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Der Faltungssatz besagt, daB in jedem Kreisgebiet K, dem simtliche Wurzeln von
f(%) angehoren, wenigstens eine Wurzel von g(x) liegt. Wenn K endlich ist und den
Nullpunkt nicht im Innern enthilt, wie es die Voraussetzung des Satzes verlangt,
so muB — —%- als einzige Wurzel von g(x), in K liegen. Da diese Uberlegung fiir

g1
jedes & (1 <k <n) gilt, ist der Satz bewiesen.

EDUARD BATSCHELET, Basel.

»

Equations fonctionnelles et mathématiques
supérieures élémentaires

1. Si, en général, le probléme des équations fonctionnelles présente des difficultés
considérables, certains cas simples constituent des problémes intéressants qui, par
les connaissances requises pour leur solution, peuvent étre considérés comme ap-
partenant aux éléments des mathématiques supérieures. Explicitement ou implicite-
ment, certaines équations fonctionnelles sont appliquées dans les cours de physique.

2. L’équation f(x;) + f(%s) = (%, + %,).

Cette équation est évidemment satisfaite par une fonction linéaire homogéne quel-
conque. Un coup d’ceil sur un graphique suffit & le montrer. Dans les applications,
on a besoin de la réciproque de cette propriété: toute fonction satisfaisant a la rela-
tion proposée est linéaire et homogéne. Puisque nous ne considérons que les éléments,
nous supposons dérivables les fonctions que nous considérons.

La démonstration de la réciproque ci-dessus peut étre conduite comme suit. Dans
I'équation proposée, remplagons x, par une somme x,+ %3. Il vient

[ (%1 + xg+ %g) = [ (%) + [ (%0) + [ (%3).

Généralisant, on trouve, en posant x;=xy=...= %,

f(k %)=k [(2), (1)

ou & est entier.
Divisons cette équation par % en posant x'=%x:

1) =1

L’application des deux derniéres équations conduit i généraliser I’équation (1) au cas
des nombres rationnels. Puisque nous avons admis que la fonction cherchée est
continue, un passage a la limite conduit & la conclusion que I'équation (1) est valable
quel que soit le multiplicateur %, rationnel ou irrationnel.

Dérivons I'équation (1) et divisons par %:

f'(k x)=f'(%), ou, par un changement de notation,
f'(x) = (1) = constante.

La dérivée de la fonction cherchée est constante; la fonction est linéaire. Appli-

ElL Math. 6
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quons I’équation proposée au cas x¥,=0; on trouve

f(%1) =1 (%) +7(0) et f(0)=0.

La fonction cherchée est donc bien linéaire et homogeéne.

L’équation fonctionnelle proposée est employée en physique, par exemple dans
les problémes suivants. L’allongement élastique ou thermique de I’ensemble constitué
par deux barres adjacentes, placées dans le prolongement 'une de l'autre, est la
somme des allongements de chacune d’elles. La résistance électrique de deux con-
ducteurs en série est la somme de leurs résistances. Donc, I'allongement d’une barre,
la résistance d’pn fil sont proportionnels a leurs longueurs.

3. L’équation f(x,)+f(xe) =1 (% %,).

Dérivons l’équation donnée successivement par rapport i x,, puis par rapport a

x,. Il vient
F(%)+0=1x, f'(%;%5), Puis 0=, %5 /"'( %, %g) + /' (%, %9).

Pour alléger les notations, posons x, xy=x. Il vient

ffx 1

f'(%) x
Le premier membre est la dérivée logarithmique de f’(x) et le second, celle de

%. On a donc, en appelant 4 une constante d’intégration,
yoy A
Flo= 4.
Une nouvelle intégration donne
f(x)=Alog x+ B.

Dans I'équation proposée, faisons x3=1. On trouve f(1)=0, donc B=0.

La fonction logarithme est la seule fonction élémentaire qui satisfasse a I'équation
proposée.

Cette équation apparait en physique, & propos de la théorie cinétique des gaz;
elle permet de montrer que 1’entropie d’un gaz et le logarithme de la probabilité de
son état varient proportionnellement.

4. L’équation f(x,) f(xs) =1 (%, + %,).
En inversant les fonctions, ce probléme peut étre ramené au précédent. Soient en
effet deux fonctions inverses

y=F(x) et x=g(y).

