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Soit S le centre de similitude des deux cercles. La droite CxCt joignant les points
de contact passe par ce centre de similitude. On a donc

SCX'SC2 SGSH.

De plus, la droite SP determine sur le cercle Solution un point Q, et on a

SCVSC2 SPSQ.

Par suite, les points G, H, P, Q sont sur un cercle, que l'on peut construire puisqu'on
connalt trois des points, et on est ramen6 au n° 4. Le probleme comporte 4 Solutions,
deux en considerant le point S de similitude externe, et deux avec le point S' de
similitude interne (tangentes interieures).

ProbUme 10. (r r r) CercU tangent ä trois cercles (fig. 10)

On ramene le probleme au precedent, en reduisant le plus petit des trois cercles
k un point, et en diminuant ou augmentant les rayons des deux autres du rayon
du cercle evanouissant. Le probleme offre huit Solutions; en effet, les 4 Solutions
du probleme 9 en donnent chacune deux suivant que le cercle Solution est tangent
int&ieurement ou ext&ieurement au cercle eVanouissant (en P). La construction
des huit cercles en quatre epures offre un excellent exercice pour developper chez
les Kleves l'exactitude des traces. Adrien Grosrey, Geneve

Mathematische Aufgaben
aus dem Gebiete der Gasreaktionen

An Fachschulen für Chemiker leidet das Interesse der Studierenden für die
mathematischen Entwicklungen in hohem Maße deshalb, weil die Anwendungen meistens
rein physikalischen, maschinentechnischen oder mathematischen Problemkreisen
entnommen werden. Einerseits liegt dies daran, daß die Mathematiker sich wohl mit
Mechanik, mit Schwingungsproblemen der Elastizitätslehre und der Elektrizitätslehre,

selten aber mit dem weit farbigeren Problemkreis der theoretischen Chemie
abgeben. Naturgemäß bildet die Thermodynamik und hierin speziell die Kinetik die
Grundlage für das Verständnis dieser Anwendungsgebiete. Um diesem Übelstand
am Technikum Winterthur zu begegnen, wurden an der Fachschule für Chemie im
dritten Semester chemisch-mathematische Übungen angesetzt, in denen ausschließlich

Anwendungen auf chemische Probleme bearbeitet werden. Diese Übungen
beginnen mit der exakten Definition der zwölf in der Chemie üblichen Gehaltsangaben
und ihrer gegenseitigen mathematischen Beziehungen und setzen sich alsdann in
einer Menge von Teilgebieten fort. Von den behandelten Kapiteln seien erwähnt:
Die molare Form der Gasgleichung, Berechnung der Molekülkerngerüste aus den

aus der Optik bekannten Hauptträgheitsmomenten (Bandenspektren) (für lineare,
ebene, pyramidenförmige und tetraedrische Moleküle), Anwendung des

Massenwirkungsgesetzes auf homogene -Gasreaktionen, ^-Berechnungen, Dissoziation von
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schwachen Säuren, Basen und Salzen, Behandlung des Löslichkeitsprodukts,
Stereometrie der kubischen und hexagonalen Gittertypen des festen Zustandes.

Jedes einzelne Teilgebiet liefert eine überraschende Fülle von mathematischem
Übungsmaterial für lineare, quadratische Gleichungen, logarithmische
Berechnungen, halblogarithmische Darstellungen, Kurvendiskussion und trigonometrisch-
stereometrische Fragen. Da diese 'Übungen dem eigenen Fachgebiet entspringen,
Übersicht und Vertiefung des Verständnisses mit sich bringen, so werden sie mit
überraschend großem Interesse aufgenommen.

Als Beispiel seien einige Anwendungen des Massenwirkungsgesetzes auf homogene
Gasreaktionen dargelegt und ihre Verwertbarkeit für algebraische Übungen ins Licht
gesetzt. Es ist wohl selbstverständlich, daß dieses Übungsmaterial schon in der
Unterstufe der Algebra gebührend berücksichtigt wird.

Um Unsicherheiten zu beheben, mögen zunächst einige Begriffsbildungen
besprochen werden.

