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Revue de mathematiques elementaires — Rivista di mattmatica elementare

Zeitschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichts

Organ für den Verein Schweizerischer Mathematiklehrer

El Math Band I Nr 5 Seiten 73 96 Basel, 15 September 1946

Über die Abschätzung der Wurzeln
algebraischer Gleichungen

1 Die Wurzeln algebraischer Gleichungen lassen sich nur in besonders einfachen
Fallen durch algebraische Auflosung numerisch berechnen Nicht allem bei Glei
chungen vom fünften oder noch höherem Grade, sondern bereits bei Gleichungen
dritten und vierten Grades ist man praktisch auf die Verwendung eines Nahetungs
Verfahrens angewiesen Dab Verfahren von Newton und die Regula falsi sind dabei am
bekanntesten

Zur Einleitung einer solchen Rechnung verschafft man sich, meistens durch Pro
bieren, geeignete Näherungswerte für die gesuchten Wurzeln Weiter wird man darauf
bedacht sein, die Wurzeln zu trennen Berücksichtigt man neben den reellen auch die

komplexen Wurzeln, so heißt dies Man sucht in der Zahlenebene voneinander ge
trennte Gebiete zu finden, in denen je eine Wurzel der gegebenen Gleichung hegt
Indirekt schätzt man damit die Lage der Wurzeln ab, wenn auch zunächst ganz grob

In der Literatur findet sich eine größere Zahl von Methoden die der approxima
tiven Bestimmung der Wurzeln dienen Die meisten von ihnen beziehen sich jedoch
bloß auf reelle Wurzeln Jm folgenden werden wir nun einige, zum Teil noch wenig bt
kannte Hilfsmittel zusammenstellen, die sich voi allem zur Auffindung der komplexen
Wurzeln eignen (Abschnitte 3, 5—8) In zwei Fallen können die Verfahren auch dazu
benutzt werden, die Gute der mit einem Naherungsverfahren erreichten Approxi
mation zu prüfen (Abschnitte 4 und 7)

Zur Herleitung der verschiedenen Methoden werden wir uns auf einen grundlegenden

Satz von Grace1) stutzen Dieser Satz, der von Szego auch Faltungssatz2)
genannt wurde, lautet Es seien

f(x)=a0xn + axx"-l-j +*n 0 (1)

g(x)=b0x« + bxxn-^ +bn-0 (2)

*) J H Grace, The zeros of a polynomial, Proc Cambridge philos Soc Bd 11 (1902), S 352-357
Eine ausführliche Literaturzusammenstellung zum Satz von Grace ist zu finden bei J Dieudonne, I a

theorie analytique des polynomes d'une variable, Mem des Sei math Fase 93 (1938)
*) G Szego, Bemerkungen zu einem Satz von J H Grace über die Wurzeln algebraischer Gleichungen

Math Z Bd 13 (1922), S 28—55 Der Leser mache sich die Behauptung des Satzes an einer Zeich

nung klar Em Beweis ist in den «Vorlesungen über Algebra» von L Bieberbach enthalten
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zwei algebraische Gleichungen n-ten Grades mit beliebigen reellen oder komplexen
Koeffizienten, zwischen denen die folgende Beziehung besteht:

a°^~ tn\aihn-1 + Jn~\a%bn-* " + ,"±an^o==0- (3)

Die Wurzeln von f(x) und von g(x) mögen als Punkte der Zahlenebene aufgefaßt
ii)erden. Dann liegt in jedem Kreisgebiet, dem sämtliche n Wurzeln der einen Gleichung
angehören, wenigstens eine Wurzel der andern Gleichung.

Unter einem Kreisgebiet versteht man dabei entweder das Innere eines Kreises
samt Rand, oder das Äußere eines Kreises samt Rand, oder als Grenzfall eine Halbebene

samt Rand1).
Man nennt zwei Polynome f(x) und g(x), die der Bedingung (3) genügen, auch

apolar.
2. Um den Faltungssatz für unsere Zwecke anwenden zu können, betrachten wir

f(x) 0 als die gegebene algebraische Gleichung, deren Wurzeln zu bestimmen sind.
Wir bilden dann ein Polynom g{x), das der Bedingung (3) genügt, das also zu f(x)
apolar ist, und versuchen gleichzeitig dafür zu sorgen, daß sich die Wurzeln von
g(x) 0 ohne Mühe berechnen lassen. Um das letzte zu erreichen, wird g(x) im
folgenden stets ein Binom sein.

