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ELEMENTE DER MATHEMATIK

Revue de mathématiques élémentaires — Rivista di matematica elementare

Zevtschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts
Organ fir den Verein Schweizerischer Mathematiklehrer

El. Math. Band 11 Nr. 1 Seiten 1-24 Basel, 15. Januar 1947

Uber die Faktorenzerlegung natiirlicher Zahlen

Es ist eine besonders wegen ihrer Schwierigkeit reizvolle Aufgabe, gegebene, nicht
zu kleine natiirliche Zahlen in ihre Primfaktoren zu zerlegen. Man kommt zwar bei
jeder Zahl «mit endlich vielen Schritten» zum Ziel, man mu8} ja nur die Primzahlen,
welche die Quadratwurzel der gegebenen Zahl nicht iibertreffen, der Reihe nach als
Teiler durchprobieren; wenn keine der Divisionen aufgeht, so ist die Zahl selbst eine
Primzahl, andernfalls hat man einen Primteiler gefunden und kann den Quotienten
in gleicher Weise behandeln. Bei gréBeren Zahlen kann aber dieses Verfahren ohne
besondere Hilfsmittel sehr langwierig und deshalb undurchfiihrbar werden.

Soweit Faktorentafeln zur Verfiigung stehen, wird man diese verwenden ; es geniigt
dabei, wenn aus der Tafel jeweils der kleinste Primteiler einer Zahl ersichtlich ist,
sofern die Tafel zu jeder Zahl auch alle kleineren enthilt. Es gibt solche Tafeln, die bis
zu zehn Millionen reichen!). Da aber diese Tafeln nicht immer gerade zur Hand
sein werden, koénnen auch fiir kleinere Zahlen noch andere Methoden niitzlich sein.

Anstatt direkt die Teiler zu suchen, kann man auch die mdglichen Darstellungen
der gegebenen Zahl als Summe oder als Differenz von Quadraten zu bestimmen
suchen und hieraus unter Umstinden auf die Teiler schlieBen. Bildet man zum Bei-
spiel die Summe # + 1+ 3+ 5+ 7 + ... und gelangt dabei nach y Schritten zur
Zahl x2, so ist # = x? — ¥2, und man erhilt die Zerlegung # = (¥ — y) (¥ 4+ y). Ohne
ein Durchprobieren wird man aber im allgemeinen nicht auskommen. Die Aufgabe
besteht darin, dieses Durchprobieren mdglichst rationell zu gestalten. Dazu kann
man entweder die Anzahl der Versuche einschrinken, indem man etwa mit zahlen-
theoretischen Methoden, insbesondere mit der Theorie der quadratischen Reste, alle
Zahlen, die bestimmten Formen angehoren, als Losungen ausschlieBt?), oder man
kann auch mit elementaren Mitteln versuchen, die nétigen Operationen so zu ver-
einfachen, daB sie sich ohne Miihe rasch durchfithren lassen. Im folgenden soll
gezeigt werden, wie, dies durch eine Kombination der Division von links nach dem
Prinzip des Rechenschiebers mit einer arithmetischen Division von rechts geschehen
kann. Nur die kleinsten Primfaktoren sind noch besonders zu betrachten.

1. Teilbarkestsregeln

Es ist wichtig, zunichst die kleinsten Faktoren zu priifen, denn die Wahrscheinlich-
keit, daB eine Division aufgeht, ist um so groBer, je kleiner die Zahl der méglichen
1) D. N. LEuMER, Factor Table for the first ten millions (Washington 1909).

3) Ausfiihrliche Darstellung bei M. Krarrcuik, Théorie des nombres I, I (Paris 1922, 1926), Recherches
sur la théorie des nombres I, II (Paris 1924, 1929). Vgl. auch LeoNHARD EULER, Opera omnia, insbes.

Ser. I, Bd. 3 und 4.
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Reste, je kleiner also der Teiler ist. AuBerdem kénnen manche Methoden in solchen
Fdllen, wo der zweite Faktor sehr groB wird, versagen.

Die Teilbarkeit einer Zahl durch 2 oder 5 ist sofort an der letzten Ziffer, die Teil-
barkeit durch 3 (oder 9) an der Quersumme zu erkennen. Auch fiir die Teilbarkeit
durch 11 gibt es eine bekannte Regel. Weniger bekannt sind solche Regeln fiir
die Zahlen 7 oder 13. Man kann zwar zeigen, daB es zu jeder Primzahl eine «Teilbar-
keitsregel» geben muB}; diese haben aber meist den Nachteil, da man sie leicht
vergiBt, und sie sind auch fiir groBere Primzahlen weniger rationell. Niitzlich ist
jedoch eine Regel, welche die Teiler 7, 11 und 13 zugleich erfaBt!):

Man teile die im Dezimalsystem geschriebene Zahl wie iiblich von rechts nach
links in Gruppen von je 3 Ziffern ein, deute diese Gruppen als dreistellige Zahlen
und bilde die Summe der ersten, dritten, fiinften usw. sowie die der zweiten, vierten,
sechsten usw. dieser Zahlen. Die Differenz der beiden Summen ist dann und nur
dann durch 7, 11 oder 13 teilbar, wenn schon die urspriingliche Zahl durch 7, 11
oder 13 teilbar ist.