Ona g (f(x))=x-et f(g(y)) =
- L’équation proposée est
Y1¥a=1 (% + %)

L’opération g sur chacun des membres donne

g(¥1Y2) =%+ %3=g (%) +€(¥s).

qui est précisément 1'équation étudiée ci-dessus. Puisque la fonction g est un loga-
rithme, f, qui est son inverse, est une exponentielle.



P. Rossier: Equations fonctionnelles et mathématiques supérieures élémentaires 83

L’équation proposée ici peut d’ailleurs étre facilement intégrée, et méme plus
facilement que la précédente. Pour cela, dérivons-la par rapport a x;:

(%) f(%e) =1 (%11 %,).

Faisons x,=0. Il vient, aprés suppression de l'indice, désormais inutile, et en

posant f'(0)=A,
f' (%) =Af(x).

Une intégration donne f(x)=e4*+5,

En faisant x,=0 dans ’équation proposée, on trouve f(0):-1 et B=0,

La fonction exponentielle est donc la fonction cherchée.

5. L’équation f(x;x,) =1 (%,)f(%,).

On raméne facilement I'intégration de cette équation au cas étudié sous 3. au moyen
de la substitution

f ) et

I1 vient ainsi
eg(xl ) eg(t,) eG(xz) ou

g (%1 %) = g (%;) + £ (%)
Nous avons vu que la fonction g est logarithmique :

g(x) Aloga
On a don¢
f(x)::ne“' logr . xA_

6. Ce qui précéde montre que les relations fonctionnelles caractéristiques des
fonctions linéaire homogéne, puissance, exponentielle et logarithmique suffisent
a les définir, & condition d'imposer la dérivabilité des fonctions cherchées. On
peut se demander s’il n’en est pas de méme pour les fonctions trigonométriques.
Le procédé de définition par les relations fonctionnelles fondamentales peut aussi
étre employé, mais, sans présenter de difficulté insurmontable, le probléme est
notablement plus compliqué que les précédents. En outre, il faut explicitement
éliminer certaines solutions singuliéres pour obtenir les fonctions cherchées. Ces ré-
serves faites, nous allons montrer que les relations fonctionnelles caractéristiques
du sinus et du cosinus sont capables de définir ces fonctions.

7. L’équation /(% + %xp) =7 (%) [ (2 — %) + [ (4) f (a — ).
La fonction sinus satisfait & cette équation en posant 2a =zn. Proposons-nous de

déterminer les fonctions dérivables qui satisfont A cette équation. Pour cela, faisons
tout d’abord x, = x,=0. Il vient

1(0)=2/(0)/(a).

a) Supposons f(0) non nul. L’équation ci-dessus donne f(a)=1/2.
Dans 1’équation fonctionnelle proposée, faisons x,=dx et ne considérons que les
termes des développements de TAYLOR ou de MACLAURIN de degrés 0 et 1 en dx:

Hx+dx)=}f(x)+ax f(x)
={(x)}(a—dx)+[(dx)](a— x)
=f(%)[f(a) — dx f'(a)]+/(a — x) [/ (0) +dx['(0)].
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Comparons les coefficients des termes en dx et indépendants de dx. On obtient les
deux équations

(%)= [ (%) f(a)+ [(0)f(a- x),
(%) F(0) f(a—x)— [(2) ] (a)-
Eliminons f(a- x) et remplagons f(a) par sa valeur; on trouve

r#)  F0)-2/0)f(a) _ ,
/() 21(0) '

Le second membre est constant. L’intégration donne
f(x)=edrtn,

B est une constante d’intégration.
Ce qui préceéde revient a supposer que l’équation fonctionnelle proposée n’est
valable que pour x, infiniment petit. Satisfaire & I’équation générale impose des
restrictions au choix de la constante A. Pour le voir, introduisons la fonction ex-
ponentielle trouvée dans I’équation proposée. Aprés quelques transformation, on
trouve
eA(x‘-x,)+ eA(x,—-x,)

- e —Aa— B
e.4(x,+x,) *

(4

Le second membre est constant. Pour 1’éliminer, dérivons par rapport a x,. Le
numérateur du résultat doit étre nul. Aprés quelques transformations, dont deux
simplifications, I'une par une exponentielle, I’'autre par une somme d’exponentielles,
expressions toutes deux non nulles, on trouve

A 0, et f(x)=e® = constante = ; .

