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Aquipotentialkurven und ihre Orthogonaltrajektorien
Der Zweck dieser Arbeit ist, Kurvenscharen und deren Orthogonaltrajektorien zu
untersuchen, die sich in Bipolarkoordinaten durch die Gleichung
/() + f(v)| = konst.

darstellen lassen. Die Frage stellt sich bei der Diskussion des Verlaufs der Niveau-
und Kraftlinien, wenn man Krifte zugrunde legt, die von zwei festen Quellen aus
nach den verschiedensten Gesetzen wirken. In Verallgemeinerung einer Bezeichnung

Fig. 1

bei Lor1al) sollen die vorkommenden Kurven Aquipotentialkurven genannt werden.

1. Bipolarkoordinaten. Die beiden Pole F,; und F, sollen in die Punkte (+ c;0) eines
kartesischen (x;y)-Systems gelegt werden. Irgendein Punkt P wird durch die stets
positiven Abstinde F, P=w und F, P =v bestimmt. Da P nur bis auf eine Spiegelung
an der x-Achse festgelegt ist, ist jede durch eine Gleichung

v=1(u)

in Bipolarkoordinaten gegebene Kurve C symmetrisch in bezug auf die x-Achse.
Die Lage der Tangente in P zu # und v soll so bestimmt werden: 4 muB um den
Winkel ¢ im positiven Sinne in die Tangente hineingedreht werden, v muB um y im

1) Lor1a, Spezielle algebraische und transzendente Kurven, 2. Aufl,, 1910, Bd. I, S. 292.
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positiven Sinne gedreht werden, um denselben Halbstrahl der Tangente zu erreichen,
in den vorher # gedreht wurde. Seien P, und P; zwei benachbarte Punkte der
Kurve C, ¢ die Tangente in P, (siehe Fig. 1). Nun gilt unter Vernachlissigung unend-
lich kleiner Gro8en héherer Ordnung:

du dv

"~ cosp cosy’

oder

dv cos g

du cosg (1)
cosy
cos ¢

Fiir Punkte auf der x-Achse ist diese Uberlegung nicht mehr zulidssig, da dort

die Form % annimmt. Aus (1) folgen unmittelbar die Tangenteneigenschaften von

Ellipse und Hyperbel, sowie die zum Beispiel bei Lor1A!) angegebene Konstruktion
der Tangente an eine CassiNische Kurve.

Die Kurve C hat offenbar dort eine Extremstelle beziiglich der x-Achse, wo der
Inhalt J des Dreiecks F,F,P extremal wird. Nun ist

_ V8c(u+ v?)—(ui—v2)2—16¢4
J- ] ,

woraus folgt:
Die Kurve mit der Gleichung v=f(u) hat dort eine Extremstelle, wo der Ausdruck

8c2(u2+v?) — (u2—v?)?2
extremal wird.
Aus dieser Bedingung folgt durch Differenzieren

av _ u(4ct—ur+v?)
du v(4cHui-v?)

demnach gilt:
Ist v=[f(u,p) die Gleichung einer Kurvenschar in Bipolarkoordinaten mit dem Kurven-

parameter P, —;i:; = @(u,v) thre Differentialgleichung, so gibt

409—yd o2
@(u;v)=— Z((4ia+i;st333 (2)

den Ort threr E xtremstellen.

Die Kurvennormale # in P (siehe Fig. 1) sei in entsprechender Weise wie die
Tangente durch die Winkel x4 und » festgelegt. Dann ist offenbar

T 7
g=h—g Y=V
und in Verbindung mit (1)

dv sin »
du  sinp ’ (3)

Um nun die Orthogonaltrajektorien einer Kurvenschar v=f(«, ), deren Differen-

tialgleichung wieder -g% = @(u, v) sei, zu finden, hat man aus

1) A.a.0., S.212.
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sin »
sin u

= (%, v)

