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k
2sin- \Pk + iQksiri(p\A. (12)

Da offensichtlich nicht beide Zahlen Pk und Qk zugleich verschwinden können,
kann jetzt auf

|Pfc + *<2*sin9P|^|sin<p|>0, (13)
und damit auf

2sin-

geschlossen werden. Wegen q > 6 ist aber

n
sin —

\A \ sin <p |

<±.

(14)

(15)

so daß mit (14) für hinreichend große k ein Widerspruch erzielt ist. Damit ist die

Unmöglichkeit der Gegenannahme gezeigt und der Beweis abgeschlossen.

H. Hadwiger, Bern

Johann I Bernoulli als Kritiker der «Principia» Newtons
1. In der Geschichte der Mathematik lebt Johann Bernoulli (1667-1748) als

eifrigster Partisan Leibnizens im Prioritätsstreit um die Entdeckung der Infinitesimalrechnung

fort, der nach dem Tode seines großen Freundes allein «wie Horatius
Codes»1) den Kampf mit den zelotischen Newtonianern ausfechten mußte. In diesen
Fehden konnte nun Bernoulli mit nicht geringem Stolze darauf hinweisen, daß

er in der «Philosophiae naturalis principia mathematicai, auf die die Newtonianer
wie auf die Bibel ihres Herrn und Meisters schworen, eine Reihe von Fehlern in der
Behandlung der Zentralkräfte nachweisen konnte.

OK

r>d#~±-y

r/

Fig. 1

Sind diese Fehler allerdings mehr bloße Versehen Newtons, so gaben sie doch
andererseits Bernoulli Anlaß, das Zweikörperj>roblem ganz allgemein, sowohl
im Vakuum wie im widerstehenden Mittel analytisch zu entwickeln und dabei um

1) So nennt Fontenelle Bernoulli im Eloge vor der Pariser Akademie.
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1710 diejenigen Formeln aufzustellen, die bis heute in den Lehrbuchern der anal}
tischen Mechanik immer wieder gebracht werden, wobei anscheinend ganz vergessen
worden ist, daß diese Entwicklungen auf Johann I Bernoulli zurückgehen

Nachstehend sollen deshalb die Bemerkungen Bfrnoullis zu Nlwtons Versehen
im Zusammenhang mit dem Zweikorperproblem zubammenfassend dargestellt
werden, wobei die Transkription der BERNOULLischen Ableitungen m die moderne
analytische Mechanik nicht zu weit getrieben werden soll, damit die geometrischen
Überlegungen der alten Analytiker noch genügend erkennbar bleiben

2 Es sei P(x,y) ein Punkt der Bahnkurve, die der Massenpunkt (m~~ 1 gesetzt)
unter dem Einfluß einer Zentraikraft <p(r), die von0 aus wirke, beschreibt Dann kann
man einerseits, wenn die Bahn vorgegeben ist, das zugehörige Zentralkraftgesetz,
oder andererseits bei vorgegebener Zentraikraft die zugehörige Bahnkurve
bestimmen So hat Newton aus der Bahnform der KEPLER-Ellipsen das Zentralkraftgesetz

(p{r)= ^y hergeleitet (Lib I, Sect III, Prop XI-XIII) Hierbei passierte nun

Newton ein Lapsus, indem er die Umkehrung dieses Satzes, aus dem Kraftgesetz

(p(r) 2 folge auch «vice versa», daß die Bahnkurve ein Kegelschnitt ist, für
selbstverständlich hielt1)

Nicht zuletzt wohl angeregt durch Varignons Entdeckung von 17002), daß sowohl

die logarithmische r — e& wie die hyperbolische Spirale r « Bahnkurven des einen

Kraftgesetzes <p(r) 5 sein können, obwohl (in Polarkoordinaten) die eine Kurve

algebraisch, die andere transzendent ist, bemerkte Bernoulli zuerst, daß Newtons
Umkehrung eines Beweises bedürfe und führte 1710 den allgemeinen Beweis, daß

das Kraftgesetz <p(r) ^ nur Kurven zweiten Grades, das heißt Kegelschnitte als
Bahnkurven liefert3)

