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Revue de mathématiques élémentaires — Rivista di matematica clementare

Zestschrift zur Pflege der Mathematik
und zur Forderung des mathematisch-physikalischen Unterrichis
Organ fir den Verein Schweizerischer Mathematiklehrer

El. Math. Band I Nr. 5 Seiten 73-96 Basel, 15. September 1946

Uber die Abschitzung der Wurzeln
algebraischer Gleichungen

1. Die Wurzeln algebraischer Gleichungen lassen sich nur in besonders einfachen
Fillen durch algebraische Auflésung numerisch berechnen. Nicht allein bei Glei-
chungen vom fiinften oder noch héherem Grade, sondern bereits bei Gleichungen
dritten und vierten Grades ist man praktisch auf die Verwendung eines Ndherungs-
verfahrens angewiesen. Das Verfahren von NEWTON und die Regula falsi sind dabei am
bekanntesten.

Zur Einleitung einer solchen Rechnung verschafft man sich, meistens durch Pro-
bieren, geeignete Niherungswerte fiir die gesuchten Wurzeln. Weiter wird man darauf
bedacht sein, die Wurzeln zu trennen. Beriicksichtigt man neben den reellen auch die
komplexen Wurzeln, so heit dies: Man sucht in der Zahlenebene voneinander ge-
trennte Gebiete zu finden, in denen je eine Wurzel der gegebenen Gleichung liegt.
Indirekt schitzt man damit die Lage der Wurzeln ab, wenn auch zunichst ganz grob.

In der Literatur findet sich eine groBere Zahl von Methoden, die der approxima-
tiven Bestimmung der Wurzeln dienen. Die meisten von ihnen beziehen sich jedoch
bloB auf reelle Wurzeln. Im folgenden werden wir nun einige, zum Teil noch wenig be-
kannte Hilfsmittel zusammenstellen, die sich vor allem zur Auffindung der komplexen
Wurzeln eignen (Abschnitte 3, 5—8). In zwei Fillen konnen die Verfahren auch dazu
beniitzt werden, die Giite der mit einem Niherungsverfahren erreichten Approxi-
mation zu priifen (Abschnitte 4 und 7).

Zur Herleitung der verschiedenen Methoden werden wir uns auf einen grundlegen-
den Satz von GRACE!) stiitzen. Dieser Satz, der von SzEGO auch Faltungssatz?)
genannt wurde, lautet: Es seien

f(x) =agx"+a, 2" 14 - 4a,=0, (1)
g(x) =box" + by 2" oo 0y =0 (2)

1) J.H.GRrAck, The zeros of a polynomial, Proc. Cambridge philos. Soc., Bd. 11 (1902), S. 352-357.
Eine ausfiihrliche Literaturzusammenstellung zum Satz von GRACE ist zu finden bei J.DiEubonng, La
théorie analytique des polynomes d’une variable, Mém. des Sci. math., Fasc. 93 (1938).

%) G.SzEGo, Bemerkungen zu einem Satz von J. H. GRACE tiber die Wurzeln algebraischer Gleichungen,
Math. Z., Bd. 13 (1922),S. 28-55. Der Leser mache sich die Behauptung des Satzes an einer Zeich-
nung klar. Ein Beweis ist in den «Vorlesungen iiber Algebra» von L. BIEBERBACH enthalten.
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2wet algebraische Gleichungen n-ten Grades mit beliebigen reellen oder komplexen Koeffi-
zienten, zwischen denen die folgende Beziehung besteht :

1 1
n n
(1) (5)

Die Wurzeln von f(x) und von g(x) mogen als Punkte der Zahlenebene aufgefaft
werden. Dann liegt in jedem Kreisgebiet, dem simtliche n Wurzeln der einen Gleichung
angehoren, wenigstens erne Wurzel der andern Gleichung.