::2: ; zu schlieBen, der nach (1) gleich dem Differentialquotienten

der Trajektorien sein muB. Da u und » voneinander abhingig sind, ist noch die sich
aus dem Cosinussatz ergebende Beziehung

auf den Wert von

ut+vi—dc? A

cos (u—v) = 0T

zu berticksichtigen. Die Rechnung ergibt
cosy 1-Ag

cos u A—o¢

Folglich gilt:
Ist v={(u,p) die Gleichung einer Kurvenschar in Bipolarkoordinaten mit dem Para-

meler p, % = @(u, v) thre Differentialgleichung, so lautet die Differentialgleichung der

Schar ihrer Orthogonaltrajektorien

dv _1-Ag
g Ldy @

u?+vi—4c2
2uv
Angewendet auf den hier besonders interessierenden Fall

f(u) £ f(v) = p
ergibt (4) als Differentialgleichung der Orthogonaltrajektorien

v

[2uvf (u)+ (u2+v2—4c?)f(v)] du F [2uvf (u) £ (u2+v2—4c2)f'(v)] dv=0.

wo A= 2u setzen 1ist.

Es ist allerdings nicht jede Kurve gleich geeignet zur Darstellung in Bipolarkoordina-
ten, und man wird sich in jedem Spezialfall fragen, ob die Behandlung in kartesischen
oder Polarkoordinaten nicht einfacher zum Ziele fiihre.

2. Form der Aquipotentialkurven. Um sich iiber den Verlauf einer in Bipolar-
koordinaten gegebenen Kurve C rasch ein Bild zu machen, ist folgendes Verfahren
praktisch. Damit ein der Gleichung v=/f(x) geniigendes Wertepaar einen reellen
Punkt P liefert, miissen die Bedingungen

u+v=2c und |u—v|=2c

erfiillt sein. Nun deute man die Gleichung v=/(«#) in einem rechtwinkligen karte-
sischen (#;v)-System und zeichne die Geraden #+v=2¢; u—v=2¢; v—u=2c ein
(siehe Fig. 2). Die obigen Bedingungen sind erfiillt, wenn der Punkt P (#; v) in diesem
Hilfssystem im Inneren oder ‘auf dem Rande des schraffierten Gebietes G liegt.
Von der Kurve C im Hilfssystem liefern also nur diejenigen Bogenstiicke, die in
diesem Gebiete liegen, Beitrige an die Kurve C, deren Verlauf gut iiberblickt werden
kann. Im Falle der Aquipotentialkurven sind diese Stiicke von C in G auBerdem
symmetrisch in bezug auf die Gerade v=wu. Diese letzte Bemerkung und der Um-
stand, daB das Gebiet G nur einen kleinen Teil der (%;v)-Ebene iiberdeckt, lassen
erwarten, daB unter den Aquipotentialkurven keine groBe Vielfalt der Formen auf-
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treten wird. Tatsichlich 148t sich eine groBe Klasse von Funktionen angeben, die
einigen wenigen Haupttypen angehéren, welche nun an je einem Vertreter unter-
sucht werden sollen.
1. Typus. Als Beispiel diene
ut+v2=r=%,

Im (u; v)-System erhalten wir eine Schar von Kreisen um den Ursprung. Bei wach-
sendem 7 liegen in G zundchst Bogen, die die Basis von G schneiden, ihnen entspre-
chen im (x; y)-System geschlossene Kurven um O, die die x-Achse innerhalb F, und
F, treffen. Dann folgt im Hilfssystem ein Kreisbogen durch die Ecken von G, zu ihm
gehort eine geschlossene Kurve durch F; und F,. Bei noch gréBerem » werden die

v

2c

Zc u

Fig. 2

parallelen Seiten von G getroffen, diesen Bégen entsprechen Kurven, die F, und F,
einschlieBen. Fiir alle Kurven gilt, daB jede von ihnen alle anderen mit kleinerem 7
einschlieBt. Bekanntlich handelt es sich auch im (x;y)-System um die Schar der
Kreise um O, ihre Orthogonaltrajektorien sind die Strahlen aus O.