1. Konzentrationsangaben

Im Gebiet der Gasreaktionen sind im wesentlichen drei Konzentrationsangaben
üblich:

a) Unter der molaren Volumkonzentration cA einer Komponente A eines
Gasgemisches versteht man die Anzahl Mol des Gases A pro cm8. Sie wird in der Literatur
auch häufig mit [A] bezeichnet. Maßeinheit: cm-3.

b) Unter dem Partialdruck pK einer Komponente A eines Gasgemisches versteht
man den Druck, den diese Komponente im Gasraum ausüben würde, wenn sie allein
das ganze Volum einnähme.

Maßeinheit: Atm (ausnahmsweise auch Torr, wo 1 Atm 760 Torr).
c) Unter den Volumprozenten qA einer Komponente A eines Gasgemisches

versteht man das Verhältnis des Volums der Komponente A beim Gesamtdruck pt zum
Gesamtvolum der Mischung.

2. Beziehungen

a) Im Falle idealer Gase bestehen einfache Beziehungen zwischen den obigen
Größen. Seien in einem Volum VzA Mole der Komponente A, so ist das Molvolum

und da

so ist der Partialdruck von A:

V
__

1 i
~"[A]'

P' o P- T,

Pk- #r •cA, (1)

wo 2? 82,1 Atm-cm3 die universelle Gaskonstante bedeutet.

b) Der Gesamtdruck pt ist gleich der Summe der Partialdrucke.
c) Aus dem BoYLE-MARiOTTEschen Gesetz und der Definition von qA folgt sofort :

woraus
Pa 9a'P*- (2)

Die Gleichungen (1) und (2) sind wesentlich für alle kommenden Transformationen.
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d) In der neueren Literatur spielt der Molenbruch yA der Komponente A eines
Gemisches eine führende Rolle. Er ist definiert als das Verhältnis der Molzahl der

Komponente A zur Gesamtmolzahl des Gemischs.

yA=r— (reine Zahl).
zt

Bei idealen Gasen ist dieser Begriff identisch mit demjenigen von qA, denn

r*t'*a R>T-zt
Ph -y » Pt y '

Pt *t qA'

In der Literatur über homogene Gasreaktionen spielt außerdem der Begriff des

Bildungsgrades xA der Komponente A eine große Rolle. Bei idealen Gasen fällt er
aber zusammen mit den beiden erwähnten Begriffen qA und yA, denn er ist definiert
als das Verhältnis des Partialdrucks pA zum Gesamtdruck pt:

p* „
e) Von erheblichem Interesse ist auch das sogenannte mittlere Molekulargewicht M

eines Gasgemisches:
Seien zi die Molzahlen der Komponenten eines Gasgemisches und sei zt die Totalzahl

aller Mole, so besteht die Beziehung:

M-»t=ZMi-*f woraus: M=ZMt.±=£Mt7t=£Mt.qt. (3)

Da sich bei Gasreaktionen die q{ immer leicht berechnen lassen, so gut dasselbe von
der Berechnung des mittleren Molekulargewichts.

3. Die drei Hauptformen des Massenwirkungsgesetzes für ideale Gase

Die Kombination des I. und IL Hauptsatzes der Thermodynamik liefert für das
chemische Gleichgewicht einer Gasmischung, welche nach der Reaktionsgleichung

a-A + b-B->c-C + d>D

im Sinn des angegebenen Pfeils reagiert, die Bedingungsgleichung:

[CPW^*^ Maßeinheit: cm-31, (I)

wo Ke(T) die sogenannte Massenwirkungskonstante der Reaktion bei der absoluten
Temperatur T° Kelvin bedeutet. Ihre Temperaturabhängigkeit wird später
besprochen.

a+Q — z — jL — i heißt der Reaktionsindex. Er kann positiv oder negativ sein.

a, b, c, d heißen Reaktionszahlen.
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Diese erste Form des Massenwirkungsgesetzes läßt sich leicht auf Partialdrucke
umschreiben, da

