$(x-\varepsilon^k)(x^2+\varepsilon^{2k})=0,$$

quella dell'involuzione g_3' individuata da Γ_1 e Γ_2 è:

$$(x-\varepsilon)(x^2+\varepsilon^2)+\lambda(x-\varepsilon^2)(x+\varepsilon)=0.$$

Il gruppo di tale g_3' corrispondente a $\lambda = -1$ consta degli elementi x = 0, $x = \infty$, x = -1 cioè N_1 , N_2 , E_3 . Allora:

Teorema V. I gruppi Γ_r , Γ_s dell'involuzione I_3^2 annessi a due qualunque E_r , E_s degli elementi E_1 , E_2 , E_3 (Teor. II e III), ed il gruppo di I_3^2 costituito dal terzo E_k di tali elementi e dalla coppia neutra (N_1, N_2) , appartengono insieme ad una stessa involuzione I_3^1 .

6. Sull'ente Ω i gruppi 3 T_1 e 3 T_2 determinano una g_3' contenente il gruppo:

$$(x-\varepsilon)^3-(x-\varepsilon^2)^3=0,$$

i cui elementi N_{1} , N_{2} , E_{3} formano un ciclo della proiettività π :

$$\frac{x'-\varepsilon}{x'-\varepsilon^2}=\varepsilon\,\frac{x-\varepsilon}{x-\varepsilon^2},$$

di elementi uniti T_1 e T_2 .

La π porta l'elemento T_3 , di parametro x=1, nell'altro T_3' di parametro x'=-2; e questo in un T_3'' di parametro $x''=-\frac{1}{2}$. Ne segue che le quaterne:

$$(N_1 N_2 E_3 T_3)$$
, $(N_2 E_3 N_1 T_3')$, $(E_3 N_1 N_2 T_3'')$

sono armoniche. Perciò:

Teorema VI. La terna costituita dagli elementi N_1 , N_2 della coppia neutra dell'involuzione I_3^2 e da uno qualunque E_k degli elementi E_1 , E_2 , E_3 (Teor. II) ha per covariante Hessiano la coppia degli elementi tripli T_r e T_s di I_3^2 diversi da quello, T_k , coniugato di E_k (Teor. III); mentre ha per covariante cubico il ciclo passante per T_k di ciascuna delle due proiettività cicliche del terz'ordine (inverse l'una dell'altra) i cui elementi uniti sono T_r e T_s .

A. Longhi, Lugano