Unter einem Kreisgebiet versteht man dabei entweder das Innere eines Kreises
samt Rand, oder das AuBere eines Kreises samt Rand, oder als Grenzfall eine Halb-
ebene samt Rand?).

Man nennt zwei Polynome f(x) und g(x), die der Bedingung (3) geniigen, auch
apolar.

2. Um den Faltungssatz fiir unsere Zwecke anwenden zu konnen, betrachten wir
f(x) =0 als die gegebene algebraische Gleichung, deren Wurzeln zu bestimmen sind.
Wir bilden dann ein Polynom g(x), das der Bedingung (3) geniigt, das also zu f(x)
apolar ist, und versuchen gleichzeitig dafiir zu sorgen, da8 sich die Wurzeln von
g(x) =0 ohne Miihe berechnen lassen. Um das letzte zu erreichen, wird g(x) im fol-
genden stets ein Binom sein.

Daraufhin kénnen wir ohne weiteres ein Kreisgebiet K, angeben, in dem simtliche
Waurzeln von g(x)=0 liegen. Auf Grund des Faltungssatzes enthilt K, wenigstens
eine Wurzel von f(x). Damit ist die Abschitzung fiir eine oder mehrere Wurzeln
von f(x) gefunden.

Im letzten Abschnitt werden wir auch von der anderen Moglichkeit Gebrauch
machen, die der Faltungssatz bietet : Es sei K, ein Kreisgebiet, dem simtliche Wurzeln
von f(x) angehoren sollen. Dann muB in K, wenigstens eine Wurzel von g(x) liegen.
Daraus werden wir eine geometrische Beziehung zwischen den Wurzeln und den
Koeffizienten von f(x) ableiten. ‘

Zur Erleichterung der Schreibweise einzelner Formeln nehmen wir im folgenden
a,=1 an, was wir durch Division der Gleichung f(x) =0 durch den Koeffizienten des
hochsten Gliedes stets erreichen kénnen. AuBerdem denken wir uns von jedem
Koeffizienten einen seinem Index entsprechenden Binomialkoeffizienten abgespalten.
Die gegebene Gleichung mége demnach in der neuen Gestalt

agb, — ay b, + Agby o--++++Fa,by=0. (3)

f@) =2+ (T) e +(3) a2+ +a,=0 (1a)
geschrieben werden. Die Bedingung (3) des Faltungssatzes geht dabei in

by—ayb,_y+asb,_g—+ -+ a,bp=0 (3a)
iiber.
3. Fiir die erste Anwendung wihlen wir das Hilfspolynom (2) so, daB

bzzbsz.-- =bﬂ=0

1) Man mache sich nebenbei klar, daB die drei genannten Fille fiir ein Kreisgebiet auf der RIEMANNschen
Kugel nicht unterschieden werden miissen.
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ist. (3a) reduziert sich auf
an_lbl“' anbo: O .

Da man die Koeffizienten der Gleichung g(x)=0 noch mit einem willkiirlichen
Zahlenfaktor multiplizieren darf, kénnen wir

b(l:an—l’ blz’an’ g(x)Ean——lxn‘{“anxﬂ'l

setzen. g (x) =0 besitzt die (n—1)-fache Wurzel 0, sowie die einfache Wurzel — A;—"—.
n—1

(Sollte a,_, =0 sein, so wird die letztere Wurzel co, was dem folgenden Ergebnis
keinen Abbruch tut.)