/>A R-r-[A]:
Pl-Pl

p°c.p*D.(R.T)<
~KC(T) oder

^f^- Ke{T)-{RT)i^K(T) Maßeinheit: Atm*.
Pc'Pd

(II)

Schließlich ist die dritte Form des Massenwirkungsgesetzes für Volumprozente,
Molenbrüche und Bildungsgrade leicht aus (II) mit der Gleichung zu gewinnen:

pA^U'Pt
„a Ja jj,?A • ?B • Pt

fc'ti K(T). (III)

Man beachte, daß bei Umkehr des Reaktionspfeils die Konstanten des

Massenwirkungsgesetzes in ihre reziproken Werte übergehen. Die Konstanten Kp finden

IQK

Pso
[Mm'']K-zx

Pso2- Po

lg K-^Sp-- 9,330

TK
1000500

-2

Fig. 1. Temperaturabhängigkeit der Massenwirkungskonstanten Kp.
2S03~*2SOa-fOa.

sich zum Beispiel in Landolt-Börnstein : Physikalisch-chemische Tabellen,
Springer, Berlin 1912, S. 406-409.

Die Temperaturabhängigkeit der Konstanten KP(T) ist von Nernst näherungsweise

für ideale Gase und kleine Reaktionsindizes * abgeleitet worden aus dem
IL Hauptsatz. Aus ihr ergeben sich die Konstanten Ke(T) gemäß Gleichung (II).
Die Formel lautet:

ig^m=-^=-+i;^-i,75.igr+2:^-cn,
wo Q die Reaktionswärme bei 25a C und 1 Atm (negativ für exotherme» positiv für

Et. Math. 4
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endotherme Reaktionen), 2JVn ~ * ^er Reaktionsindex der Reaktion1), Cn die
sogenannten chemischen Konstanten der Teilnehmer bedeuten.

Diese Formel eignet sich sehr gut zu graphischen Darstellungen, die sehr
erwünscht sind, da man aus ihnen die Werte von Kp für beliebige Temperaturwerte
entnehmen kann. Als Beispiel sei die Darstellung für die Synthese respektive
Dissoziation von S03 wiedergegeben (Fig. 1).

4. Die Berechnung des Dissoziationsgrades

Da das Wesentliche dieser Betrachtung besser in Erscheinung tritt bei einem
speziellen Beispiel, so seien die Betrachtungen an einer Reaktion besprochen, die viele
wichtige Fälle umfaßt, wo aber die Reaktionszahlen bestimmte numerische Werte
besitzen. Die Reaktionsgleichung laute:

-12A->2B+1C; f -x
Beispiele: 2H20-^2H2 + 02

2 H2S -> 2 H2 + S2 (gasförmig)
2C02->2CO + 02
2S03->2S02+02

Um den Dissoziationsgrad bei der Temperatur T°K zu berechnen, denke man sich
2 n Mole/cma undissoziiertes Gas A im Reaktionsgefäß und heize das Gas nunmehr
auf J°K.

Der Dissoziationsgrad a gibt an, welcher Bruchteil der ursprünglich vorhandenen
Molzahl dissoziiert. Es lassen sich daher die molaren Konzentrationen der drei
Komponenten leicht angeben:

[A] 2n(l-a) Mol/cm3,
2na Mol/cm8 von A zerfallen und liefern 2 na Mol/cm3 von B und
ntx. Mol/cm3 von C, so daß

[B] 2na Mol/cm3,
[C] na Mol/cm3. Die totale Molzahl beträgt somit im cm3 nt n (2-fa) Mol/cm3

und der Totaldruck sowie die Partialdrucke sind angebbar:

pt RT-n{2 + a)

pA^RT-2n(l-v.)
pB RT-2noL
pc RT-noL

Nach Formel (II) folgt:

Pa
_ 4n»(l-a)» __R m

PVP.

l) Die Ableitung von Nernst ist nur näherungsweise gültig. Die Koeffizienten l,7b£vn und Zvn • Cn

werden daher den empirischen Messungen angepaßt.
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Nimmt man n auf die rechte Seite und drückt es durch pt aus, so ergibt sich nach
dem Ordnen der Gleichung nach a

(l-«)i(2 + «)
__ =K9(T)-pt.