Daraufhin können wir ohne weiteres ein Kreisgebiet Kg angeben, in dem sämtliche
Wurzeln von g(x) 0 liegen. Auf Grund des Faltungssatzes enthält Kg wenigstens
eine Wurzel von f(x). Damit ist die Abschätzung für eine oder mehrere Wurzeln
von f(x) gefunden.

Im letzten Abschnitt werden wir auch von der anderen Möglichkeit Gebrauch
machen, die der Faltungssatz bietet: Es sei Kf ein Kreisgebiet, dem sämtliche Wurzeln
von f(x) angehören sollen. Dann muß in Kf wenigstens eine Wurzel von g(x) liegen.
Daraus werden wir eine geometrische Beziehung zwischen den Wurzeln und den

Koeffizienten von f(x) ableiten.
Zur Erleichterung der Schreibweise einzelner Formeln nehmen wir im folgenden

a0= 1 an, was wir durch Division der Gleichung f(x) 0 durch den Koeffizienten des

höchsten Gliedes stets erreichen können. Außerdem denken wir uns von jedem
Koeffizienten einen seinem Index entsprechenden Binomialkoeffizienten abgespalten.
Die gegebene Gleichung möge demnach in der neuen Gestalt

f(x) x«+^)alx?~l + (l)atx»-2+-.- + an^0 (la)

geschrieben werden. Die Bedingung (3) des Faltungssatzes geht dabei in

£«-«A-i + tf2^i-2-+-"±ÄA=0 (3a)
über.

3. Für die erste Anwendung wählen wir das Hilfspolynom (2) so, daß

*) Man mache sich nebenbei klar, daß die drei genannten Falle für ein Kreisgebiet auf der RiEiiANNSchen

Kugel nicht unterschieden werden müssen.
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ist. (3a) reduziert sich auf

Da man die Koeffizienten der Gleichung g(x) 0 noch mit einem willkürlichen
Zahlenfaktor multiplizieren darf, können wir

&o <V-i> h^an, g(x)=an_xxn + anxn-1

setzen. g(x) 0 besitzt die («— l)-fache Wurzel 0, sowie die einfache Wurzel — ~—.

(Sollte an_x^=0 sein, so wird die letztere Wurzel oo, was dem folgenden Ergebnis
keinen Abbruch tut.)

Aus dem Faltungssatz schließen wir unmittelbar:
Im Innern oder am Rande eines jeden Kreises, der durch die beiden Punkte 0 und

— -n- geht, liegt wenigstens eine Wurzel von f(x).
Durch eine Verschiebung der Ebene erhalten wir daraus einen bekannten Satz von

Laguerre. Wir setzen dazu

x=y + <x, (4)

wo y die neue Variable und a eine beliebige, reelle oder komplexe Zahl bezeichnet.
Aus dem TAYLORschen Satz folgt

f(y + «) /(«) + /'(«) • y + £W • y» + • • • +^ y".

Das transformierte Polynom sei mit F(y) bezeichnet. Nach der obigen Folgerung
aus dem Faltungssatz, die wir jetzt auf F(y) anwenden, liegt im Innern oder auf dem

Rande eines jeden Kreises durch die Punkte 0 und — n ^,-4- wenigstens eine Wurzel

von F (y). Transformieren wir zurück, so geht wegen (4) y 0 in x a und y — n ,;~r

in x^a — n-TTTT über. Damit lautet der Satz von Laguerre1) :

Im Innern oder am Rande eines jeden Kreises durch die Punkte a und 0L—n \- liegt

wenigstens eine Wurzel von f(x).
4. Laguerre hat auf mannigfache Art gezeigt, welche Dienste der Satz für die

Abschätzung der Wurzeln zu leisten vermag. Aus den verschiedenen Möglichkeiten
sei hier eine Anwendung auf das NewtonscA^ Näherungsverfahren herausgegriffen.
Dieses Verfahren lautet bekanntlich:

Es sei xx ein geeigneter Näherungswert einer Wurzel f von f(x) 0. Man erhält dann
weitere Näherungswerte xit xz,..., die gegtn f konvergieren, wenn man der Reihe nach

%k+i Xk + hk> £=1,2,...,
setzt, wobei hh die «Korrektur*

Ä*-~~7W (5)

bedeutet.