Bei der Herleitung der Differentialgleichung der Bahnkurve aus den Bewegungsgleichungen

d2x x dzy y ,iXdfl=-V(r)-f. -or 9(r)r (1)

benutzt Bernoulli sowohl das Flachenintegral wie das Lnergiemtegral Nach

Multiplikation mit x respektive y und Subtraktion sowie nachfolgender Integration
folgt sofort aus (1) das Flachenintegral

dy dx
xiü-y-dt c

Dieses Flachenintegral lautet dann m Polarkoordinaten

rtd&-xdy-ydx-2dF-cdt,
x) In Corol I zur Prop XIII, Prob VIII, heißt es « si corpus quodvts P vi centnpeta quae sü

reetproce proportwnahs quadrato dtsianttae a centro, stmul agttetur, movebttur hoc corpus m altqua seettonum

Conicarum &. contra» Dieses Corollar wurde erst nach der BERNOULLischen Kritik bei der zweiten
Auflage der Principia (1713) durch die nachfolgenden erläuternden Zusätze ergänzt (vgl Wolfers Ausgabe,
Seite 75, lin 7—14)

2) Mem Acad Paris, 1700, pp 83 101

3) Extrait de la Re>onse de M Bernoulli a M Hermann, datee de Basle le 7 Octobre 1710 Mem

Acad Paris, 1710, pp 521-533, Op I, 470-480
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welches man mit dem Lot p (von 0 aus auf die Bahntangente in P) wegen 2dF=pds
in der Form

P%-P* c (2)

schreiben kann.
Andererseits folgt aus (1) sofort

n d2x dx „ d*y dy „ x
1 [ dx dy ^ t \ dr

weil r2= #2-f y%, das heißt rdr #</# + y<fy ist. Nachfolgende Integration hefert dann

(t)*+(f)'-2M>*+". «
in welcher Form schon Bernoulli das Energieintegral hat. Schreiben wir modern
kürzer die Zentralkraft als Gradient einer Potentialfunktion U, welchen Begriff
Bernoulli natürlich noch nicht besitzt,

so folgt aus (3)

-J-I/+A (4)

oder mit (2) für die Gleichung (4)

_ia
P%

Hieraus findet man durch Differentiation zuerst

J=2(t/+A).

denn p ist wie U, weil v wegen (3) nur eine Funktion von r ist, wegen (2) ebenfalls
nur eine Funktion von r. Damit haben wir für die Zentralkraft den Ausdruck:

v dU c* dp

Es ist aber-j- —, wie schon Huyghens 1673 synthetisch in seinem Horologium

oscillatorium gefunden hatte und wie analytisch leicht zu bestätigen ist. Die Zentralkraft

ist also geometrisch durch den Ausdruck

gegeben, den man auch

schreiben kann1). Nun ist aber

AX ±
ds 1 dr*+rH&* 1 i dr \a

sec (r.p) r:p^ ^, womit -^ yW, ^ + [j^)
A) Dieser Ausdruck für die Zentralkraft spielte bei den älteren Analytikern, die ihn-geometrisch herleiteten,

eine große Rolle. Moivre hat zuerst die Form (5) (Brief vom 27. Juli 1705 an Joh. I Bernoulli)
und wollte die Priorität beanspruchen, bis ihm Newton zeigte, daß dieser Ausdruck implizit in Sect. II
des Lib. I der Principia steckt.
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und nach der Substitution

T—*—+(S)"1

r ~"> y
folgt. Geht man auf den Ausdruck (4) zurück, so folgt mit vp c (2)

v*=2(y + h) c*(u> + (%)t). (6)

Hieraus findet man durch Auflösen nach # die Bahn, wenn das Kraftgesetz
<P(r) <P (^j gegeben ist,

p(rH#(«HW~)= f /
CdU

- ; (6a)

andererseits braucht man (6) nur nach & zu differenzieren,

2 du du d2u ft dU \ dr du

um bei vorgegebener Bahnkurve &(r) &(—) das Kraftgesetz zu finden:

9(r) 9(i) uW(u+£L). (6b)

Man erkennt unschwer, daß das NEWTONsche Problem, aus &(r) das Kraftgesetz zu
finden, einfacher ist als das «inverse Zentralkraftproblem», aus dem Kraftgesetz die
Bahn herzuleiten. Denn das inverse Problem (6 a) erfordert Integration, während
Newtons Aufgabe (6 b) nur auf Differentiationen führt.