Aus dem Faltungssatz schlieBen wir unmittelbar:

Im Innern oder am Rande eines jeden Kreises, der durch die beiden Punkte 0 und

an

geht, liegt wenigstens eine Wurzel von f(x) .
n—1
Durch eine Verschiebung der Ebene erhalten wir daraus einen bekannten Satz von

LAGUERRE. Wir setzen dazu
x=y+a, (4)

wo y die neue Variable und « eine beliebige, reelle oder komplexe Zahl bezeichnet.
Aus dem TAvLORschen Satz folgt

; 144 (”)
fy+oa) =1+ y+ Lok yp e 08 o,

Das transformierte Polynom sei mit F(y) bezeichnet. Nach der obigen Folgerung
aus dem Faltungssatz, die wir jetzt auf F(y) anwenden, liegt im Innern oder auf dem

f(=)

Rande eines jeden Kreises durch die Punkte 0 und —»n 7(a) wenigstens eine Wurzel
von F (y). Transformieren wir zuriick, so geht wegen (4) y=0in x=aund y=—» -/t,—((%—

JAC)

inx==a—n 7o) iiber. Damit lautet der Sa#z von LAGUERRE}):

/(a)

Im Innern oder am Rande eines jeden Kreises durch die Punkte o und oo —n (o) liegt

wenigstens eine Wurzel von f(x).

4. LAGUERRE hat auf mannigfache Art gezeigt, welche Dienste der Satz fiir die
Abschidtzung der Wurzeln zu leisten vermag. Aus den verschiedenen Mdéglichkeiten
sei hier eine Anwendung auf das NEwTONsche Ndiherungsverfahren herausgegriffen.
Dieses Verfahren lautet bekanntlich:

Es sei x, ein geeigneter Niherungswert einer Wurzel & von f(x) = 0. Man erhilt dann
weitere N dherungswerte x,, %,, ..., die gegén & konvergieren, wenn man der Reihe nach

Xpp1= %+ My, k=1,2, ...,
setzt, wobes by die « Koryektur»
H(#%)
hy=—
€= Pl ©)

bedeutet.

}) LAGUERRE, (Buvres, Bd. 1, S.56-53 und 133-143.
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Ohne irgendwelche Abanderung laBt sich das Verfahren auch zur Berechnung einer
komplexen Wurzel verwenden.

Es liegt nun die Frage nahe: Wie weit kann & hichstens noch von einem x, entfernt
sein? Die gewiinschte Auskunft gibt der Satz von LAGUERRE. Wir ersetzen dort den
Punkt « durch x; und erhalten dann, wegen (5), fiir den anderen Punkt des Satzes
%+ n- k. Fassen wir A, als Vektor auf, so haben wir A, somit #-mal vom Punkte x,
aus abzutragen. Unter den unendlich vielen Kreisen durch x, und x,+ n A, wihlen
wir den kleinsten aus, der die Verbindungsstrecke der beiden Punkte zum Durch-
messer hat (Fig. 1).

x,»nh,

Fig. 1

Im Innern oder am Rande dieses Kreises muB wenigstens eine Wurzel von f(%)
liegen. Das kann nur die gesuchte Wurzel & sein, wenn die Wurzeln getrennt sind,
und | k| bereits geniigend klein ist.

Das Ergebnis ist also dies: Man erhidlt zum NEwToNschen Verfahren hinzu ohne
nennenswerte Mehrarbeit eine Abschitzung der gesuchten Wurzel.

5. Ein zum Satz von LAGUERRE dhnliches Ergebnis erhalten wir, wenn von den
Koeffizienten von g(x) alle auBer b, und b, gleich null gesetzt werden. Die Bedingung
(3a) reduziert sich auf

Ap_gby+a,by=0,
weshalb wir
bo=ay,_s, bﬁz"g— Ay, g(%x) =a, ox"—a,x"?

setzen diirfen. g(x) besitzt die (n—2)-fache Wurzel 0 und daneben die zwei einfachen

Wurzeln {; = + ]/aa" und {;= — -;’1- . Je nach den Zahlenwerten von 4, und
n-3 —32

von a,_, sind {; und {, reell oder komplex.

