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Äquipotentialkurven und ihre Orthogonaltrajektorien
Der Zweck dieser Arbeit ist, Kurvenscharen und deren Orthogonaltrajektorien zu

untersuchen, die sich in Bipolarkoordinaten durch die Gleichung

\f(u)±f(v)\ kernst.

darstellen lassen. Die Frage stellt sich bei der Diskussion des Verlaufs der Niveau-
und Kraftlinien, wenn man Kräfte zugrunde legt, die von zwei festen Quellen aus
nach den verschiedensten Gesetzen wirken. In Verallgemeinerung einer Bezeichnung

du

\
Fig.l

bei Loria1) sollen die vorkommenden Kurven Äquipotentialkurven genannt werden.
1. Bipolarkoordinaten. Die beiden Pole Ft und F2 sollen in die Punkte (± c; 0) eines

kartesischen (%;y)-Systems gelegt werden. Irgendein Punkt P wird durch die stets

positiven Abstände F1 P u und F2P v bestimmt. Da P nur bis auf eine Spiegelung
an der x-Achse festgelegt ist, ist jede durch eine Gleichung

v=f(u)

in Bipolarkoordinaten gegebene Kurve C symmetrisch in bezug auf die #-Achse.

Die Lage der Tangente in P zu u und v soll so bestimmt werden: u muß um den
Winkel <p im positiven Sinne in die Tangente hineingedreht werden, v muß um %p im

l) Loria, Spezielle algebraische und transzendente Kurven, 2. Aufl., 1910, Bd. I, S. 292.
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positiven Sinne gedreht werden, um denselben Halbstrahl der Tangente zu erreichen,
in den vorher u gedreht wurde. Seien P0 und Px zwei benachbarte Punkte der
Kurve C, t die Tangente in Px (siehe Fig. 1). Nun gilt unter Vernachlässigung unendlich

kleiner Größen höherer Ordnung:

du dv
ds-

cos <p cos tp

oder
dv _ cos tp

du ~ cos (p
\ '

Für Punkte auf der x-Achse ist diese Überlegung nicht mehr zulässig, da dort —

die Form -g- annimmt. Aus (1) folgen unmittelbar die Tangenteneigenschaften von

Ellipse und Hyperbel, sowie die zum Beispiel bei Loria1) angegebene Konstruktion
der Tangente an eine CASSiNische Kurve.

Die Kurve C hat offenbar dort eine Extremstelle bezüglich der x-Achse, wo der
Inhalt / des Dreiecks FXF2P extremal wird. Nun ist

y VSctjut+v^-juit-vy-lÖc*

woraus folgt:
Die Kurve mit der Gleichung v — f(u) hat dort eine Extremstelle, wo der Ausdruck

8c2(u2 + v2)-(u2-v2)2
extremal wird.

Aus dieser Bedingung folgt durch Differenzieren

dv_
____ u(4c2-u*+v2) m

du ~~
v(4c2+u2—v2) f

demnach gilt:
Ist v f(u, p) die Gleichung einer Kurvenschar in Bipolarkoordinaten mit dem Kurven-

dv
Parameter p, -,- <p(u, v) ihre Differentialgleichung, so gibt

den Ort ihrer Extremstellen.

Die Kurvennormale n in P (siehe Fig. 1) sei in entsprechender Weise wie die
Tangente durch die Winkel p und v festgelegt. Dann ist offenbar

n n

und in Verbindung mit (1)
dv

__
sin v

du ~ sin /* * '

Um nun die Orthogonaltrajektorien einer Kurvenschar v f(u,p), deren

Differentialgleichung wieder -j— q>(u, v) sei, zu finden, hat man aus

1) A.a.O., S.212.
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sin v

sm/*
<p{u, v)

cos V
auf den Wert von -—— zu schließen, der nach (1) gleich dem Differentialquotienten
der Trajektorien sein muß. Da jjl und v voneinander abhängig sind, ist noch die sich
aus dem Cosinussatz ergebende Beziehung

x u2+v2— 4c2 Acos (ß—v) AKr ' 2 uv

zu berücksichtigen. Die Rechnung ergibt

1-Aqj
COS fJL A—(p'

Folglich gilt:
Ist v f(u, p) die Gleichung einer Kurvenschar in Bipolarkoordinaten mit dem Parameter

p, -T- (p(u, v) ihre Differentialgleichung, so lautet die Differentialgleichung der

Schar ihrer Orthogonaltrajektorien

du A-y ' K }

W2+t;2_4c2
wo A ~ zu setzen ist.2uv

Angewendet auf den hier besonders interessierenden Fall

f(u) ± f(v) p

ergibt (4) als Differentialgleichung der Orthogonaltrajektorien

[2uvf'(u)±(u2 + v2-4c2)f'(v)] du T [2uvf'{u)± (u2 + v2-4c2)f'(v)] dv 0.