Da nach Keplers Gesetzen die Planeten Kegelschnitte beschreiben, deren Polar«
1 all—- e*)

gleichung in der Form — r -«—r s gegeben ist, so reduziert sich wegend%u* j u l + *cos0 * « ' »

u ^ dft* ^YZ~~i\~ ^*e ganze Ableitung des NEWTONschen Gravitationsgesetzes nur
noch auf die eine Zeile

M £ 1 k_
nn r*

'
«(1-«»)" r* '

Daß dagegen im inversen Problem das Integral für den NEWTONschen Fall <p(r) -y,
1 r

also U= — u

•G)-f cdu

fälh-uj-uH*
einen Kegelschnitt darstellt, ist nicht selbstverständlich, sondern wurde von Bernoulli
durch direkte Integration hergeleitet. In der Tat führt dieses Integral ja auf die zyklo-

metrischen Funktionen von u - -, womit sich r umgekehrt als trigonometrische Funktion

von # ergibt, was man dann auf die Form der Polargleichung der Kegelschnitte
bringen kann. Die Art derselben ist dann in bekannter Weise von der Konstanten h
des Energieintegrals abhängig.

k
Setzt man das Kraftgesetz <p(r)^—^=ku* voraus, so folgt nach (6) die Differential-

/ d2u\
gleichung q>(r) £t*3=c,w*(« + -vp-) oder
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d*u
M^ +.(-£)-•

d2u jwelche Gleichung für k=2c2 wegen »2 u das partikulare Integral u e und für

k c* das partikulare Integral u — A # hat Das erste entspricht der logarithmischen
und das zweite der — übrigens von Varignon so benannten1) — hyperbolischen Spirale

Bernoullis Forderung nach einem Beweis der NEWTONschen Umkehrung daß ein

Kraftgesetz q>(r) — nur Kegelschnitte liefere, war also durchaus gerechtfertigt Der

Historiker muß jedoch verzeichnen, daß der ehemalige Bernoulli-Schuler, der seiner
zeit sehr berühmte Basler Mathematiker Jakob Hermann, gleichzeitig mit Bernoulli
diesen Beweis zu fuhren versuchte2), dabei aber von dem formal gewandteren Johann
Bernoulli überflügelt wurde Nachdem nun Varignon 1700 auch für das Zentralkraft
gesetz <p(r) — r Kegelschnittbahnen8) gefunden hatte, erhob sich die Frage ob

<p(r) r, (p(r) —^ die einzigen Funktionen sind, die unter allen Anfangsbedingungen auf

Kegelschnitte fuhren, was dann erst 1873 Bertrand nachweisen konnte Jakob
Hermann4) warf in seiner Phoronomia schon die Frage auf, ob andere Zentralkraft
gesetze auf andere algebraische Kurven fuhren, Koenigs konnte 1889 beweisen daß

q>(r) r, <p(r) -y die einzigen Funktionen sind, die unter allen Anfangsbedingungen

algebraische Bahnkurven liefern Die Kegelschnitte sind also überhaupt (im allge
meinen) die einzigen, die unter dem Einfluß einer Zentralkraft als algebraische Kurven
beschrieben werden

3 Für die Bewegung im resistenten Medium mit dem Widerstandsgesetz R=jzavn
leitet Bernoulli leicht die Differentialgleichung her Für die Tangentialkomponente
der gesamten auf den Massenpunkt in P wirkenden Kraft ergibt sich dann der Aus

v2
druck tp cos xp ± a vn K Mit Hilfe der Normalkomponente <p sm xp — der Kraft

erhalt man, da ctg xp —je lst

-dv =Kdt (— • -4ir ±*vn) dt
\ q rdö -1- ]

Also ist

(v* dr \ ds ~

q rd& -^ I v
oder

1 drds „ 9 j dv ~

q rdft -1- v

womit Bernoulli seine Differentialgleichung hergeleitet hat Sie gibt ihm Gelegenheit,

seine 1694 publizierte Methode6) zur Losung von linearen Differentialgleichungen

*) Loria (Spezielle Kurven, Bd II, p 55) nennt Bernoulli den Entdecker und Bezeichner dieser

Spirale, es kommt aber mindestens Varignon (siehe Fußnote 2, p 101), wenn nicht sogar dem von
Varignon zitierten Pere Nicolas die Priorität zu

*) Extrait d'une lettre de M Herman ä M Bernoulli, datee de Padoue, le 12 judlet 1710 Mem
Acad Paris, 1710, pp 519-521

a) Siehe Fußnote 2, p 101 Zentralkraft im Mittelpunkt, nicht im Brennpunkt einer Ellipse
4) Phoronomia (Amsterdam 1716), Lib I, sect II, prop XXV, pp 74-81
8) Joh Bernoulli de conoidibus ei sphaeroidibus quaedam Solutto analytua Aequattonts m Actis