Es sei &£, in der Zahlenebene ein beliebiger Kreis durch die beiden Punkte £, und {,.
Wegen {,=— {, gehort der Nullpunkt und damit die (»—2)-fache Wurzel von g(x)
dem Innern von %, an. Nach dem Faltungssatz muB im Innern oder auf dem Rande
von k, auch wenigstens eine Wurzel von f(x) liegen. Wir haben somit den Satz:

Im Innern oder am Rande eines jeden Kreises durch die beiden Punkte -+ ;‘-"”—

n—3
und —
n--2

Es sei zum Beispiel

Gy

liegt wenigstens eine Wurzel von f(x).

f(x) =xt+p-23+54x2+q-x+1=0

gegeben. Wegen a,=1, a,_,= 54:(;) =9 haben wir Kreise durch die Punkte —%—und
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1 : . g ; :
— 3 zu betrachten. Im Innern oder am Rande eines solchen Kreises liegt sicher eine

Wurzel von f(x), wie auch immer $ und ¢ gewihlt sein mogen. Insbesondere existiert

eine Wurzel vom absoluten Betrage < ,:1;. .

6. Fiir die nichste Anwendung des Faltungssatzes lassen wir b,, b,,..., b,_ ver-
schwinden. An Stelle von (3a) tritt die einfachere Beziehung

b+ (—1)*a,by=0,
so daB wir
bo=1, b,=—(—1)"a,, g(x) =x"—(—1)"a,
setzen diirfen.
Bezeichnen wir noch die # Wurzeln von f(x) mit x,, %,,..., %,, so gilt wegena,=1:

F(2) = (5= 2) (= 20) ... (2= %), (= 1)@y =2, %5 %y (6)
Daher 148t sich g(x) in der Gestalt
g(x) =a"—x,%,... %,

schreiben. Dem Faltungssatz entnehmen wir sofort: In jedem Kreisgebiet K,,
dem simtliche Wurzeln von g(x) angehoren, liegt wenigstens eine Wurzel x, von f(x).

Um von hier zu einem fiir die Anwendung brauchbaren Ergebnis zu kommen,
miissen wir eine gebrochen lineare Transformation ausfithren. Sie laute

X o
y=475, ?)
wo « und f irgend zwei voneinander verschiedene, reelle oder komplexe Zahlen be-
zeichnen. Die aus x,, x,, ... hervorgehenden Punkte seien mit y, , y,, ... bezeighnet.

Wir betrachten die Gleichung

G(y) =y"—¥1Y2--- Ya=0
und halten gemiB dem obigen Ergebnis fest, daB in jedem Kreisgebiet, dem alle

Wurzeln von G (y) angehéren, wenigstens ein ¥y, liegt.
G (y) geht durch die Transformation (7) in die Gleichung

(=T ) ans) (esi) -
oder wegen (6) in die Gleichung
(-1 o

iiber. Da bekanntlich durch jede lineare Transformation ein Kreisgebiet wieder in ein
Kreisgebiet iibergetihrt wird, so folgt:
In jedem Kreisgebiet, dem similiche Wurzeln von (8) angehoren, liegt wenigstens eine
Wurzel von [(x).
Dieser Satz ist von M. FEKETE!) aufgestellt worden. Wir konnen ihn folgendermaBen

verwenden: Wir setzen
f(a )
A= VI @ | )

1) M. Fexete, Uber die Nullstellenverteilung bei Polynomen, deren Wert an zwei Stellen gegeben ist,
Jber. d. Dtsch, Math. Ver., Bd. 34 (1926), S. 22(0-233.
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Beschrinken wir uns in (8) auf die absoluten Betrige, so folgt
¥—a]
¥ —B] 2 Ay (10)

Dies bedeutet geometrisch, dal die Abstinde der Wurzeln der Gleichung (8) von
den Punkten o und g das konstante Verhiltnis 4 haben. Die Wurzeln von (8) liegen
folglich alle auf dem Kress des APOLLON1US, der zu den Punkten o und § leicht gezeichnet
werden kann. Nach dem Satz von FEKETE liegt 1m Innern oder auf dem Rande dieses
Kreises wenigstens eine Wurzel von f(x).