Das ist eine Gleichung dritten Grades in a bei gegebenem pt. Ist aber pt als
unabhängige Variable gedacht, so stellt obige Gleichung eine Funktion vierten Grades
dar, die sich leicht aufzeichnen läßt. Das Schaubild der Funktion ist in Fig. 2

dargestellt für den Fall der Dissoziation von S03. Natürlich haben nur die Werte von
a 0 bis a l einen chemischen Sinn.

L
0V(2*<X) 8

Kp-3120ANTf. T-773°K 6

2 50,-* 2S02*02 4

2

y

\ Asymptote

— ^^ 1 \^~<^~—" "

^
-4 -3 "2\ -1"

1 -6

1 2 3 4 <*

Fig. 2. Druckabhängigkeit des Dissoziationsgrades einer Reaktion vom Typus 2 A -* 2 B -f C

Außerdem ergeben sich die q-Werte und das M leicht aus Gleichung (2) und (3) zu:

2(l-<x) 2 a
9a 2-f a 9b 2+<x 9c- 2-ha 2>«i.

__ 2MA (1-a) +MB • 2 a -f Mc • a
M=== _ -

Auch diese Funktion ist ein hübsches Beispiel zur graphischen Darstellung von
M in Funktion von a.

Bemerkung: Man beachte, daß die Formulierungen nur so einfach werden, wenn
man nicht die totalen Molzahlen, sondern die Molzahlen pro cm3, also molare
Konzentrationen, betrachtet. Außerdem werden die Verhältnisse etwas komplizierter,
wenn man mit beliebigen Mischungsverhältnissen rechnet, statt wie oben im Fall
des Dissoziationsgrades mit äquimolekularen Mischungen der Gase. Die Kurven
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*

y f(ot) sind von erhöhter technischer Bedeutung, da das Produkt y KP>pt
maßgeblich ist für die Größe des Dissoziationsgrades und anderseits des Bildungsgrades
einer Komponente. Mit Hilfe des NERNSTschen Ansatzes über lg KP läßt sich mit
Kurven vom Typus der Fig. 1 auf einfachste Weise ein Ausgleich treffen in der Wahl
von Temperatur und Druck bei vorgeschriebenem Dissoziations- oder Bildungsgrad
[\gKP(T) + lgpt konst.]. Es zeigt sich sofort die außerordentliche Überlegenheit
von Temperaturerhöhungen gegenüber Druckerhöhungen bei vorgeschriebenem a.

5. Anwendungen des Massenwirkungsgesetzes auf konkrete Fälle

Betrachtet man die Gleichungen (I), (II) und (III), so muß man zunächst feststellen,
daß in den Gleichungen je drei unbekannte Größen vorkommen, wenn die K als
bekannt vorausgesetzt werden. Man gelangt aber sofort zu Bestimmungsgleichungen
von verschiedenem Grad, je nach dem Reaktionsindex i, wenn man folgende chemische

Tatsache berücksichtigt:
Es liege die obige Reaktion der Untersuchung zugrunde:

2A->2B-f C.

Seien die anfänglichen molaren Konzentrationen gegeben, etwa

2 a Mol/cm3 vom Gas A I

2 6 Mol/cm3 vom Gas B J diese Werte sind beliebig wählbar!
c Mol/cm3 vom Gas C

Man denke sich nun die Temperatur von Zimmertemperatur auf den Wert T
gehoben und nehme an, daß vom Gas A 2 x Mole/cm3 in Reaktion gehen; dann sagt die
Reaktionsgleichung, daß von B 2 x Mole/cm3 und von C x Mole/cm3 erzeugt werden,
und für die Gleichgewichtstemperatur gilt:

r^^=sKe(T).4.(&+*)*(c+*)
Das ist eine Gleichung dritten Grades, die sich rechnerisch oder graphisch lösen läßt.
Zwei der drei Lösungen schließen sich aus physikalischen Gründen aus, indem keine

Komponente um mehr abnehmen kann, als ursprünglich von derselben vorhanden
war. Die Rechnung muß meist logarithmisch ausgeführt werden, da sonst der
Genauigkeitsgrad zu sehr leidet. Folgendes Beispiel möge die Sachlage illustrieren für
einen andern Typus von Reaktion, wo eine quadratische Bestimmungsgleichung
auftritt.