x) Laguerre, CEuvces, Bd. 1, S. 56-S3 und 133-143.
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Ohne irgendwelche Abänderung laßt sich das Verfahren auch zur Berechnung einer
komplexen Wurzel verwenden

Es hegt nun die Frage nahe Wie weit kann | höchstens noch von einem xk entfernt
sein > Die gewünschte Auskunft gibt der Satz von Laguerre Wir ersetzen dort den
Punkt <x durch xk und erhalten dann, wegen (5), für den anderen Punkt des Satzes

xk + n nk Fassen wir hK als Vektor auf, so haben wir hk somit w-mal vom Punkte xk
aus abzutragen Unter den unendlich vielen Kreisen durch xk und xk-\-nhk wählen
wir den kleinsten aus, der die Verbindungsstrecke der beiden Punkte zum Durch
messer hat (Fig 1)

nh

Fig 1

Im Innern oder am Rande dieses Kreises muß wenigstens eine Wurzel von f(x)
liegen Das kann nur die gesuchte Wurzel f sein, wenn die Wurzeln getrennt smd,
und | hk | bereits genügend klein ist

Das Ergebnis ist also dies Man erhalt zum NEWTONschen Verfahren hinzu ohne

nennenswerte Mehrarbeit eine Abschätzung der gesuchten Wurzel
5 Em zum Satz von Laguerre ähnliches Ergebnis erhalten wir, wenn von den

Koeffizienten von g(x) alle außer b2 und b0 gleich null gesetzt werden Die Bedingung
(3a) reduziert sich auf

weshalb wir
£o <V-2> h-~*n> g(x) =an_2xn~anxn 2

setzen dürfen g(x) besitzt die (n—2)-fache Wurzel 0 und daneben die zwei einfachen

Wurzeln Ci= + l/—-— und C2= ~ 1/—fL~ Je nacn den Zahlenwerten von an und
f an-a V an i

von an_2 sind d und £2 reell oder komplex
Es sei kg in der Zahlenebene ein behebiger Kreis durch die beiden Punkte fi und £2

Wegen £2=— Ct gehört der Nullpunkt und damit die (n—2)-fache WTurzel von g(x)
dem Innern von k9 an Nach dem Faltungssatz muß im Innern oder auf dem Rande

von ka auch wenigstens eine Wurzel von f(x) liegen Wir haben somit den Satz

Im Innern oder am Rande eines jeden Kreises durch die beiden Punkte -f

und — 1/—2- liegt wenigstens eine Wurzel von f(x)
Es sei zum Beispiel

f(x) =zx* + p xz + 54x2 + q * + l=0
gegeben Wegen an=l, an_2 54 U/^9 haben wir Kreise durch die Punkte-^und
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— y zu betrachten. Im Innern oder am Rande eines solchen Kreises liegt sicher eine

Wurzel von f(x), wie auch immer p und q gewählt sein mögen. Insbesondere existiert

eine Wurzel vom absoluten Betrage <£ -«

6. Für die nächste Anwendung des Faltungssatzes lassen wir bx, b2,..., bn_t
verschwinden. An Stelle von (3a) tritt die einfachere Beziehung

bn+(-l)»anb0^i),
so daß wir

60=1, bn~-(-l)"an, g(*)=*»-(-i)«an
setzen dürfen.

Bezeichnen wir noch die n Wurzeln von f(x) mit xx, x2,..., xn, so gilt wegen a0 1:

f(x) ~{x-xx)(x-x2) ...(x-xn), {~-\)nan^xxx2...xn. (6)

Daher läßt sich g(x) in der Gestalt

g(x) =iXn-~XxX2...Xn

schreiben. Dem Faltungssatz entnehmen wir sofort: In jedem Kreisgebiet Kff,
dem sämtliche Wurzeln von g(x) angehören, liegt wenigstens eine Wurzel xk vonf(x).

Um von hier zu einem für die Anwendung brauchbaren Ergebnis zu kommen,
müssen wir eine gebrochen lineare Transformation ausführen. Sie laute

wo a und ß irgend zwei voneinander verschiedene, reelle oder komplexe Zahlen
bezeichnen. Die aus xx,x2,... hervorgehenden Punkte seien mit yx, y2, bezeichnet.
Wir betrachten die Gleichung

G(y)==yn-yxy2...yn 0

und halten gemäß dem obigen Ergebnis fest, daß in jedem Kreisgebiet, dem alle
Wurzeln von G(y) angehören, wenigstens ein yk liegt.