Es folgt dies leicht, wenn man die gegebene Zahl durch 1001 = 7.11-13 dividiert.
Nach ein- oder zweimaliger Anwendung der Regel erhilt man eine (hochstens) drei-
stellige Zahl. Es gilt dann noch die Zusatzregel:

Eine dreistellige Zahl ist durch 11 teilbar, wenn die Summe der ersten und letzten
Ziffer, vermindert um die zweite Ziffer, 0 oder 11 ergibt; um die Teilbarkeit durch
7 oder 13 zu priifen, kann man von der ersten und letzten Ziffer gleichzeitig ebenso-
viel wegnehmen, als man zur mittleren Ziffer hinzufiigt, um so eine zweistellige
Zahl oder das Zehnfache einer solchen zu erhalten; diese ist durch 7 oder 13 teilbar,
wenn die urspriingliche Zahl durch 7 oder 13 teilbar ist.

Der erste Teil des Satzes ergibt sich aus der gew6hnlichen Elferregel, der zweite
aus der Beziehung 7-13 = 91 = 101 — 10. Bei einer zweistelligen Zahl ist die Teil-
barkeit durch 7 oder 13, evtl. nach Abspaltung eines kleineren Faktors, sofort
ersichtlich; bei der Zahl 91 kénnte man die Regel nochmals anwenden, um 0 zu erhal-
ten. Es lohnt sich, die Regeln zu behalten; sie sind nicht bequem zu beschreiben, aber
einfach anzuwenden. Die Zahl 1946 zum Beispiel ist durch 7, aber nicht durch
13 teilbar, denn man erhilt 946 — 1 = 945, 945 — 505 + 050 = 490 und 49 = 7.7.

Nachdem die Primfaktoren bis zu 13 beseitigt sind, kann die weitere Priifung von
Teilern mit der Zahl 17 beginnen. Alle Zahlen unterhalb 172 = 289, bei denen die
genannten Regeln keinen Faktor ergeben, sind Primzahlen, so zum Beispiel die
Zahlen 17 und 107.

Den Teilbarkeitsregeln entsprechen gewisse Rechenproben; insbesondere wird die
bekannte Neuner- und Elferprobe im folgenden gebraucht.

2. Verwendung des Rechenschiebers

In der Normallage eines logarithmischen Rechenschiebers stehen sich bei beliebig
verschobener Zunge in den Skalen gleicher Lingeneinheit Zahlen gegeniiber, die
ein festes Verhiltnis besitzen. Zieht man die Zunge des Schiebers heraus und fiihrt
sie in umgekehrter Richtung wieder ein, so daB die Skalen in entgegengesetztem
Sinne verlaufen, so haben gegeniiberstehende Zahlen der Skalen gleicher Lingen-

1) Diese Regel findet sich gelegentlich in der Literatur, so z. B. bei L. LocHER, Arithmetik und Alge-
bra (1945), Kap. 33; die ziemlich notwendige Zusatzregel konnte ich bisher nirgends finden.
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einheit ein konstantes Produkt. Zum Ablesen muB8 der Liufer benutzt werden, da
die Skalen nicht mehr direkt aneinanderliegen. Bei Schiebern mit Reziprokteilung
kann diese verwendet werden.

Stellt man nun die Zahl 1 der Zahl n gegeniiber und ist # = p.g¢, so miissen sich
auch die Zahlen p und ¢ gegeniiberstehen. Ist zum Beispiel # = 1007, so sieht man,
daB die Zahlen 19 und 53 einander gegeniiberstehen, und findet so die Zerlegung
1007 = 19-53.

Allgemein wird man also, wenn die Zahl » zu untersuchen ist und keine klz:ineren
Primfaktoren als 17 vorhanden sind, den Schieber so einstellen, da3 das konstante
Produkt gleich #» wird, sodann auf der einen Skala die Primzahlen von 17 ab mit
dem Liufer verfolgen und auf der andern Skala nachsehen, ob eine ganze Zahl mit
richtiger Stellenzahl gegeniibersteht. Solange dies nicht der Fall ist, geht man weiter;
wenn es aber mit hinreichender Genauigkeit der Fall ist, miissen die Zahlen schirfer
gepriift werden. Dabei wird man besonders auf die Endziffern achten. Da die Fak-
toren 2 und 5 ausgeschaltet sind, kommen nur die Endziffern 1, 3, 7 und 9 in Frage,
und zwar fiir die Zahl g bei gegebenen Zahlen # und p nur eine bestimmte davon.
Da die letzte Ziffer von # bekannt ist, kann man sich eine kleine Tabelle anlegen,
welche die mdglichen Endziffern von p und ¢ einander gegeniiberstellt. Ist zum
Beispiel die letzte Ziffer der Zahl # eine 7, so erhilt man die Zuordnung : . ; ; } Z } g :
Wenn bei der Ablesung auf dem Schieber die Endziffer von ¢ nicht stimmt, geht
man weiter; wenn sie stimmt (oder wenn sie bei Interpolation mit hinreichender
Genauigkeit stimmen kann), so macht man die Neuner- und eventuell die Elferprobe,
wofiir man sich den Neuner- und den Elferrest der Zahl # von vornherein notieren
wird. Wenn beide Proben stimmen, kann man bei nicht zu groBen Zahlen sicher
sein, eine Zerlegung gefunden zu haben, und wird dies nur noch zur Kontrolle durch
direktes Ausrechnen bestitigen. Wenn sich aber fiir alle Primzahlen p bis zu }/»
kein passender Faktor ¢ ergibt, so ist »n selbst eine Primzahl.