Grundsitzlich gleiches Verhalten der Kurven C im Gebiete G 148t nun auf Scharen
schlieBen, die durch bloBe Verzerrung der besprochenen entstehen, die Kurvennetze
sind topologisch identisch. Das ist zum Beispiel der Fall bei den Gleichungen

u*+ v*=r* fiir jedes o> 1,
und e+e=p wo p> 2.
2. Typus. Beispiel:
Inu+lnv=r;
oder uy=7p2.

Die Kurven C sind gleichseitige Hyperbeln (siehe Fig. 2), die zunidchst den Rand von
G in vier Punkten schneiden und dann nur noch die parallelen Seiten treffen. Als
Grenzlage ergibt sich eine Hyperbel, die die Basis von G beriihrt. Hieraus 148t sich
folgendes Verhalten der Kurven C ablesen: Zunichst entstehen zwei getrennte Ovale
um F, und F,, die mit wachsendem p groBer werden und sich im Grenzfall zu einer
Lemniskate vereinigen, nachher erhidlt man geschlossene Kurven, die F; und F,
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einschlieBen. Die der Lemniskate benachbarten geschlossenen Kurven miissen aus
Stetigkeitsgriinden auf der y-Achse eingebuchtet sein, mit wachsendem p verliert
sich diese Einbuchtung. Es handelt sich um die bekannte Schar der CassiNischen
Kurven, die Lemniskate ist eine BERNOULLIsche, die Orthogonaltrajektorien sind die
gleichseitigen Hyperbeln mit dem gemeinsamen Durchmesser F,F, (siehe Fig. 3).
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Fig. 3
Gleiches Verhalten in dem bei Typus 1 besprochenen Sinne zeigen zum Beispiel
die Kurvenscharen mit der Gleichung
w*+1*=7r* fir «<i;az0.
Fir 0<a <1 ergeben sich in der (#; v)-Ebene astroidenihnliche, fiir « <0 hyper-
bolische Aste mit den Asymptoten % =7 und v=7, die teilweise in G liegen konnen.
Ist speziell = —1, so entsteht die Schar der Aquipotentialkurven im engeren Sinne.

Sie sind von achter Ordnung und kénnen leicht aus den CassiNischen Kurven ge-
funden werden. Aus

1 1 2
T T4

(= $)(6-3)-

Wenn man also die beiden Radienvektoren eines Punktes der CassiNischen Kurve

a\2
“”*(@)
.—a—-

je um - verldngert, erhilt man die Radien eines Punktes der neuen Kurve mit dem

folgt namlich

Parameter a. '
Fiir = —2 handelt es sich um Kurven vierter Ordnung. Wihrend bei den Cas-

siNischen Kurven, die von derselben Ordnung sind, die Extremstellen auBer auf der
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y-Achse auf dem Kreise mit dem Durchmesser F, F, liegen, besteht in diesem Falle der
Ort der Extremstellen aus der y-Achse und der CassiNischen Kurve v =2c¢2, deren
Pole in den Punkten (0; 4+ c) liegen. In Fig. 3 ist das die zweitduBerste gezeichnete
Kurve, die erste, die keinen Wendepunkt mehr aufweist. (In Fig. 3 ist der Ort der
Extremstellen gestrichelt, der Ort der Wendepunkte, eine BERNOULLIsche Lemnis-
kate, strichpunktiert eingezeichnet.) Die Tangenten im Doppelpunkt der Lemnis-
kate fiir o= — 2 haben die Steigungen + /3. Da aus

u
g_ B 2__“_1)_ (_“f_)z
(“ 2 ) (” 3 )=\ 2
folgt, ist ersichtlich, daB8 auch diese Kurvenschar aus den Cassinischen Kurven ge-
wonnen werden kann. Aus den Radien von

u.v=—2—

findet man vermoge
2_=—2, @° g_—2, @°
u*=u’+ ——— und v*=v4+ —
2 2
die Radien eines Punktes der neuen Schar, der auf der Kurve mit dem Parameter a

liegt. Die Transformation ist konstruktiv leicht durchzufiihren.
Die konfokalen Ellipsen fiir a =1 sind als Grenzfall zwischen Typus 1 und Typus 2
anzusprechen.
3. Typus. Beispiel:
= v?] = p2.