A 1695, pag 553 proposxta Notattunculae tfi Responstonem a Nob D T nupero Novembn editam etc

A E 1697 (Marz),pp 113-118 Op I, pp 174-79
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vom «BERNOULLischen Typ» zu demonstrieren Es sind nämlich bei vorgegebener

Bahnkurve &= &(r) und ds -1/1 -f ryjf) sowie q j^ Funktionen von r Setzt man
1 ds

deshalb ads= B(r)dr und — -yj^- - A(r), so hat man die BERNOULLische

Differentialgleichung in der modernen Form

dvv +A dr±vn 2 B (r) dr 0 (7)

Mit dem Ansatz von 1694, die gesuchte Funktion v als Produkt zweier neuer un
bekannter Funktionen v — M(r) N(r) aufzufassen, erhalt man

*^+**L + A(r)dr±(M-N)» 2 B(r)dr-Q (7a)

Da die Funktionen M(r),N(r) zunächst willkürlich angenommen wurden, kann man
einer von ihnen noch die Nebenbedingung

™. + A{r)irssQ

auferlegen, woraus dann M=e fA^dr folgt Wegen (7a) folgt dann aber für N die
Differentialgleichung

^ Tei2-n)lMr)i'N"*B[r)dr
oder

iV2 n j_ („ __ 2) fe(2-n)/A(r)dr ß (fj ^
woraus sich v M N dann ohne weiteres bestimmen laßt Wenn die Bahnkurvi

y% fit
gegeben ist, so laßt sich weiter aus cp(r) - jz die zugehörige Zentralkraft im
widerstehenden Mittel bestimmen Das inverse Problem fuhrt im widerstehenden Mittel,
wie das ballistische Problem zeigt, im allgemeinen Falle auf unüberwindliche
Schwierigkeiten Wahrend aber Newton den Wurf nur für das Widerstandsgesetz R ~f a %

bewältigen konnte, gelang Bernoulli auch die Losung für das Gesetz R \ av2

Bernoulli muß sich mit den Zentralkraften im resistenten Medium schon etliche
Jahre vor 17111) beschäftigt haben Die aus der Differentialgleichung (7) folgenden
Integralausdrucke für die Zentralkraft q> waren wenn auch mit Rechenfehlern Ix
haftet, schon 1710 m Italien2) von G Vfrsaglia veröffentlicht worden Dieser sonst
ganz unbekannte Mathematiker hatte fast zwei Jahre (1707-08) als Schuler Johanns
m dessen Hause zugebracht und dabei sogar Einsicht in die noch unveröffentlichten
Papiere nehmen dürfen da Bernoulli ihn sogar noch für ein Plagiat 7U dumm hielt
Es besteht kern Zweifel, daß Versaglias Formeln geistiges Eigentum Bernoullis sind
das dieser also spätestens 1708 schon besaß

4 Newton hatte das zweite Buch seiner Prinzipien fast ausschließlich der Be

wegung im widerstehenden Mittel gewidmet Ohne von dem Infmitesimalkalkul

*) Extrait d'une lettre de M Bernoulli, 6ente de Basle, le 10 janvier 1711 Touchant la mamere de

trouver les forces centrales dans des miheux, resistans en raison composee de leurs densites et des puissances
quelconques des vitesses du mobile Mem Acad Paris, 1711, pp 47—53 Op I, pp 502—508

2) Modo di trovare 1 orbite che desenvono l Pianeti qualunque siasi la loro forza chiamata Centrale con
una regola per la detta forza dentro un mezzo di Variante densita, che resista al mobile Del Sig Giusepp*

Verzaglia, da Cesena Gior lett Italia, tom 3 (1710) pp 495—510
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Gebrauch zu machen, leitete er mit geometrischen Hüfsvorstellungen bei
vorgegebenen Bahnkurven die wirkenden Zentralkraftgesetze her. Johann Bernoulli
bewatfnet mit dem allgemeinen analytischen Ansatz (7), konnte ihm nun gerade hier
eine Reihe von Versehen nachweisen. So hatte Newton (Lib.II, sect.III, prop. XVI,
th.XII) behauptet, daß beim Widerstandsgesetz R=±dv2 (d== Dichte) bei der
Bewegung in einer logarithmischen Spirale das Zentralkraftgesetz algebraisch, nämlich