Die Priifung der Einzelfille ist meistens so einfach, daB man die Zahl p nur so
lange auf die Primzahlen beschrinkt, als. man diese auswendig kennt, dann aber
alle Zahlen mit den Endziffern 1, 3, 7, 9 durchlaufen 14dBt, sofern man nicht schon
sieht, daB sie etwa durch 3 oder 7 teilbar sind. Auch bei der gegeniiberstehenden
Zahl ¢ wird man hiufig bemerken, daB sie durch 3 teilbar ist, und kann dann sofort
weitergehen.

Ist etwa n = 10007, so findet man zunichst keinen Teiler kleiner als 17. Man
stellt nun auf dem Rechenschieber die letzte 1 der Zunge der Zahl 10007, also prak-
tisch der ersten 1 des Stabes gegeniiber. Man hat bei dieser Zahl den Vorteil, die
lingere Skala des gewdhnlichen Rechenschiebers ohne Durchziehen in einer Stellung
ausnutzen zu kénnen; man kann aber auch die kleinere Skala verwenden. Fiir p
kommen jetzt die Primzahlen von 17 bis 97 in Betracht und wegen der Endziffer 7
von # gilt die obenstehende Zuordnung der Endziffern von p und ¢. Man findet als
«verdichtige» Faktoren zunichst etwa 37-271, wobei die Neunerprobe nicht stimmt,
sodann 53-189, wobei der zweite Faktor durch 9 teilbar ist, also ebenfalls nicht in
Betracht kommt. Andere Faktoren ergeben sich nicht, die Zahl 10007 ist Primzahl.

Wollte man die Zahl 100007 in gleicher Weise behandeln, so miiBte man anfangs,
da ¢ vierstellig wird und die vierte Stelle auf dem Rechenschieber nicht mehr genau
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abzulesen ist, jedesmal die Neunerprobe anwenden. Dies liBt sich vermeiden, wenn
man die Zuordnung der zwes letzten Ziffern von p und ¢ in Betracht zieht; sie ist
durch die beiden letzten Ziffern von n festgelegt. Man erweitert also die friihere
«einstellige» Tabelle zu einer «zweistelligen». Sind, wie im Beispiel, 07 die Endziffern
von #, so entsprechen den Endziffern 01, 03, 07, 09, 11, 13, 17, ..., 97, 99 von p
die Endziffern 07, 69, 01, 23, 37, 39, 71, ..., 31, 93 von ¢q. Man findet diese Werte
leicht, indem man die Zahl n (bzw. ihre letzten Stellen) von rechts her durch p
dividiert; die Division ist wegen der Endziffern 1, 3, 7, 9 des Divisors stets eindeutig.
Es gentigt jedoch, nur die vier ersten Zahlen der Reihe auf diese Weise zu bestimmen;
nachher wiederholen sich die letzten Ziffern periodisch und die vorletzten Ziffern
ergeben sich leicht, wenn man die Zahlen $ um je 10 vergréBert. Es gilt dann (p 4 10)
x (g + 10x) = p¢ (mod 100), also, wenn p,, $, bzw. ¢4, ¢, die letzten Ziffern von p
und ¢ sind, ;% + ¢, = 0 (mod 10). Bei festen Endziffern ¢,, ¢, ist also x eindeutig
bestimmt, man erhilt jedesmal eine arithmetische Progression. Fir p, =1, ¢, =7
wird x = 3, den Endziffern 01, 11, 21, 31, 41, 51, ... von p entsprechen also im
Beispiel die Endziffern 07, 37, 67, 97, 27, 57, ... von ¢, den Endziffern 03, 13, 23,
33, 43, 53, ... von p mit x = 7 die Endziffern 69, 39, 09, 79, 49, 19, ... von ¢ usf.
Die ganze Tabelle 148t sich auf diese Weise rasch anschreiben. Vergleicht man jetzt
auf dem Rechenschieber die den Primzahlen p gegeniiberstehenden Werte mit der
Tabelle, so findet man eine erste Ubereinstimmung bei den Faktoren 97-1031. Die
Neuner- und die Elferprobe stimmen, man hat also die Zerlegung gefunden:

100007 = 97-1031.

Will man noch gréBere Zahlen behandeln, so kann man die drei letzten Stellen
von p und ¢ einander zuordnen, also eine «dreistellige» Tabelle benutzen. Auch diese
14Bt sich leicht herstellen, wenn man beriicksichtigt, daB jetzt ein stetes Fortschreiten
um 10 bei p eine Progression zweiten Grades fiir ¢ ergibt, wihrend ein Fortschreiten
um 100 wieder eine leicht zu findende Progression ersten Grades liefert, bei der die
beiden letzten Stellen von ¢ sich nicht dndern. Man kann also der Tabelle zum
Beispiel fiir die Endziffern 007 von » die folgende Form geben, wobei links die zwei
letzten Ziffern p,, p, von p stehen, oben die drittletzte Ziffer p4 von p, ganz rechts
die zwei letzten Ziffern g¢,, ¢, von ¢ und dazwischen die drittletzte Ziffer g5 von ¢:

n= ...007

p | 0123456789 ¢

01]0369258147 ) 07
03]6307418529 | 69
0710741852963 | 01
09]2581470369 | 23

11 1 6925814703 | 37 | usw.