Kennt man also zu zwei beliebigen Punkten « und § die Funktionswerte f(x) und
f(B), so kann man damit allein schon ein Kreisgebiet angeben, in dem wenigstens
eine Wurzel von f(x) liegen muB.

7. Mit dem soeben erhaltenen Ergebnis gelingt es oft, die Wurzeln einer gegebenen
Gleichung zu trennen, wie das folgende Beispiel zeigen mag. Gegeben sei

(%) = 22— 6234+922—-5x+10=0.

f(x) weist vier Zeichenwechsel auf, besitzt also nach der DESCARTES schen Zeichen-
regel maximal vier positive, aber keine negativen Wurzeln. Da das Polynom fiir
x=0,1,2,... der Reihe nach die Werte 10, 9, 4, —5, 6, ... annimmt, so muB eine
positive Wurzel zwischen x=2 und x=3 und eine weitere zwischen x=3 und x=4
liegen. Andere positive Wurzeln sind nicht zu finden (wie zum Beispiel aus der Dis-
kussion von f’(x) folgt). Daher besitzt f(x) noch zwei komplexe Wurzeln, die bekannt-
‘ich konjugiert-komplex sein miissen. Um ihre Lage in der Zahlenebene zu finden,
berechnen wir f(x) fiir x=4 und erhalten /() =2++¢. Wihlen wir in (9) «=0 und
: =1, so folgt wegen /(0)=10und |f(i)| =}22+1 =}/5, daB

4

A=]/22 1,454
V5

ist. Nun zeichnen wir den Kreis des APOLLONIUS als den geometrischen Ort aller
Punkte, deren Abstinde von 0 und ¢ das feste Verhiltnis A=1,454 . . . besitzen
(siehe Fig. 2).

)

3

53. i, ﬂ

Fig. 2

Im Inneren oder auf dem Rande dieses Kreises mu8 die eine der beiden komplexen
Wurzeln enthalten sein. Die konjugiert-komplexe Wurzel liegt symmetrisch dazu in
bezug auf die reelle Achse. Damit sind alle vier Wurzeln von /(%) getrennt.
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Eine weitere Anwendung des Satzes von FEKETE dringt sich fiir das NEWTONsche
Niiherungsverfahren auf. Da man dort die Werte von f(x) fiir jede Naherungswurzel
berechnen muf}, um die niachste Korrektur zu finden, so bereitet es keine besondere
Miihe, aus (9) die Verhiltniszahl A zweier solcher Funktionswerte zu berechnen und
den dazugehérigen Kreis des APOLLONIUS zu zeichnen. In manchen Fillen erhilt
man so eine bessere Abschitzung der gesuchten Wurzel als mit Hilfe des LAGUERRE-
schen Kreises (siehe Abschnitt 4).

8. Zur Abschitzung der Wurzeln gehort auch die Auffindung von oberen oder
unteren Schranken fiir die absoluten Betrige der Wurzeln. Die gegebene Gleichung
laute f(x) = 2"+ A, % 1+ ... + A,=0. Zur Herleitung einer oberen Schranke geht man
meist von der bekannten, von CAUCHY betrachteten Gleichung

"o dy|ant— [ Ag|an - s - | Ay|=0

aus. Bezeichnet man die ihrem absoluten Betrage nach grofte Wurzel von f(x) mit X,
so findet man zum Beispiel
| X| < Max |Ak|+1)

Weniger bekannt sind untere Schranken fiir | X |. Wir werden eine solche herleiten,
die von G.D. BIRKHOFF und fast gleichzeitig von J.L.W. JENSEN gefunden wurde?).

Zu diesem Zweck sei f(x) wiederum in der Gestalt (1a) geschrieben. % bezeichne
eine der Zahlen 1, ..., n. Wir bestimmen dann das Hilfspolynom (2) so, daB aufler
b,_, und b, alle Koeffizienten verschwinden. Die Bedingung (3a) reduziert sich auf

bn + (*1)kakbn—k= 0,
woraus, analog wie in den vorigen Abschnitten,
g(x) =x*—(—1)*a,=0 (11)

gefolgert wird. g(x) besitzt # Wurzeln vom absoluten Betrage {]a,].