G (y) geht durch die Transformation (7) in die Gleichung

/ x-*y /*i-*W*2--a\ /**rJM n\x-ß) \x1-ß)Vxt~ß)t"\xn~-ß) ~U

oder wegen (6) in die Gleichung
/ X — <x \ »

\T^ß) fiß)
(8)

über. Da bekanntlich durch jede lineare Transformation ein Kreisgebiet wieder in ein
IKrefegebiet übergeführt wird, so folgt:

In jedem Kreisgebiet, dem sämtliche Wurzeln von (8) angehören, liegt wenigstens eine
Wurzel von f(x).

Dieser Satz ist von M. Fekete1) aufgestellt worden. Wir können ihn folgendermaßen
verwenden: Wir setzen

' Vlfiß.m\ (9)

l) M. Fekete, Über die Nullstellenverteilung bei Polynomen, deren Wert an zwei Stellen gegeben ist,
Jber. d. Dtscb. Math. Ver., Bd. 34 (1926), S.J220-233.
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Beschränken wir uns in (8) auf die absoluten Beträge, so folgt
'#—<x|
l*-0T (10)

Dies bedeutet geometrisch, daß die Abstände der Wurzeln der Gleichung (8) von
den Punkten oc und ß das konstante Verhältnis X haben. Die Wurzeln von (8) liegen
folglich alle auf dem Kreis des Apollonius, der zu den Punkten oc undß leicht gezeichnet
werden kann. Nach dem Satz von Fekete liegt im Innern oder auf dem Rande dieses

Kreises wenigstens eine Wurzel von f(x).
Kennt man also zu zwei beliebigen Punkten oc und ß die Funktionswerte / (a) und

f(ß), so kann man damit allein schon ein Kreisgebiet angeben, in dem wenigstens
eine Wurzel von f(x) liegen muß.

7. Mit dem soeben erhaltenen Ergebnis gelingt es oft, die Wurzeln einer gegebenen
Gleichung zu trennen, wie das folgende Beispiel zeigen mag. Gegeben sei

f(x) =*4~ <i*8-f-9*»-5*-|-10-0.

f(x) weist vier Zeichenwechsel auf, besitzt also nach der DESCARTEs'schen Zeichenregel

maximal vier positive, aber keine negativen Wurzeln. Da das Polynom für
x=0, 1, 2.... der Reihe nach die Werte 10, 9, 4, —5, 6, annimmt, so muß eine
positive Wurzel zwischen # 2 und # 3 und eine weitere zwischen x 3 und #=4
liegen. Andere positive Wurzeln sind nicht zu finden (wie zum Beispiel aus der
Diskussion von f'(x) folgt). Daher besitzt f(x) noch zwei komplexe Wurzeln, die bekannt-
ich konjugiert-komplex sein müssen. Um ihre Lage in der Zahlenebene zu finden,

berechnen wir f(x) für x~i und erhalten f(i) 2 + i. Wählen wir in (9) <x=0 und
£ -t, so folgt wegen /(0) 10 und |/(t)| - |/2HT - |/5 daß

X - y 10
1,454

ist. Nun zeichnen wir den Kreis des Apollonius als den geometrischen Ort aller
Punkte, deren Abstände von 0 und i das feste Verhältnis A= 1,454 besitzen
(siehe Fig. 2).

0*<X 4 n

Fig. 2

Im Inneren oder auf dem Rande dieses Kreises muß die eine der beiden komplexen
Wurzeln enthalten sein. Die konjugiert-komplexe Wurzel liegt symmetrisch dazu in
bezug auf die reelle Achse. Damit sind alle vier Wurzeln von f(x) getrennt.



E. Batschelet: Über die Abschätzung der Wurzeln algebraischer Gleichungen 79

Eine weitere Anwendung des Satzes von Fekete drängt sich für das Newtons^
Näherungsverfahren auf. Da man dort die Werte von f(x) für jede Näherungswurzel
berechnen muß, um die nächste Korrektur zu finden, so bereitet es keine besondere

Mühe, aus (9) die Verhältniszahl X zweier solcher Funktionswerte zu berechnen und
den dazugehörigen Kreis des Apollonius zu zeichnen. In manchen Fällen erhält
man so eine bessere Abschätzung der gesuchten Wurzel als mit Hilfe des Laguerre-
schen Kreises (siehe Abschnitt 4).

