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Dans l'equation proposee, faisons *2=4 a

/(*-4a)=/(*)/(4a)+/(a- *)/(-3a) /(*).

La fonction est periodique, de periode 4 a.

Developpons encore suivant Taylor et poussons le developpement jusqu'aux
termes de degre deux en dx:

f(x-dx) =/(*)(/(0) +ixf\0) +^£f"(0)) + f(a~x)(o-dx /» + 4^/"(«))

La comparaison avec le developpement de Taylor donne ff(a)f(a~x) f,(x) et

f"{x)=rf{x)f"(0) + f(a--x)f"(a). Le terme contenant/'(0) tombe k cause de la parite
de la fonction.

Dans la formule relative ä la premiere derivee, faisons x^a-\-z:

mt(-z)=r(a + z).

Le premier membre est pair, donc le second aussi. De part et d'autre de #=«, la
derivee est paire. Pour x^a,la. deuxieme derivee est donc nulle. L'equation relative
k la deuxieme derivee est par consequent

/"(*)=/(*)/"(0).
La fonction cherchee satisfait ä une equation differentielle lineaire d'ordre deux

ä coefficients constants; eile est periodique et paire; eile ne peut donc etre que la
fonction cosinus.

* Paul Rossier, Geneve.

Die Ermittlung von Krümmungsradien auf Grund
einfacher physikalischer Gesetze

Der Physikunterricht ist zur richtigen Erfassung der Zusammenhänge zwischen
den physikalischen Größen weitgehend auf mathematische Vorkenntnisse
angewiesen. Umgekehrt kann aber auch durch den Physikunterricht eine Vertiefung des
mathematischen Denkens erreicht werden. Für beide Tatsachen lassen sich mannigfache

Beispiele angeben.
Die Einführung der an sich anschaulichen Begriffe der Krümmungsradien, der

Krümmungskreise und der Evolute von Kurven muß auf der Mittelschulstufe wegen
der dabei auftretenden mathematischen Schwierigkeiten meist vernachlässigt werden.

Dagegen drängen sich diese Begriffe im Physikunterricht bei der Behandlung

krummliniger Bewegungen zwanglos und fast automatisch auf. Wie hier an zwei
Beispielen gezeigt werden soll, gelingen die notwendigen Berechnungen dabei ohne
besondere Schwierigkeiten, weil in den zur Verwendung gelangenden physikalischen
Gesetzen die Integration der notwendigen Differentialgleichungen bereits vorliegt.

Der Grundgedanke des Vorgehens beruht auf allgemein bekannten physikalischen
Zusammenhängen und ist daher in keiner Weise neu: Wenn ein in Bewegung begrif-
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fener Körper mit der Masse m unter der Wirkung einer beliebig gerichteten Kraft K
steht, so läßt sich diese Kraft in jedem Bahnpunkt A (Abb. 1) in zwei Komponenten

Abb. l

zerlegt denken, die eine davon, die Tangentialkomponente Ktt in Richtung der
Momentangeschwindigkeit v, die andere, die Radialkomponente Kr, normal zu dieser.

Kt ändert dabei lediglich den Betrag, Kt lediglich die Richtung der Geschwindigkeit.
Für unser Problem ist nur die zweite Komponente von Interesse. Ist q der
Krümmungsradius im Punkte A der Bahnkurve, so gilt

e
TS

oder, wenn wir die Radialbeschleunigung gr= ~r einführen:

Zur Ermittlung des Krümmungsradius benötigt man somit nur die Kenntnis der

Momentangeschwindigkeit und der Radialbeschleunigung einer Bewegung, welche
die zu untersuchende Kurve als Bahnkurve besitzt.

Als einfachstes Beispiel wählen wir die Parabel und betrachten sie als Bahnkurve
eines unter der Wirkung der Erdbeschleunigung g mit der horizontalen
Anfangsgeschwindigkeit v9 geworfenen Körpers. Den Nullpunkt des Koordinatensystems
legfcn wir in den Anfangspunkt der Bewegung, die x-Achse in die Richtung von v0,
die y-Achse in die Richtung von g, also vertikal nach unten. Dann ist zur Zeit t nach

Beginn der Bewegung

x v0-t. (2a)

y-Jg'A (2b)

Durch Elimination von / erhält man hieraus für die Bahnkurve

** 2y-y. (2)

Dies ist eine nach unten offene Parabel mit dem Parameter

f-£. (3)

In irgendeinem Bahnpunkt P(xty) ist nach Abb. 2
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et
tg a — z (dimensionslose Größe),

89

sina ^l + -

cosa
^1+7-'

cos a

e=i=7'(1+z*)2'

-v^l+z*. gr-g-cosa -?j=l^-

PM
9r

gf

**&#)

Abb. 2

Für die Koordinaten £tn des Krümmungsmittelpunktes M ergibt sich

f * — (rsinot —
gi*3

^ y-f.£ -cosa yg**+ -~°-

Unter Benützung von (2a), (2b) und (3) läßt sich der Übergang auf die übliche
mathematische Darstellung vornehmen; man erhält

•-*(!+>.)¦.
t -j»> y=3y+fi.