9?(r)== ^HhT*st» wenn nur die Dichtefunktion zu d= -^-angenommen wird. Bei der

logarithmischen Spirale ist aber nun bekanntlich ds^gd&^hdr, und so findet man
für die Differentialgleichung (7)

oder

woraus dann

(^^±vV)ds + vdv=£dr±vh^ds + vdv 0,

thv2r1~ndr-^-vidr+rvdv==0,

folgt, was nach Integration

dv __, _ dr
- ^^fhr~ndrv r

*LS-
(8)

ergibt. Da bei der log. Spirale hier <p(r) — ist, so erkennt man, daß nur im Falle

n== 1 das Kraftgesetz algebraisch wird1). In der zweiten Auflage der Prinzipien (1713)
hat Newton dieses Versehen nicht verbessert2).

Fig. 2

Schlimmer war Newtons Fehlbehauptung, es würde sich die Schwere g zum
Widerstand R wie g:\R\ OK:OB verhalten, wenn ein Körper in einem wider-

*) Für n—>»1 wird der Ausdruck zwar zunächst -singulär. Beachtet man jedoch, daß es sich um eine
th 1-»

reine Verhältnisgleichung handelt, so kann man den Ausdruck (8) mit e — const. multipizieren.
(Brief von Bernoulli an Varignon vom 17, November 1711). Für **->l erhält man dann wegen

Um- — In ~ das algebraische Kraftgesetz <p{r) er"3 ± 2*
n~»i 1-* r

2) Bernoulli kritisiert auch die Prop. XV, p. 284. Die Zentralkraft braucht nicht nur reziprok quadra-

ist, damit die Bahnkurve imtisch, sondern kann allgemein eine Potenz q> r m sein, wenn nur ö
=F26

widerstehenden Mittel eine logarithmische Spirale wird. Für m — 3 oder ö 0 erhält man dann das bekannte
Resultat im Vakuum. Auch auf diese Kritik ging Newton nicht ein.
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stehenden Mittel unter dem Einfluß der Schwere einen Halbkreis beschreibt1) Die

in C wirkei

differential

dy
in C wirkende Tangentialkraft ist gcos^ g-^- Demnach folgt für das Impuls-

gdy-j-Rds^ — vdv,

wobei cos xp^dy ds~EC CC'-OB OC OB OK

und BC=y gesetzt ist Nun liefert der allgemeine Ausdruck für die Tangen-
v2

tialkomponente der Zentralkraft g cos xp - ctg xp oder v2 g sm xp r, woraus
H

wegen der ähnlichen Dreiecke OBC und CEC schließlich v2 g-7yr~r folgt Dann

aber ist v2 gBC, vdv^\gdy Setzt man diesen Wert in die obige Gleichung
für vdv ein, so folgt die richtige Relation g \R\ -20K 30B statt der NEWTONschen

Dieser Irrtum um den Faktor 2/3 rührte nun fatalerweise davon her, daß
Newton, wie ihm Nikolaus I Bernoulli nachwies2), in Anwendung seiner Fluxions-
rechnung bei der Bestimmung von dBC d tfr2- x2 durch Reihenentwicklung die
Reihengheder als die sukzessiven höheren Ableitungen betrachtete und damit einen
Koeffizientenfehler beging Mit dem Hinweis auf diesen Fehler, der von den Leib-
nizianern geradezu als ein Beweis dafür ausgeschlachtet wurde, daß Newton die
Infinitesimalrechnung gar nicht verstanden habe, wurde Bernoulli 1713 in den
berühmten Pnontatsstreit3) hineingezogen, nachdem er sich vorher nicht gerade bei
Newton behebt gemacht hatte, als er ihm einiges in den Prinzipien am Zeuge flickte
Denn sehr viel mehr als ein billiger Triumph, wenn «quandoque Homerus dormitat»,
waren Bernoullis Kritiken eigentlich nicht

Immerhin war es ihm vergönnt, einmal den NEWTONschen Genius wirklich zu
überflügeln, als er das oben erwähnte ballistische Problem für das Widerstandsgesetz