8. Zur Abschätzung der Wurzeln gehört auch die Auffindung von oberen oder

unteren Schranken für die absoluten Beträge der Wurzeln. Die gegebene Gleichung
laute f(x) xn-\- Alx^-1-\ j- An=^ 0. Zur Herleitung einer oberen Schranke geht man
meist von der bekannten, von Cauchy betrachteten Gleichung

xn \Ax\xn-l-\A2\xn-fi -14*1 0

aus. Bezeichnet man die ihrem absoluten Betrage nach größte Wurzel von f(x) mit X,
so findet man zum Beispiel

\X\ ^ Max (|i4fc| + l).
1 5 * < n

Weniger bekannt sind untere Schranken für | X|. Wir werden eine solche herleiten,
die von G.D.Birkhoff und fast gleichzeitig von J.L.W. Jensen gefunden wurde1).

Zu diesem Zweck sei f(x) wiederum in der Gestalt (la) geschrieben, k bezeichne
eine der Zahlen 1, n. Wir bestimmen dann das Hilfspolynom (2) so, daß außer
bn_k und bn alle Koeffizienten verschwinden. Die Bedingung (3a) reduziert sich auf

6.+ (-l)*afc^ 0,

woraus, analog wie in den vorigen Abschnitten,

£(*)=*-(-1)^ 0 (11)

gefolgert wird. g(x) besitzt k Wrurzeln vom absoluten Betrage ty\ak\.
Man wird an dieser Stelle einwenden, der Faltungssatz könne für k < n nicht

angewandt werden, da der Grad von g(x) zu klein sei. Die Schwierigkeit läßt sich aber
leicht überwinden. Denn für k < n kann man g(x) als ein Polynom w-ten Grades
auffassen, dessen n—h erste Koeffizienten verschwinden. Damit g{x) im ganzen n Wurzeln

besitzt, muß man noch die (n—A)-fache Wurzel oo hinzufügen. Dies wird durch
die folgende Betrachtung gezeigt:

Man ersetze im Polynom (2), dessen (n—k) erste Koeffizienten verschwinden sollen,

die Variable x durch — und multipliziere das Polynom hinterher mit y*. Man erhält

ein Polynom «-ten Grades in y, dessen (n—k) letzte Koeffizienten verschwinden, das

1) G. D. Birkhoff, An elementary double inequality for the roots of an algebraic equation having
greatest absolute value, Bull. Amer. Math, Soc., Bd. 21 (1914), S. 494-495. J. L.W. V.Jensen, Forskellige
ßidrag til Ligningernes Theori, Nyt Tidsskrift for Math., Bd. 26A (1915), S. €-13. Andere Schranken für
die absoluten Beträge der Wurzeln hat Herr A.Ostrowski gefunden, Recherches sur la methode de
Graeffe et les zeros des polynomes et des series de Laurant, Acta math., Bd. 72 (1940), S. 99-257,
spez. S. 143.
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1

x
folglich die (n—£)-fache Wurzel y 0 besitzt. Durch die inverse Transformation y
erhält g(x) die (n—£)-fache Wurzel #=oo.

Wir verschaffen uns nun ein Kreisgebiet Kg, dem sämtliche n Wurzeln der
Gleichung (11) angehören:

Die k endlichen Wurzeln von g(x) liegen alle auf dem Kreis mit dem Mittelpunkt 0

und dem Radius VKJ* Damit auch die Wurzeln #=oo im gesuchten Kreisgebiet
liegen, wählen wir für K9 das Äußere und den Rand des soeben beschriebenen Kreises.
Nach dem Faltungssatz liegt wenigstens eine Wurzel von f(x) in Kg.

Diese Betrachtung gilt für jedes k (1 ^ k <£ w). Bezeichnen wir daher mit X wiederum

diejenige Wurzel von /(#), die einen maximalen absoluten Betrag hat, so folgt
sofort die angekündigte Ungleichung von Birkhoff und Jensen :

\X\^ Max Wak\. (12)
ig*^«

Das Gleichheitszeichen wird für das Polynom /(#)=-= (#4- l)n==^n-r-(i )xn~1-i—

+ [l)^+l erreicht, bei dem alle ak gleich 1 sind.