Es ist zweckmiBig, sich vertikale Streifen herzustellen, auf denen die Primzahlen
p durch ihre Neunerreste markiert sind und die man an die entsprechenden Kolonnen
fiir ¢y anlegen kann; wenn man bei der Vergleichung mit dem Rechenschieber fiir
die Endstellen von ¢ Ubereinstimmung findet, macht man die Neunerprobe. An-
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fangs, das heiBt fiir kleinere Werte von p, ist groBere Vorsicht nétig, spater geht das
Vergleichen sehr rasch.
Fiir die Zahl 1000007 findet man bald die Zerlegung

1000007 = 29-34483.

DaB der zweite Faktor eine Primzahl ist, kann daraus entnommen werden, daB
sich bei Verwendung derselben Tabelle und derselben Einstellung fiir die Primzahlen
von 31 bis 181 und auch fiir die Zahl 292 = 841 keine Ubereinstimmung mehr findet.

Dieselbe Tabelle kann auch noch zur Priifung der Zahl 10000007 verwendet
werden. DaB man hier 6fters die Neunerprobe verwenden mu8, spielt jetzt im Ver-
hiltnis zur Gesamtzahl keine groBe Rolle mehr. Da die fraglichen Zahlen ¢ durch
den Rechenschieber und die Tabelle vollstindig gegeben sind, braucht man sie bis
zum Endergebnis nicht zu notieren. Man findet die Zerlegung:

10000007 = 941.10627.

Wenn man viele verschiedene Zahlen zu behandeln hat, ist es zweckmiBig, eine
groBere Tafel zu verwenden, welche fiir alle mdglichen dreistelligen Endungen
n4 ng 7, von 7 und die Endungen 09,5, von p die zugehéorigen dreistelligen Endungen
g3 92 ¢, von ¢ angibt. Man kann sie in gleicher Weise anordnen, wie die frihere;
wieder stehen links die Zahlen p,9,, rechts die Zahlen ¢, ¢,, dazwischen ¢,, nur oben
steht an Stelle von p, jetzt die Ziffer ny. Da wieder einfache Progressionen bestehen,
148t sich die Tafel ohne groBe Miihe herstellen, worauf aber hier nicht niher ein-
gegangen werden soll. Fiir die Endungen #3507 von # ergibt sich folgendes Bild:

n=...07

p 0123456789 ¢

0110123456789 | 07
0316307418529 | 69
07 10369258147 | 01
092109876543 | 23

11 | 6789012345 | 37 | usw,

Die ganze Tafel 148t sich auf 8 Seiten unterbringen. Sie liefert fiir jede zu unter-
suchende Zahl »# und fiir die Zahlen p unter 100 die dreistelligen und fiir die gréBeren
Zahlen p die zweistelligen Endungen von ¢ direkt. Sucht man alle dreistelligen
Endungen von ¢ zu gegebenem n, so ergibt sich jetzt die zugehdrige Tabelle sehr
leicht, da nur noch fiir die Ziffern ¢, einfache Progressionen mit bekannten Diffe-
renzen anzuschreiben sind, die sich nach je vier Zeilen periodisch wiederholen. Je
nachdem #, gleich 1, 3, 7 oder 9 ist, haben diese Differenzen die Werte 9, 1, 1, 9;
7,3,3,7:3,7,7, 3; 1,9, 9, 1. Eine vollstindige dreistellige Tafel fiir alle Werte
von # und p wiirde 80 Seiten beanspruchen.

Eine Vereinfachung ergibt sich, wenn iiber die Endziffern der Faktoren von #
schon von vornherein etwas bekannt ist. Dies ist bei Zahlen der Form a™ 4 b™ der
Fall, sofern m durch 2 oder 5 teilbar ist; primitive Faktoren?) solcher Zahlen besitzen

1) Primitive Faktoren einer Zahl a™ 4 b™ sind solche Primfaktoren, die nicht schon in einer Zahl
a® 4 " mit # <m aufgehen.
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die Form %2m + 1. Unter Umstinden kann man die Zahlen zunichst algebraisch
zerlegen und dann die einzelnen Teile weiter untersuchen. So ist zum Beispiel 210 + 510
durch a2+ b? teilbar, und wenn speziell a = x2, b= 242 ist, so findet man
mit Q == (a*+ a%bh — a2b%2 4+ ab3+ b%), R=2xy (a®+ 0%, L=Q—~ R, M=Q+R
die Zerlegung al® + 510 = (a2 + b?)-L.-M. Fiir a =25, =72, also x=5, y=6
ergibt sich L = 11148301, M = 57813061. Diese Zahlen sind nun weiter zu unter-
suchen. Die Faktoren miissen hier die Form 2 2m + 1 besitzen, sie konnen also nur
auf 01, 21, 41, 61 oder 81 enden. Man kommt daher mit folgenden dreistelligen
Tabellen aus:

n=...301 n=...061
p | 0123456789 ¢ p | 0123456789 ¢
01| 3210987654 | 01 01 | 0987654321 | 61
21| 6543210987 | 81 21| 2109876543 | 41
418765432109 | 61 41]2109876543 | 21
61| 8765432109 | 41 61| 0987654321 | 01
81 | 6543210987 | 21 81| 5432109876 | 81

Die Faktoren unter 1000 sind schon gepriift!); die groBeren Faktoren kann man
an Hand der Tabellen mit dem Rechenschieber untersuchen und findet: L ist Prim-
zahl, M -- 2381.24281. Wegen 252 4 722 = 37.157 folgt also die Zerlegung:

2510 4 7210 = 37.157-2381-24281-11148301.