La seule fonction non nulle pour x=-0 satisfaisant a I’équation proposée est donc
la constante 1/2.

b) Supposons f(0) = 0.

Dans I’équation donnée, faisons x,=0. Il vient

(%) =f(x)}(a).

Excluant le cas ot1 la fonction est identiquement nulle, on trouve

f(@)~1. (1)
Dans I'équation primitive, faisons x3=a:
J(x+a)=f(x)}(0)+/(a)f(a—x), ou [(a+x)=f(a—x). (2)

Dans cette méme équation, faisons encore xg=— x;:
[(x—x)=[(0)=0=f(x)}(a+ %)+ [ (-- %)/ (a— x).
Aprés simplification par la relation précédente, on trouve

(- x)+f(x)=0. (3)
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La fonction cherchée est impaire.

Dans I'équation (2), faisons x=a: f(24)=/(0)=0.

On a encore, au moyen de I'équation proposée
fBa)=f(2a+a)=f(a)f(—a)=—1,
f(4a)=](2a+2a)=2f(2a)f(—a)=0,
f(x+4a)=f(x)/(—3a)+[(4a)f(a—x)=](x).

La fonction cherchée est périodique, de période 4 a.
Comme plus haut, développons en série et comparons les coefficients de dx:

Hx+dx)= f(x)f(a-- dx)+[(dx)f(a— x) = [ (%) + dx f'(%).
Compte tenu de f(0)=0 et de f(a)=1, il vient

[(%)=--{(%)f' (@) + [ (0) {(a- x). (4)

Dans cette équation, faisons x—a

f'(a)=—{(a)f'(a)+ 1'(0)1(0).

Tenant compte des valeurs connues de la fonction, on trouve f'(a)= - f'(a)=0.
L’équation (4) devient

f(%)=£(0) f(a— 2). (5)

Si f'(0) est nul, la dérivée de la fonction est constamment nulle et la fonction est
constante. Cela est exclu puisque la fonction prend deux valeurs différentes pour
x=:0et x=a. On peut donc tirer f(a — x) de I'équation différentielle (5) et remplacer
dans I'équation donnée.

[1 vient ainsi

7 (0)f (%14 x9) == f (x1) [ (%3) + [ (20) /' (%,). (6)
Dérivons par rapport A x, et faisons ensuite x,==0; il vient successivement
F(O)f (%14 xg) = f(22) "' (%) - F' (%) ' (%)) et (7)

0=f(x) /(0).

On a donc f'(0) = 0. Cela résulte d’ailleurs du fait que la fonction est impaire.
Dérivons encore 1’équation (7) par rapport A x, et posons ensuite x4==0. On trouve
finalement
i 1)
1(#) 1(0)
La fonction cherchée satisfait & I’équation différentielle y'' == Ay; sa dérivée n’est
pas nulle pour x=0; elle est périodique et impaire et vaut 1 pour x=a. On a donc

== A == constante.

. 1 4
== SN -.— X.
y 2a

La seule fonction non constante mais dérivable satisfaisant a l'équation fonction-
nelle du sinus est la fonction sinus. Les seules valeurs constantes que pulsse prendre
la fonction sont 0 et 1/2.
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8. L’équation f(x, — x5) = f(x,) f(x5) + f(a — x,) f(a — x,).
Faisons %;,=%,=0. On a

1(0)=/%(0) + /2 (a). (1)
Soit f(0)=0; il vient f(a)==0.
Dans I’équation donnée, si x,=0, il vient

f(x)=1(x)£(0) 0.

La fonction est identiquement nulle.
Excluons ce cas.
Dans I’équation donnée, faisons x,=a, x,=0.

f(@)=2f(a){(0) ou f(a)(1—2f(0))=0. (2)

a) Supposons f(a) non nul. On a alors f(0) =1/2. L’équation (1) montre alors que
f(a) n’est pas nul, mais est égal a 4-1/2.
Développons en série f(x—dx) et appliquons 1’équation donnée:

f(x—-dx)=[{(x)[{(0)+ /' (0)dx]+ f(a— =) [f(a) ~dx['(a)]=f(x)—dx f(x)
La comparaison des coefficients donne
Hx)=H(x)[(0)+fa—x)f(a) et [(x)=Ff(a)f(a -x) ~f(x)] (V).