Es ist allerdings nicht jede Kurve gleich geeignet zur Darstellung in Bipolarkoordinaten,
und man wird sich in jedem Spezialfall fragen, ob die Behandlung in kartesischen

oder Polarkoordinaten nicht einfacher zum Ziele führe.
2. Form der Äquipotentialkurven. Um sich über den Verlauf einer in

Bipolarkoordinaten gegebenen Kurve C rasch ein Bild zu machen, ist folgendes Verfahren
praktisch. Damit ein der Gleichung v f(u) genügendes Wertepaar einen reellen
Punkt P liefert, müssen die Bedingungen

u + v^2c und \u — v\^2c

erfüllt sein. Nun deute man die Gleichung v=f(u) in einem rechtwinkligen
kartesischen (w;v)-System und zeichne die Geraden u + v 2c; u — v 2c; v — u=2c ein
(siehe Fig. 2). Die obigen Bedingungen sind erfüllt, wenn der Punkt P(w, v) in diesem

Hilfssystem im Inneren oder auf dem Rande des schraffierten Gebietes G liegt.
Von der Kurve Ü im Hilfssystem liefern also nur diejenigen Bogenstücke, die in
diesem Gebiete liegen, Beiträge an die Kurve C, deren Verlauf gut überblickt werden
kann. Im Falle der Äquipotentialkurven sind diese Stücke von Ü in G außerdem

symmetrisch in bezug auf die Gerade v~u. Diese letzte Bemerkung und der
Umstand, daß das Gebiet G nur einen kleinen Teil der (#;t>)-Ebene überdeckt, lassen

erwarten, daß unter den Äquipotentialkurven keine große Vielfalt der Formen auf-
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treten wird. Tatsächlich läßt sich eine große Klasse von Funktionen angeben, die
einigen wenigen Haupttypen angehören, welche nun an je einem Vertreter untersucht

werden sollen.
1. Typus. Als Beispiel diene

u2 + v2 r2.

Im (u; v)-System erhalten wir eine Schar von Kreisen um den Ursprung. Bei
wachsendem r liegen in G zunächst Bögen, die die Basis von G schneiden, ihnen entsprechen

im (x; y)-System geschlossene Kurven um 0, die die x-Achse innerhalb 2^ und
F2 treffen. Dann folgt im Hilfssystem ein Kreisbogen durch die Ecken von G, zu ihm
gehört eine geschlossene Kurve durch F1 und F2. Bei noch größerem r werden die

2c

2c

Fig. 2

parallelen Seiten von G getroffen, diesen Bögen entsprechen Kurven, die Fx und F2
einschließen. Für alle Kurven gilt, daß jede von ihnen alle anderen mit kleinerem r
einschließt. Bekanntlich handelt es sich auch im (x; y)-System um die Schar der
Kreise um 0, ihre Orthogonaltrajektorien sind die Strahlen aus 0.

Grundsätzlich gleiches Verhalten der Kurven Ü im Gebiete G läßt nun auf Scharen
schließen, die durch bloße Verzerrung der besprochenen entstehen, die Kurvennetze
sind topologisch identisch. Das ist zum Beispiel der Fall bei den Gleichungen

und

2. Typus. Beispiel:

oder

ua + z/a r«

eu+ev^p

für jedes a> 1,

wo p>2.

In u + In v r;
uv p2.

Die Kurven Ü sind gleichseitige Hyperbeln (siehe Fig. 2), die zunächst den Rand von
G in vier Punkten schneiden und dann nur noch die parallelen Seiten treffen. Als
Grenzlage ergibt sich eine Hyperbel, die die Basis von G berührt. Hieraus läßt sich
folgendes Verhalten der Kurven C ablesen: Zunächst entstehen zwei getrennte Ovale
um Ft und F%, die mit wachsendem p größer werden und sich im Grenzfall zu einer
Lemniskate vereinigen, nachher erhält man geschlossene Kurven, die Fx und F%
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einschließen. Die der Lemniskate benachbarten geschlossenen Kurven müssen aus
Stetigkeitsgründen auf der y-Achse eingebuchtet sein, mit wachsendem p verliert
sich diese Einbuchtung. Es handelt sich um die bekannte Schar der CASSiNischen
Kurven, die Lemniskate ist eine BERNOULLische, die Orthogonaltrajektorien sind die
gleichseitigen Hyperbeln mit dem gemeinsamen Durchmesser FXF2 (siehe Fig. 3).