3. Rechenwalze und Reziprokentafel

Mit Hilfe einer Rechenwalze kann man in gleicher Weise noch gréBere Zahlen
behandeln. Der Korb wird in umgekehrtem Sinne auf die Walze aufgeschoben, so
daB auf den Skalen sich gegeniiberstehende Zahlen wiederum ein konstantes Produkt
ergeben. Bei einer Lingeneinheit von 15 m kann man vier Stellen direkt ablesen,
die fiinfte und eventuell sechste noch schitzen; man hat also etwa zwei Stellen mehr
als beim gewohnlichen Rechenschieber. Fiir eine bestimmte Zahl » braucht man
nur die eine Stellung, in welcher die Zahl 1 des Korbes der Zahl n der Walze gegen-
iibersteht.

Fiir kleine Werte von » muB man bei groBem # sorgfiltiger ablesen und eventuell
die Neunerprobe verwenden; sobald aber p gréBer und ¢ entsprechend kleiner ge-
worden ist, geht die Ablesung im allgemeinen sehr leicht, und da sich schlieSlich
die zu vergleichenden Werte auf der Walze nur noch langsam dndern, kommt man
rasch vorwirts. Man muB ja meistens nur eine und nur in etwa einem Hundertstel
der Fille alle drei Ziffern vergleichen. So kann man zum Beispiel bei der Zahl
n = 100000007 alle Zahlen # bis zu 10000 durchnehmen, und da sich fiir die zugeho-
rigen ¢ keine Ubereinstimmung mit der dreistelligen Tabelle ergibt, findet man:

100000007 = Primzahl.

Wie die spiteren Beispiele zeigen, kénnen noch gréBere Zahlen mit der Rechen-
walze behandelt werden. Bei Zahlen, die relativ sehr nahe bei einer Zehnerpotenz
liegen, verwendet man jedoch zweckmifBiger eine Reziprokentafel, die ja dieselbe

1) Vgl. A. J.C.CunNiNGHAM, Binomial Factorisations 11 (London 1924), S. 183
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Zuordnung ergibt und eventuell noch mehr Stellen liefert. Mit einer Tafel, welche die
Reziproken der Zahlen 1 bis 100 auf acht und die der Zahlen von 101 bis 10000
auf sieben geltende Stellen genau angibt!), findet man zum Beispiel noch die folgen-
den Resultate, wobei fiir die Zahlen p von 10000 ab die Rechenwalze zu benutzen ist :

1000000007 = Primzahl,
10000000007 = 23-2293.189613,
100000000007 = 353.283286119.

Beim Aufsuchen der Faktoren kann man auf Zahlen stoBen, deren Produkt auf
mehrere Stellen am Anfang und auBerdem in den drei letzten Stellen mit der gege-
benen Zahl iibereinstimmt, bei denen aber die Neuner- oder Elferprobe oder auch
eine kleine Differenz auf der Rechenwalze zeigt, daB es doch nicht die gewiinschte
Zahl ist. So findet man zum Beispiel an Stelle von 100000007 das Produkt
3251-30757 = 99991007, bei dem auch die Neunerprobe stimmt, oder bei dem
letzten Beispiel, wo der zweite Faktor als Primzahl festzustellen ist, das Produkt
3847-4481 - 5801 = 99999999007, das um genau 1000 zu klein ist.

Einer Tafel von M. KRAITCHIK, welche die kleinsten Primfaktoren der zwischen
1022 und 10'2 + 10000 gelegenen Zahlen angibt?), entnehme ich die Zerlegung:

1000000000007 = 34519-28969553.

Um die Methode noch an weniger speziellen Zahlen zu priifen, werde die Aufgabe
betrachtet, die Zihler und Nenner der Niherungsbriiche A4,: B, zu zerlegen, die
sich bei der Kettenbruchentwicklung der Zahl n ergeben. Es ist

n=(3;7, 151,292, 1,1,1,2, 1,3, 1,14, 2 1, 1,2, 2,2, 2,1, ...),

und man findet (mit P = Primzahl):

6167950454 = 2-67-151-304831, 1963319607 = 33-421-172721,
14885392687 = 11:29-373:125101, By, = 4738167652 = 2%-109:691-15727.