Eliminons f(a— x) et tenons compte de la valeur connue de f(0); il vient, apreés
quelques transformations,

F(x) _ f(a)—2/(0) f(a)
T T 2fe)

Le dénominateur n'étant pas nul, cette constante est bien déterminée. Une intégra-
tion donne pour f(x) une fonction exponentielle. Elle est de signe constant; donc
f(a)=1/2. Cette fonction exponentielle doit avoir méme valeur pour deux valeurs
différentes de la variable. Elle est donc constante et on a

/(x)""gz-

b) Excluons ce cas. L’équation (2) impose alors f(a) = 0. L’équation (1) donne, puis-
que nous avons exclu le cas de la nullité, f(0)=1.
Dans I'équation donnée, faisons x,==0:

[(=x)=1(x.

= A = constante.

La fonction cherchée est paire.
Dans I'équation donnée, faisons x;,=a+ %,:
f(@)=0=f(a+ x){(x)+f(%)f(a— %), ou, puisque f(x) n'est pas identiquement nul

f(a+x)=—f(a—x).
Faisons successivement x =a, 24, 3a. 1l vient
f(2a)=—f(0)=—1,
f(3a)=—}(—a)=0=f(—3a),
[(4a)=—f(-2a)=—[(2a)=1.
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Dans I'équation proposée, faisons xy=4 a:
f(x—4a)=[(x)f(4a)+f(a— %)[(—3a)=/(x).

La fonction est périodique, de période 4a.

Développons encore suivant TAYLOR et poussons le développement jusqu’aux
termes de degré deux en dx:

’ dx? 17 ‘ ’ ax? 4,

fix—dx) =1(0) (0) +dxf(©) + 5~ 1"(0)) + fla—x) (0~dx f'(a) + *3-1"(a))

La comparaison avec le développement de TAYLOR donne f'(a) f(a — x) =f'(x) et
(%) =H=)f"(0) + f(a—x) /"' (a). Le terme contenant f’(0) tombe a cause de la parité
de la fonction. .

Dans la formule relative a la premiére dérivée, faisons x=a+z:

f(@)f(—2)=f(a+2).

Le premier membre est pair, donc le second aussi. De part et d’autre de x=g¢, la
dérivée est paire. Pour x=a, la deuxiéme dérivée est donc nulle. L’équation relative
a la deuxiéme dérivée est par conséquent

1" (x) = (%) 1(0).

La fonction cherchée satisfait 4 une équation différentielle linéaire d’ordre deux
a coefficients constants; elle est périodique et paire; elle ne peut donc étre que la
fonction cosinus. ] PAuL RossiiER, Genéve.

Die Ermittlung von Kriimmungsradien auf Grund
einfacher physikalischer Gesetze

Der Physikunterricht ist zur richtigen Erfassung der Zusammenhinge zwischen
den physikalischen GroBen weitgehend auf mathematische Vorkenntnisse ange-
wiesen. Umgekehrt kann aber auch durch den Physikunterricht eine Vertiefung des
mathematischen Denkens erreicht werden. Fiir beide Tatsachen lassen sich mannig-
fache Beispiele angeben.

Die Einfithrung der an sich anschaulichen Begriffe der Kriimmungsradien, der
Kriimmungskreise und der Evolute von Kurven muB auf der Mittelschulstufe wegen
der dabei auftretenden mathematischen Schwierigkeiten meist vernachlissigt wer-
den. Dagegen dringen sich diese Begriffe im Physikunterricht bei der Behand-
lung krummliniger Bewegungen zwanglos und fast automatisch auf. Wie hier an zwei
Beispielen gezeigt werden soll, gelingen die notwendigen Berechnungen dabei ohne
besondere Schwierigkeiten, weil in den zur Verwendung gelangenden physikalischen
Gesetzen die Integration der notwendigen Differentialgleichungen bereits vorliegt.

Der Grundgedanke des Vorgehens beruht auf allgemein bekannten physikalischen
Zusammenhingen und ist daher in keiner Weise neu: Wenn ein in Bewegung begrif-
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