Man wird an dieser Stelle einwenden, der Faltungssatz konne fiir #<# nicht ange-
wandt werden, da der Grad von g(x) zu klein sei. Die Schwierigkeit 14Bt sich aber
leicht iiberwinden. Denn fiir 2 <7 kann man g(x) als ein Polynom z-ten Grades auf-
fassen, dessen #— % erste Koeffizienten verschwinden. Damit g(x) im ganzen n Wur-
zeln besitzt, muB man noch die (n— %)-fache Wurzel oo hinzufiigen. Dies wird durch
die folgende Betrachtung gezeigt:

Man ersetze im Polynom (2), dessen (n — &) erste Koeffizienten verschwinden sollen,

die Variable x durch—} und multipliziere das Polynom hinterher mit y®. Man erhilt
ein Polynom #-ten Gradesin y, dessen (n—&) letzte Koeffizienten verschwinden, das

-

1) G.D.BIRKHOFF, An elementary double inequality for the roots of an algebraic equation having
greatest absolute value, Bull. Amer. Math. Soc., Bd. 21 (1914), S. 484-195. J.L.W.V. JENSEN, Forskellige
Bidrag til Ligningernes Theori, Nyt Tidsskrift for Math., Bd. 26A (1915), S. €~13. Andere Schranken fiir
die absoluten Betrige der Wurzeln hat Herr A, OsTrowski gefunden, Recherches sur la méthode de
GRAEFFE et les zéros des polynomes et des séries de LAURANT, Acta math., Bd. 72 (1940), S. 99-257,
spez. S. 143.
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folglich die (n—k)-fache Wurzel y =0 besitzt. Durch die inverse Transformation y = i

erhilt g(x) die (n—k)-fache Wurzel x=o0.

Wir verschaffen uns nun ein Kreisgebiet K,, dem simtliche » Wurzeln der Glei-
chung (11) angehdren:

Die % endlichen Wurzeln von g (x) liegen alle auf dem Kreis mit dem Mittelpunkt 0
und dem Radius |[a,{. Damit auch die Wurzeln x= oo im gesuchten Kreisgebiet
liegen, wihlen wir fiir K, das AuBere und den Rand des soeben beschriebenen Kreises.
Nach dem Faltungssatz liegt wenigstens eine Wurzel von f(x) in K.

Diese Betrachtung gilt fiir jedes k(1 < 2 <#). Bezeichnen wir daher mit X wieder-
um diejenige Wurzel von f(x), die einen maximalen absoluten Betrag hat, so folgt
sofort die angekiindigte Ungleichung von BIRKHOFF und JENSEN:

| X| = Max §[a,]. (12)

1<k<n
Das Gleichheitszeichen wird fiir das Polynom f(x)=(x+1)"=x"+ (’1’) g

+ ( ’l')x—}- 1 erreicht, bei dem alle a, gleich 1 sind.

9. Zum SchluB betrachten wir noch die Argumente der Wurzeln von f(x). Es be-
zeichne @ einen Sektor der Zahlenebene, der von den Schenkel eines Winkels
@ (p =n) mit dem Scheitelpunkt 0 begrenzt wird. Ein fiir manche Anwendungen
wichtiges Problem ist noch nicht gelést. Es lautet:

Welches sind die notwendsgen und hinreschenden Bedingungen dafiir, daf alle Wurzeln
von f(x) im Sektor D liegen?