=
[

-
L J

A, = 3= P, B, =1,

A, = 22=2-11, By, =7:= P,

A, = 333 = 32.37, B, = 106 = 2-33,

A, = 355=5-71, By = 113 = P,

A, = 103993 = P, B, = 33102 = 2-33.613,

A, — 104348 = 23-19.1373, B, = 33215=5-7-13-73,

A, = 208341 = 32-7-3307, B. = 66317 = 17-47-83,

A, = 312689 = 13.67-359, By = 99532 = 2%-149.167,

A, = 833719 = P, B, = 265381 = P,

Ay = 1146408 = 23.3.37-1291, B,, = 364913 = 101-3613,

Ay = 4272943 = P, By, = 1360120 = 23.5.37.919,

A, = 5419351 = 72-19-5821, B,y = 1725033 = 3-307-1873,

A, = 80143857 = 33-2968291, B,y = 25510582 = 2-31-479-859,
A, = 165707065 = 5-23-239-6029, B,, = 52746197 = 73.103-1493,
A, = 245850922 = 2-29-1009-4201, B,; = 78256779 = 3-53-577-853,
A, = 411557987 = P, B,q = 131002976 = 25-13-29-10859,
A,; = 1068966896 = 24-89-750679, By, = 340262731 = 41-8299091,
A,y = 2549491779 = 3-14081-60353, By, = 811528438 = 2-7-71-816427,
A

A

8
I

I) BarrLow’s Tables of squares, cubes, square roots, cube roots and reciprocals (London 1930).
?) Sphinx, Revue mensuelle des questions récréatives, Bruxelles, 1938, S. 84.
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Eine besondere GesetzmiBigkeit in den Faktoren ist nicht zu erkennen. Anders
ist es bei der Kettenbruchentwicklung der Zahl e, wo sich wenigstens fiir die kleinen
Faktoren eine bestimmte RegelmiBigkeit ergibt?).

4. Rechenmaschine

Bei vielstelligen Zahlen kann es sich empfehlen, nicht die Division von links,
sondern diejenige von rechts zu verschirfen. Dies kann mit Hilfe einer Rechen-
maschine geschehen. Die Methode bleibt im Prinzip dieselbe, nur die Anordnung
wird etwas geindert. Als Beispiel seien primitive Faktoren?) von Zahlen der Form
a™ 4 b™ oder speziell a™ + 1 gesucht; diese miissen die Form 2m + 1 bzw. 2km + 1
besitzen. Ist zum Beispiel m = 25, so kommen fiir die Faktoren nur die Endziffern
01 und 51 in Frage.

Es sei die Zahl # = 5938669651 als Teiler der Zahl 925 — 535 gegeben. Man stellt
sich zundchst die folgende Tabelle her, welche zu gegebenen Faktoren p die sechs-
stelligen Endungen von ¢ angibt und aus einer Ober-, zwei Haupt- und zwei Unter-
zeilen besteht:

n = 5938669651; |}n=77062,...

d P 0 1 2 3 4 5 6 7 8 9

5449 | 01 | 669657 2145 7794 3643 9692 | 5941 2390 9039 5888 2937
349 5 7 9 1 3 5 7 9 1

3049 | 51 | 189607 4945 8194 1643 5292 | 9141 3190 7439 1888 6537
949 1 3 5 7 9 1 3 5 7

In der zweiten Kolonne stehen die Endziffern p, p,, also 01 und 51, von p, oben
in der Oberzeile die drittletzte Ziffer p, von p. Unter p, sind in den Hauptzeilen die zu
000424, gehorigen sechs Endziffern von ¢ angegeben, wobei aber die zwei letzten
Ziffern gqq,, hier also 51, bzw. 01, nur einmal (kursiv) unter 0 aufgefithrt sind, da sie
sich in den folgenden Kolonnen gleichbleiben. Es ist zum Beispiel 101-214551 =
21669651, was in den letzten sechs Stellen mit » iibereinstimmt. Die unter p, = 0
stehenden Zahlen findet man direkt durch Division von # durch 01 bzw. 51 von
rechts, die folgenden durch eine Progression zweiten Grades, deren erste Differenz
d ganz links in der ersten Kolonne angegeben ist. Wegen

(p + 100) (¢ + 1004) = p¢g (mod 109)
ist —d(p+100) =¢ (mod 10%);

man findet also 4, indem man die zu p gehorige Zahl ¢ auf vier Stellen von rechts
durch p + 100 dividiert und die Erginzung zu 10000 bildet. Wird $ nochmals um
100 vergroBert, so findet man mit

— (d + 100¢) (p + 200) = ¢ + 100d (mod 10%),
das heiBt ¢ep = — 2d (mod 100)

die zweite Differenz ¢ in Einheiten der viertletzten Stelle, indem-man — 24 (mod 100)

1) Siehe EL Math., Bd. I, Heft 5, S. 3. .
3 Vgl. FuBnote 1), S. 5.
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von rechts auf zwei Stellen durch p dividiert. Wegen — dp = ¢ (mod 100) gilt auch
ep? =2q (mod 100);

man kann also ¢ auch finden, indem man 2¢ auf zwei Stellen von rechts durch die
beiden letzten Stellen von p? dividiert. Ubrigens lassen sich alle Differenzen auch
empirisch bestimmen oder kontrollieren, indem man weitere Zahlen der Tabelle
durch Division von rechts direkt ausrechnet. Im betrachteten Beispiel wird e =
Damit lassen sich, besonders bei Verwendung einer Rechenmaschine, die welteren
Zahlen der Hauptzeilen sehr leicht anschreiben. Geht man dabei noch um einen
Schritt iiber p3 =9 hinaus, so findet man den zu p + 1000 gehérigen Wert
g + 1000 é und notiert sich in der Unterzeile die dreistellige Zahl 4. Die beiden letzten
Ziffern von 0 miissen mit denen von d iibereinstimmen, sie bleiben durch die ganze
Zeile dieselben und werden deshalb nicht wiederholt. Die erste Ziffer von d ergibt
eine arithmetische Progression, deren Differenz mit der letzten Ziffer von e iiber-
einstimmt.