R^^av2 loste und für den allgemeinen Fall die Differentialgleichungen
aufstellt«, womit er der Vater der modernen Ballistik wurde In der Meinung, daß eine
\ufgabe, welche die Kräfte Newtons übersteigt, auch für dessen Gegner zu schwer

sei, hatten die NEWTONianer 1717 das ballistische Problem als Aufgabe gestellt In
den Worten4), mit denen der schottische Kampe und «Kettenhund Newtons* Keill
den Wettstreit eröffnete, mag ein Kornchen Wahrheit stecken, wenn man die
vorwiegend formal-mathematische Begabung Johann Bernoullis m böswilliger
Verzerrung charakterisieren will

1) PrmcipM, Lib II, Sect II, Prop X, Prob II, p 265 In der zweiten Auflage, p 236, verbessert
(vgl Wolfers Ausgabe, p 256)

2) Addition de M (Nicolas) Bernoulli, neveu de 1 Auteur de ce memoire cy Annex zur Arbeit1)
3) I eibniz veröffentlichte als Antwort auf das Commercium epistolicum der Royal Society 1712 ohne

Wissen Bernoullis durch Chr W7olpf am 29 Juli 1713 ein Flugblatt, in welchem ein «Judicium primam
Mathemattci* abgedruckt wurde Dieses war nichts anderes als ein Briefexzerpt Bernoullis an Leibniz
vom 7 Juni 1713, in welchem Bervoulli das Versehen Newtons um den Faktor 2/3 mit scharfen Worten,
wie \ichtvers>tehen des Infinitesimalkalkuls etc geißelt Diesen Brief, der immerhin ohne Autorennennung
von 1 eibniz publiziert wurde, hat Newton Bernoi lli nie verziehen, obwohl sich spater Moivre und
\ *rignon sehr um eine Versöhnung bemuhten, die schließlich nur zu einer Hofthchkeitsverstandigung
zwischen Newton und Bernollli führte

*) Diese deutsche l bersetzung eines Exzerpts aus einem Briefe Keh ls an Tai lor, den dieser an
Montmort (is Juli 1717) richtete, der ihn seinerseits an Bernollli weiterbeforderte (26 Januar 1718)
wurde \on Nikolaus I eigens für seinen Oheim Johavn I verfaßt
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«Ich kann nicht laugnen, daß der Dr. Bernoulli in dem Calculo sehr wohl versiert
seye, aber Er hat, soviel ich weiß, seine Wissenschaft niemahlen au ff problemata, die
einigen Nutzen haben, apphciert Es scheinet, Er habe einen sonderbaren zu nichts
werthen Dingen geschickten Geist. Dem eintzigen Theii von des Nlwton Philosophie,
der von keiner Wichtigkeit ist, und nicht zeiget, wie die Phaenomena naturae zu
exphcieren, hat er fleissig gestudirt und examiniert. Wann er wolle seine Wissenschaft
auff etwas nützliches applicieren, so wünschte ich, daß Ei dieses problema solvirte
Dr Leibmtz hat es tentiert, aber Er hat wüst gefehlt und konnte es nicht solviren etc »

Aber der blinde Eifer der Newtonianer übersah, daß der Fortschritt der
mathematischen Wissenschaften unzertrennlich mit der Entwicklung eines zweckmäßigen
Kalküls verknüpft ist; und während die englische Mathematik im 18. Jahrhundert
in ihrer Versteifung auf Newtons Fluxionsmethode in Stagnation verharrte, arbeitete
Johann Bernoulli als einer der gefeiertsten Lehrer des Jahrhunderts an der
Ausgestaltung derjenigen Form der neuen Analysis, welche die von Newton begründete
theoretische Physik erst eigentlich fruchtbar machte. J.O.Fleckenstein, Basel

Bemerkungen zur normalen dimetrischen Axonometrie

Im folgenden wird eine einfache Konstruktion der Achsen x',y'} z' und eine ebenso
einfache Konstruktion der Achsen für jene Ellipsen gezeigt, welche (vergrößerte)
Bilder jener Kreise sind, die in der xz- oder xy-Ebenc, oder parallel dazu liegen.

1. Sind a, ß, y die Winkel der Achsen des räumlichen rechtwinkligen Koordinatensystems

mit der Bildebene ABC (Fig. 1), dann bestehen bei dem meist verwendeten
dimetrischen System die Beziehungen

\q

x
to

Fig.l

cosa :cosß :cosy 1:2:2 oder cos2a :cos2^ :cos2y=-1:4:4
und allgemein cossa + cosiß + cosiy 2.
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