Und als Gleichung der Evolute:
27

(*-#)•=-*-**¦¦

Eine entsprechende Ableitung läßt sich für die Ellipse durchführen. Sie ist etwas
komplizierter, weil die wirkende Beschleunigung hier nach Betrag und Richtung
veränderlich ist, führt aber nicht zu prinzipiell neuen Erkenntnissen. Dagegen soll
hier noch ein einfacher Weg zur Ermittlung der Krümmungsradien in den Ellipsenscheiteln

gezeigt werden, der im wesentlichen nur die drei KEPLERschen Gesetze
benötigt und gleichzeitig einen vertieften Einblick in deren Inhalt erlaubt.

Wir entnehmen diesen Gesetzen zunächst, daß die Ellipse als Bahnkurve eines

Körpe*« aufgefaßt weiden kann, -4er sich unter der Wirkung eines in einem der
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Brennpunkte befindlichen Gravitationszentrums bewegt. Das zweite Gesetz gibt
Aufschluß über die Veränderung der Geschwindigkeit längs der Bahn, während das
dritte zeigt, daß die Umlaufzeit um ein bestimmtes Gravitationszentrum für die
Ellipse gleich groß ist wie für einen Kreis mit der großen Ellipsenhalbachse als
Radius. Dieser Gleichheit der Umlaufzeiten wegen verhalt sich die vom Radiusvektor

pro Zeiteinheit uberstnchene Ellipsenflache, welche wahrend eines Umlaufes
immer die gleiche bleibt, zum gleichzeitig uberstnchenen Kreissektor wie die*ganze
Elhpsenflache zur Kreisfläche.

Abb. 3

Die Halbachsen der Ellipse seien mit a und b bezeichnet, die lineare Exzentrizität
mit e und die konstante Geschwindigkeit beim Umlauf auf dem Kreis mit w (vgl.
Abb.3). Da sich die Ellipsenfläche zur Kreisfläche verhalt wie b:a, ist das Doppelte
der vom Radiusvektor pro Zeiteinheit überstrichenen Fläche beim Kreis w-a, bei
der Ellipse w*b.

Für die Geschwindigkeiten in den Punkten A, B und C der Ellipse gilt somit

vA(a-e) wb, vA^w -_-,
Vß'sin <x'a vB'b=wb, vB~w,

vc(aJte) w*bt Vr=-W a-\-e

Nach (1) und nach dem Gravitationsgesetz, dessen wesentlichster Inhalt unmittelbar
aus den KEPLERschen Gesetzen abgeleitet werden kann, sind die entsprechenden
Radialkomponenten der Beschleunigung

beim Kreis:

bei der Ellipse: gd^gK (•-«)¦

gß=g*-sina

gc^gK (•+*)¦

w% a% w*'a
~ a (a~e)* («-*)"
w* b w*'b
a a

~~ a* J

w* a% w*-a
a (a-M)1 <a+*)* *
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Damit erhält man für die Krümmungsradien die bekannten Werte:

va a b* (a-e)* b*
0 --—=-^2 _v_ -—i- ~ —L4 gA («-*)• w*-a

n i*
t>B-= a ^W

gB
' W*-b '

vc
_ 2

62 (a-f *)s
Cte^ ^¦Ä»Sc (« + *)

Qa- a *

Qb
a2

b '

Qc^
62

a

W. Hardmeier, Zürich

Kleine Mitteilungen
1. Beitrag zur Behandlung der regelmäßigen Vielecke. Die regelmäßigen Vielecke

sprechen uns durch ihre hohe Symmetrie und durch die unerschöpfliche Fülle von
Zusammenhängen zwischen ihren Größen so sehr an, daß das Aufsuchen und das
anschauliche Aufzeigen einfacher Vergleiche und Verwandlungen ihrer Flächen besonders
reizvoll und gewiß geeignet ist, die Freude der Schüler an der Geometrie zu erhöhen.

Die folgenden Sätze und zum Teü sehr leichten Aufgaben sind zusammengestellt
als Beispiele für einfach definierte Flächen, die in einfachen Verhältnissen zueinander
stehen. Sie zeigen aber ihre ErlebnisWirkung erst, wenn man die entsprechenden
Figuren betrachtet.

(Bezeichnungen für das regelmäßige n-Eck: r oder rn— Umkreisradius; gn= Inkreisradius;

sn= Seite; Fn= Fläche; d4 Diagonale, welche i Ecken überspringt; ^$)=
Diagonale im n-Eck, weiche i Ecken überspringt; »t5~ Verbindungsstrecke zwischen
den Mitten zweier nicht benachbarter Fünfeckseiten. Buchstaben mit Strichen rechts
oben gehören zu umschriebenen Vielecken.)

Sätze: 1. In jedem regelmäßigen n-Eck ist das Rechteck aus dem Umkreisradius und
der kürzesten Diagonale gleich vier Zentraldreiecken:

rd1=4-~Ä-.1 n

2. Macht man die Seitenmitten eines regelmäßigen n-Ecks zu Ecken eines
regelmäßigen 2n-Ecks, so ist das Rechteck aus dem Inkreisradius und der kürzesten
Diagonale des ersten gleich acht Zentraldreiecken des zweiten:

Ftn

3. Ein regelmäßiges Vieleck mit 4 p Ecken hat dieselbe Fläche wie p Rechtecke aus
einer Seite und der zweitgrößten Diagonale:

4. Wird einem regelmäßigen Fünfeck ein anderes umbeschrieben, so ist die Fläche
des äußern gleich dem vierfachen Minor der stetig geteilten Fläche des inneren Fünfecks:
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