Nachdem so die Tabelle hergestellt ist, lassen sich zu beliebigen Werten von »
die sechs Endstellen von g leicht finden, denn wenn p fortgesetzt um 1000 vermehrt
wird, bleibt die Differenz 6 konstant. Man entnimmt also der zu p,p, gehérenden
Hauptzeile die unter p4 stehende Zahl, erganzt durch die Endziffern ¢,¢,, und addiert
dazu das pgp;p,000-fache der aus der Unterzeile zu entnehmenden Zahl 8. Das
Resultat kann dann mit dem durch Division von links erhaltenen verglichen werden,
wozu im allgemeinen der Rechenschieber geniigen wird.

Um jetzt mit Hilfe der Rechenmaschine die Faktoren der gegebenen Zahl zu
finden, stellt man im Beispiel zunichst die Zahl 669651 im Resultatwerk ein, sodann
im Einstellwerk die Zahl 349000 == 1000 ¢, die mit jeder Kurbeldrehung im Resultat-
werk addiert wird. Gleichzeitig verfolgt man auf dem Rechenschieber die den Zahlen
p = 1001, 2001, 3001 usw. gegeniiberstehenden Zahlen ¢ und sieht zu, ob ihre sechste,
eventuell fiinfte, vierte usw. Stelle von rechts mit den entsprechenden Zahlen der
Rechenmaschine iibereinstimmen. Wenn dies nicht der Fall ist, geht man weiter,
andernfalls kann man die Faktoren wie frither genauer untersuchen. Die Anzahl
der Kurbeldrehungen (und damit die Zahl p) ist dem Zdhlwerk zu entnehmen, sofern
dieses mit Zehneriibertragung versehen ist, andernfalls kann man bei einer viel-
stelligen Maschine in hinreichendem Abstand links von der Zahl 6 im Einstellwerk
noch eine einzelne 1 einstellen.

Wenn man so unterhalb }/n, im Beispiel also unter 77062, keinen Faktor der
Gestalt p5$,001 gefunden hat, geht man zum ndchsten Feld der Tabelle, addiert
also zu 214551 die Vielfachen von 549000 und vergleicht mit den Zahlen ¢ des
Rechenschiebers, welche den Zahlen p = 101, 1101, 2101, 3101 usw. gegeniiber-
stehen. So kann man fortfahren und findet schlieBlich im letzten Feld der Tabelle
die Zerlegung 5938669651 = 70951 -83701.

Praktisch wird man allerdings dieses Resultat schon frither erhalten. Man findet
schon bei der Endung 701 von p, daB die «verdichtigen» Werte von ¢ ziemlich
regelmiBig aufeinanderfolgen und wird diese Erscheinung iiber |/n hinaus verfolgen.
So kommt man schon in der ersten Zeile zu dem Produkt 83701 -70951. Es empfiehlt
sich auch sonst, bei einer passenden Hilfte der Zahlen, hier bei den Endungen 01
von p, mit den Versuchen ein bestimmtes Stiick iiber J/ » hinauszugehen, man kann
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dann bei der andern Hélfte, das heif3t hier bei den Endungen 01 von ¢, entsprechend
frither aufhéren. Sobald namlich p gréBer wird als #:100000, so ist ¢ hichstens
fiinfstellig, also die Ziffer g4 gleich 0. Dies ist auf der Rechenmaschine leicht zu
priifen, und je nach der Zahl é ergeben sich empirisch RegelmiBigkeiten, die man
ausniitzen wird, um viele nicht in Betracht kommende Zwischenwerte zu iiber-
springen.

Unter Umstédnden kann sich eine Zerlegung schon sehr friih ergeben ; bei der unten
aufgefiithrten Zahl 2161599151 findet sie sich an Hand der zugehorigen Tabelle nach
den ersten neun Kurbeldrehungen; wenn eine Zahl jedoch Primzahl ist, muB die
ganze Tabelle durchgenommen werden.

Anstatt sechs kann man auch acht Endstellen beriicksichtigen und eine entspre-
chend groBere Tabelle anlegen, die ganz nach demselben Prinzip aufgebaut ist. Als
Beispiel werde die vierzehnstellige Zahl 10227209596001, ein Faktor der Zahl
20% — 1, betrachtet. Die Faktoren miissen wieder auf 01 oder 51 enden, die acht-
stellige Tabelle enthilt jetzt 20 Haupt- und Unterzeilen. Die erste und fiinfte seien
hier angegeben:

no=10227209596001; }n= 3198000,...

d P 0 1 2 3 4 5 6 7 8 9
04 999|001 | 09596007 14595 21594 30593 41592 ] 54591 69590 86589 05588 26587
3999 5 7 D) 1 3 5 7 9 1
85399]201}122435807 07834 95233 84632 76031 | 69430 64829 62228 610627 63020
4399 6 8 0 2 4 6 8 0 2