Die Kurven C sind gleichseitige Hyperbeln, die alle die Asymptote v = haben, alle
verlaufen demnach schlieBlich in G. Siamtliche Kurven C sind also offen, in unserem
Falle handelt es sich um die Geraden x=konst. mit den Orthogonaltrajektorien
y=Xkonst. Zu diesem Typus gehoren unter anderen die Gleichungen

|u*— 07| =p* fiir a>1,
und le“—e’|=p fir p=0.

4. Typus. Beispiel:
Inu—Inv|=p,

oder L2, 1=0.
u

Die Kurven C, Geraden durch O, treten alle durch die Basis in das Gebiet G ein und
verlassen es wieder mit Ausnahme von A=1 iiber eine der parallelen Seiten. Mit
Ausnahme der Geraden v=#u besteht die Schar der Kurven C also aus geschlossenen
Kurven um F,, bzw. F,. Im Beispiel ist es die Schar der Kreise des APOLLONIUS
in bezug auf F,; und F,. Die Extremstellen der Schar liegen auf der Hyperbel
x?— y2=c?, eine Bemerkung, die beim Zeichnen solcher Kreise von Nutzen sein kann,
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ihre Orthogonaltrajektorien sind die Kreise durch F, und F,. Gleiches Verhalten
zeigen zum Beispiel die Kurven mit der Gleichung

|ur—v*| = p* fiir a<1; a 0.

Die konfokalen Hyperbeln fiir « =1 sind als Grenzfall der Typen 3 und 4 aufzufassen.

WiLLr LiUssy, Winterthur

Relation entre un théoréme de Darboux
et un théoréme de Poncelet

Afin de faciliter au lecteur la compréhension de ce qui suit, rappelons quelques
définitions et propriétés de géométrie projective plane.

Une involution de rayons est dite absolue lorsque & chaque rayon on fait corres-
pondre le rayon perpendiculaire du méme faisceau. Cette transformation ne posséde
pas d’élément double réel, mais bien une paire d’éléments doubles imaginaires,
appelés rayons isotropes du faisceau ou droites isotropes par le sommet de celui-ci.

Les droites isotropes jouissent de propriétés curieuses et méme paradoxales: en
coordonnées rectangulaires, leur coefficient angulaire est égal 4 l'unité imaginaire
positive ou négative; lors d'un changement de coordonnées rectangulaires, I'équation
d’une droite isotrope garde la méme forme. Menons les deux paires de droites iso-
tropes passant par deux points distincts du plan; elles sont paralleéles deux a deux;
il existe donc deux points a l'infini, appelés points cycliques, chacun commun a une
infinité de droites isotropes. L’ensemble de deux droites isotropes passant par un
point réel constitue un cercle de rayon nul ayant ce point pour centre; il en résulte que
deux points distincts d’une droite isotrope sont 4 distance nulle I'un de 1'autre, d’ott
le nom de droites de longueur nulle donné parfois a ces droites. Le cercle de rayon
nul ayant pour centre le centre d’'un cercle constitue la paire d’asymptotes de ce
cercle; celui-ci est tangent 4 ses asymptotes en ses points 4 I'infini, donc aux points
cycliques; autrement dit, tous les cercles passent par les points cycliques. La distance
d’un point du plan non situé sur une droite isotrope a celle-ci est infinie; elle est
indéterminée si le point appartient 4 la droite isotrope considérée.

Par le sommet d’un angle @, menons les deux droites isotropes j et k: avec les
deux cotés a et b de I’angle, elles constituent un groupe de quatre droites appartenant
a un faisceau et qui posséde un rapport anharmonique (ajb%). LAGUERRE?) a démontré
la relation suivante entre I’angle ¢ et le rapport anharmonique (abjk)

e2'9 = (abjk) .

Cette relation est fort importante, car elle permet de ramener toutes les relations
d’égalité ou de rapports d’angles & des relations correspondantes portant sur des

1) L acuerre, EDMOND, 1834-1886, géométre et algébriste frangais. Il découvrit la formule qui porte
son nom a I’dge de 16 ans.
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