Man kennt immerhin eine notwendige Bedingung, die sehr einfach lautet. Sie wird
durch den folgenden, won S. TARAHASHIY gefundenen Satz gegeben:

Liegen alle Wurzeln von f(x) in einem Sekior © der Ebene, der von zwei vom Null-
punkt ausgehenden Strahlen mit dem Zwischenwinkel ¢ < 7 begrenzt wird, so liegen auch
die Quotienten

in P.
Mit unseren Hilfsmitteln werden wir einen etwas schirferen Satz beweisen, aus
dem der Satz von TAKAHASHI leicht zu folgern ist. Er lautet:

Liegen alle Wurzeln von f(x), nicht aber der Nullpunkt, im Innern eines endlichen
Kressgebietes K, so liegen die n Punkte — aa, (=1, ..., n) ebenfalls im Innernvon K.
k

Beweis: Es sei k eine der Zahlen 1, ..., #. AuBer b,_, und b,_,,, seien alle Koeffi-
zienten der Hilfsgleichung (2) gleich 0 gesetzt. (3a) besagt dann

@_10n_r41— 8 bn =0,
weshalb wir -
g(x)=a,_yx*+apx*-1
setzen diirfen. g(x) besitzt die (k—1)-fache Wurzel 0, die einfache Wurzel —
die (n—k)-fache Wurzel co, wie im vorigen Abschnitt gezeigt wurde.

a
E_ und

k-1

1) S.Taxanasni, Einige Satze iiber die Lage der Wurzeln algebraischer Gleichungen, T6hoku Math. J.,
Bd. 81 (1929), S. 274-282. Zum Beweis vgl. J.DiEUDONNE, 1. c.,.S.29-30.
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Der Faltungssatz besagt, daB in jedem Kreisgebiet K, dem simtliche Wurzeln von
f(%) angehoren, wenigstens eine Wurzel von g(x) liegt. Wenn K endlich ist und den
Nullpunkt nicht im Innern enthilt, wie es die Voraussetzung des Satzes verlangt,
so muB — —%- als einzige Wurzel von g(x), in K liegen. Da diese Uberlegung fiir

g1
jedes & (1 <k <n) gilt, ist der Satz bewiesen.

EDUARD BATSCHELET, Basel.

»

Equations fonctionnelles et mathématiques
supérieures élémentaires

1. Si, en général, le probléme des équations fonctionnelles présente des difficultés
considérables, certains cas simples constituent des problémes intéressants qui, par
les connaissances requises pour leur solution, peuvent étre considérés comme ap-
partenant aux éléments des mathématiques supérieures. Explicitement ou implicite-
ment, certaines équations fonctionnelles sont appliquées dans les cours de physique.

2. L’équation f(x;) + f(%s) = (%, + %,).

Cette équation est évidemment satisfaite par une fonction linéaire homogéne quel-
conque. Un coup d’ceil sur un graphique suffit & le montrer. Dans les applications,
on a besoin de la réciproque de cette propriété: toute fonction satisfaisant a la rela-
tion proposée est linéaire et homogéne. Puisque nous ne considérons que les éléments,
nous supposons dérivables les fonctions que nous considérons.

La démonstration de la réciproque ci-dessus peut étre conduite comme suit. Dans
I'équation proposée, remplagons x, par une somme x,+ %3. Il vient

[ (%1 + xg+ %g) = [ (%) + [ (%0) + [ (%3).

Généralisant, on trouve, en posant x;=xy=...= %,

f(k %)=k [(2), (1)

ou & est entier.
Divisons cette équation par % en posant x'=%x:

1) =1

L’application des deux derniéres équations conduit i généraliser I’équation (1) au cas
des nombres rationnels. Puisque nous avons admis que la fonction cherchée est
continue, un passage a la limite conduit & la conclusion que I'équation (1) est valable
quel que soit le multiplicateur %, rationnel ou irrationnel.

Dérivons I'équation (1) et divisons par %:

f'(k x)=f'(%), ou, par un changement de notation,
f'(x) = (1) = constante.

La dérivée de la fonction cherchée est constante; la fonction est linéaire. Appli-
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