Priift man die Faktoren p jeweils nur bis zu |/, also bis zu 3198000, so ergibt
sich hier die Zerlegung erst sehr spit. Es ist wiederum von Vorteil, bei einem Teil
der Zahlen iiber }/» hinaus, etwa bis zu 10300000 zu gehen, man braucht dann
die korrespondierenden Zahlen (mit vertauschten Endungen von p und g¢)
nur bis 1000000 durchzunehmen. In diesem Falle findet man die Zerlegung
7466201 -1369801 schon im «Feld 6» der fiinften Zeile. Erginzt man die dort stehende
Zahl 64829 durch die im «Feld 0» angegebenen Endstellen 801 zu 64829801 und
addiert dazu das 746-fache der aus der Unterzeile zu entnehmenden Zahl 63990000,
so erhilt man eine Zahl mit den Endstellen 01369801, welche die vollstindige Zahl ¢
ergeben. Die ersten Stellen stimmen mit den auf dem Rechenschieber (oder der
Rechenwalze) abzulesenden iiberein; auch die Neuner- und Elferprobe stimmt, man
kann das Resultat noch durch direktes Ausrechnen verifizieren.

Ehe man zu diesem Resultat gelangt, findet man ebenfalls in der fiinften Zeile
ein verdichtiges Produkt 2860201-3575801, bei dem nicht nur der Rechenschieber,
sondern auch die Rechenwalze noch gute Ubereinstimmung zeigt, bei dem aber
die Neunerprobe nicht stimmt. Ausmultipliziert ergibt sich die Zahl 10227 509596001,
die sich von der gegebenen nur um 3 Einheiten der sechsten Stelle von links, also
der neunten Stelle von rechts, unterscheidet; die acht letzten Stellen miissen ja nach
Konstruktion richtig sein. Man wird solche Produkte zur Kontrolle notieren und
ausrechnen.

Wenn man fiir die Zahl # eine Zerlegung gefunden hat, so ist das ‘Resultat durch
die direkte Ausrechnung gesichert; es ist héchstens noch zu untersuchen, ob die
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gefundenen Faktoren nicht weiter zerlegbar sind. Hat man jedoch keinen Faktor
gefunden, so hat man keine direkte Probe, ob die Zahl tatsichlich Primzahl ist;
man miite, um das Resultat zu priifen, das ganze Durchsuchen wiederholen. Es ist
jedoch zu bemerken, daB das angegebene Verfahren gegen Fehler ziemlich unempfind-
lich ist. Systematische Fehler lassen sich durch passende Proben vermeiden, und
Einzelfehler konnen sich nur dann auswirken, wenn die Zahl # zerlegbar ist und der
Fehler gerade das Feld betrifft, in welchem sich ein Faktor von »n ergeben wiirde.
Die verdichtigen Produkte machen sich meistens so deutlich bemerkbar, daBl das
«Ubersehen» einer Losung kaum eintreten wird. Héchstens bei alleiniger Verwendung
des Rechenschiebers oder der Rechenwalze fiir relativ groe Zahlen und bei sehr
ungleichen Faktoren ist die Gefahr etwas groBer. Bei einiger Sorgfalt kann man sich
aber auch in dem Falle, wo keine Zerlegung gefunden wurde, auf das Resultat ver-
lassen.

Wenn es auch andere Methoden gibt, die in manchen Fillen schneller zum Ziel
filhren oder noch gré8ere Zahlen zu behandeln gestatten, so hat die hier dargelegte
doch den Vorteil, ohne besondere Vorkenntnisse oder schwierigere Entwicklungen
auf beliebige, nicht zu groBe Zahlen anwendbar zu sein.

Zum SchluB seien einige Resultate zusammengestellt, die in der angegebenen
Weise gefunden wurden. Die Zerlegung der Zahlen a®® + 1 wird dadurch bis zu
a == 10, die der Zahlen 4!® + 1 bis zu a = 44, und wenn a = 2x2 bis zu x = 24,
wenn a = 10 x2, bis zu x — 8 vollstindig!). Die Zahlen der Form (a%% - 25):(a® — b%)
mit a == 2%, b = 592 lassen sich algebraisch in L-M zerlegen, wobei mit X = a8,
Y=05 Q=(X2+3XY+Y?) R=)Y5XY (X+VY),L=Q—-R M=Q+R
wird. Im Falle a == 16, b = 5 sind die Faktoren 251 von L und 151 von M, im Falle
@ =1, b —= 20 die Zerlegung 151-1451-46794901 von M schon bekannt?).

Als Primzahlen ergaben sich:

810221830361, Teiler von 720 41,

208518605101, » » 261041,
1784250435661, » » 341041,
23674060981, » » 5781041,
1308636140501, ~» » 105810 4 1,
50150933101, » » 5241,

3883402651, » » 1625 525 (LIZSI),
8238208751, »  » 16% — 5% (M:151);

als zusammengesetzt:

190122908881 = 110321-1723361, Teiler von 64010 4 1,
2161599151 = 9001-.240151, » » 925 _ 535 (),
5938669651 = 70951-83701, » » 938 _ 535 (M),

10227209596001 = 1369801-7466201, ' » » 20% -1 (L).

P. FINSLER, Ziirich

1) Krarrchik, Recherches 11, S. 89, 94, 95, 134-136, 145. Siche auch Sphinx, 1937, S.39.
%) CuNNINGHAN, Bin. Fact. II, S. 176.
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