9. Zum Schluß betrachten wir noch die Argumente der Wurzeln von f(x). Es
bezeichne 0 einen Sektor der Zahlenebene, der von den Schenkel eines Winkels
q>(q>^n) mit dem Scheitelpunkt 0 begrenzt wird. Ein für manche Anwendungen
wichtiges Problem ist noch nicht gelöst» Es lautet:

Welches sind die notwendigen undhinreichenden Bedingungen dafür, daß alle Wurzeln
von f(x) im Sektor 0 liegen?

Man kennt immerhin eine notwendige Bedingung, die sehr einfach lautet. Sie wird
durch den folgenden, von S. Takahashi1) gefundenen Satz gegeben:

Liegen alle Wurzeln von }{x) in einem Sektor 0 der Ebene, der von zwei vom
Nullpunkt ausgehenden Strahlen mit dem Zwischenwinkel <p^n begrenzt wird, so liegen auch
die Quotienten

__ ^i __ f5* - .3»
*o ' al ' an~l

in 0.
Mit unseren Hilfsmitteln werden wir einen etwas schärferen Satz beweisen, aus

dem der Satz von Takahashi leicht zu folgern ist. Er lautet:
Liegen alle Wurzeln von f(x)t nicht aber der Nullpunkt, im Innern eines endlichen

Kreisgebietes K, so liegen die n Punkte — (k 1,..., n) ebenfalls im Innern von K.
ak-l

Beweis: Es sei k eine der Zahlen 1,..., n. Außer bn_k und bn_k+t seien alle
Koeffizienten der Hilfsgleichung (2) gleich 0 gesetzt. (3a) besagt dann

H-iK-k+ i-HK~k °>

weshalb wir *
gW^^-i^+%^1.

setzen dürfen. g(x) besitzt die (Ä-l)-fache Wurzel 0, die einfache Wurzel ^- und

die (#—A)-fache Wurzel oo, wie im vorigen Abschnitt gezeigt wurde.

*) S.Takahashi, Einige Sätze über die Lage der Wurzeln algebraischer Gleichungen, Tohoku Math. J.,
Bd. 31 (1929), S. 274-282. Zum Beweis vgl. J.Dieudonne, 1. c-,JS^8&-30.
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Der Faltungssatz besagt, daß in jedem Kreisgebiet K, dem sämtliche Wurzeln von
f(x) angehören, wenigstens eine Wurzel von g(x) liegt. Wenn K endlich ist und den

Nullpunkt nicht im Innern enthält, wie es die Voraussetzung des Satzes verlangt,

so muß —, als einzige Wurzel von g(x), in K liegen. Da diese Überlegung für
ak-i

jedes k (1 <Lk^*n) gilt, ist der Satz bewiesen.
Eduard Batschelet, Basel.

Equations fonctionnelles et mathematiques
superieures elementaires

1. Si, en general, le probl&me des öquations fonctionnelles presente des difficultes
considerables, certains cas simples constituent des problemes interessants qui, par
les connaissances requises pour leur Solution, peuvent etre consideres comme ap-
partenant aux elements des mathematiques superieures. Explicitement ou implicite-
ment, certaines equations fonctionnelles sont appliquees dans les cours de physique.

2. L'equation f(xx) + f(x2) f(xx -f x2).

Cette equation est evidemment satisfaite par une fonction lineaire homogene
quelconque. Un coup d'oeil sur un graphique suffit a. le montrer. Dans les applications,
on a besoin de la reciproque de cette propriet6: toute fonction satisfaisant ä, la relation

proposee est lineaire et homogene. Puisque nous ne considerons que les 616ments,

nous supposons derivables les fonctions que nous considerons.
La demonstration de la reciproque ci-dessus peut &tre conduite comme suit. Dans

l'equation proposee, remplacons x2 par une somme x2+xz. II vient

f(xx + x2+xs)~f{xx)+f(x2)+f(xz).

Generalisant, on trouve, en posant xx — x2 xk,

/(**)=*/(*), (i)
oü k est entier.

Divisons cette equation par k en posant x'~kx:

/(£)- I-'M-
L'application des deux derni^res equations conduit äg^n^raliserTequation (1) au cas
des nombres rationnels. Puisque nous avons admis que la fonction cherchee est
continue, un passage k la limite conduit a. la conclusion que Tequation (1) est valable
quel que soit le multiplicateur k, rationnel ou irrationnel.

Derivons l'equation (1) et divisons par k:

f'(k x) ff(x)t ou, par un changement de notation,

/'(*) /'(l) constante.

La d6riv6e de la fonction cherchee est constante; la fonction est Unfaire. Appli-
El. Math. 6
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