2HJ->H2 + J2, Kc= 50,40, bei r=717°K.
Es mögen 2 x Mole HJ/m3 reagieren.

Anfangswerte: a [HJ] 2 Mol/m3,
6 [HJ 10 Mol/m«, - «tlg» 5040
C [J1] 3 Mol/m*,

<*+ *><"+*>

Es darf in Mol/m3 gerechnet werden, da Ke eine reine Zahl ist
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Die quadratische Gleichung lautet: 46,40**4-663,20*4-1508-= 0.

Lösungen: xx - 2,837 (das heißt, es bildet sich HJ),
x2 — 11,456 (unmöglich).

Endkonzentrationen: [HJ] 7,674 Mol/m3; [HJ -7,163 Mol/m3, [JJ 0,163 Mol/m3.
Da die Partialdrucke proportional sind zu den molaren Konzentrationen, so kann

man analoge Betrachtungen an der Form (II) des Massenwirkungsgesetzes anstellen
und erhält sofort die Bestimmungsgleichung:

0\-2*)>
7^~L'^ ~ Kp\I)(Pb+*)*(Pc+'*)

Man muß hier aber zunächst die Drucke von der Zimmertemperatur auf die Drucke
bei der Reaktionstemperatur umrechnen, und 2 x ist auch die Abnahme des Partial-
drucks von A bei der Reaktionstemperatur T. Nur für den Fall, wo * 0 ist, dürfen
direkt die Werte bei Zimmertemperatur eingesetzt werden.

Diese einfachen Betrachtungen sind nicht mehr durchführbar bei der Form (III)
für die q-Werte. Dies rührt davon her, daß in dieser Form der Gleichung sich der
Totaldruck pt nur im Fall i=0 heraushebt! Man berechnet daher die q-Werte besser
auf dem Umweg über den Dissoziationsgrad.

Über die chemisch wichtigen Reaktionsformen seien im folgenden Heft 4 Angaben

gemacht, da das prinzipielle Gepräge gleich bleibt. Hier zeigt sich aber die
ganze Mannigfaltigkeit der algebraischen Studienobjekte. Eine Menge von Kurvenformen

gewinnen für den Chemiker prinzipielles Interesse, weil technisch wichtige
Reaktionen von ihnen beherrscht werden.

P. Frauenfelder, Winterthur

Kleine Mitteilungen
I. Eine bemerkenswerte Zahlenreihe. Herr G. Schubert machte auf folgende interessante

Tatsache aufmerksam: Bildet man die Reihe

xx=l, #,= 3, #s 4, *4=7, aligemein xn+2 x^x + xn

(n— 1, 2, 3, so ist die Zahl xn— 1 durch n teilbar, sofern n eine Primzahl ist. Für
erstaunlich viele Nummern n gilt auch die Umkehrung, daß nämlich xn-~ 1 durch n
nicht teübar ist, sofern n keine Primzahl ist.

Prof. P. Finsler teilt auf eine diesbezügliche Anfrage in einer Zuschrift an die
Redaktion mit, daß z.B. die Nummern n=705 und «=4181 eine Ausnahme bilden.
Da manche Leser Interesse daran haben werden, sei hier die betreffende Briefstelle
(vom 13. Februar 1946) mit gütiger Erlaubnis von Prof. Finsler veröffentlicht:

«Mit «= —-T—, ß= —~- wird^„= an-f 0", und da für />= Primzahl und 0 <k <p

(£) durch/> teübar ist, folgt xp=l {mod.p). Weiter ergibt sich *a+&= *«,*&- (-1)**«,-*.
speziell xtn=x*i±2 und durch Induktion xap #(a~i)p%p + *(a—Z)p xa (mod.p).
Ist q Primzahl$p, so ist also Xpq—l durch pq teilbar, wenn x9— 1 durch q und xq— 1
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