Fig. 3

Gleiches Verhalten in dem bei Typus 1 besprochenen Sinne zeigen zum Beispiel
die Kurvenscharen mit der Gleichung

ua + va ra für a<l;a + 0.

Für 0 < <x < 1 ergeben sich in der (u; v)-Ebene astroidenähnliche, für a < 0
hyperbolische Äste mit den Asymptoten u — r und v r, die teilweise in G liegen können.
Ist speziell a — 1, so entsteht die Schar der Äquipotentialkurven im engeren Sinne.
Sie sind von achter Ordnung und können leicht aus den CassiNischen Kurven
gefunden werden. Aus

u v a
folgt nämlich

Wenn man also die beiden Radienvektoren eines Punktes der CASSiNischen Kurve

uv=(if
je um y verlängert, erhält man die Radien eines Punktes der neuen Kurve mit dem

Parameter a.
Für <x= — 2 handelt es sich um Kurven vierter Ordnung. Während bei den

CASSiNischen Kurven, die von derselben Ordnung sind, die Extremstellen außer auf der
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y-Achse auf dem Kreise mit dem Durchmesser FXF2 liegen, besteht in diesem Falle der
Ort der Extremstellen aus der y-Achse und der CASSiNischen Kurve uv 2c2, deren
Pole in den Punkten (0; ± c) liegen. In Fig. 3 ist das die zweitäußerste gezeichnete
Kurve, die erste, die keinen Wendepunkt mehr aufweist. (In Fig. 3 ist der Ort der
Extremstellen gestrichelt, der Ort der Wendepunkte, eine BERNOULLische Lemniskate,

strichpunktiert eingezeichnet.) Die Tangenten im Doppelpunkt der Lemniskate

für oc= — 2 haben die Steigungen ±]/3. Da aus

u2 ^ v2 a2

2\ / „ a2\ /a2\2(---£)(¦¦-?)-(£)
folgt, ist ersichtlich, daß auch diese Kurvenschar aus den CASSiNischen Kurven
gewonnen werden kann. Aus den Radien von

- - a2
U-V^-j-

findet man vermöge

die Radien eines Punktes der neuen Schar, der auf der Kurve mit dem Parameter a

liegt. Die Transformation ist konstruktiv leicht durchzuführen.

Die konfokalen Ellipsen für a 1 sind als Grenzfall zwischen Typus 1 und Typus 2

anzusprechen.
3. Typus. Beispiel:

\,u2— v2\ =p2.

Die Kurven C sind gleichseitige Hyperbeln, die alle die Asymptote v u haben, alle
verlaufen demnach schließlich in G. Sämtliche Kurven C sind also offen, in unserem
Falle handelt es sich um die Geraden # konst. mit den Orthogonaltrajektorien
y konst. Zu diesem Typus gehören unter anderen die Gleichungen

\ua-va\=pa für a>l,
und \eu-ev\=p für p^O.

4. Typus. Beispiel:
|ln« — In v\ =^>,

oder Ü==a,A>0.
u ~

Die Kurven C, Geraden durch 0, treten alle durch die Basis in das Gebiet G ein und
verlassen es wieder mit Ausnahme von A=l über eine der parallelen Seiten. Mit
Ausnahme der Geraden v u besteht die Schar der Kurven C also aus geschlossenen
Kurven um Fl9 bzw. JF2. Im Beispiel ist es die Schar der Kreise des Apollonius
in bezug auf Fx und JF2. Die Extremstellen der Schar Hegen auf der Hyperbel
x2— y2=c2, eine Bemerkung, die beim Zeichnen solcher Kreise von Nutzen sein kann,
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ihre Orthogonaltrajektorien sind die Kreise durch Fx und F2. Gleiches Verhalten
zeigen zum Beispiel die Kurven mit der Gleichung

|wa_tJa| px für a< 1 a ^

Die konfokalen Hyperbeln für a 1 sind als Grenzfall der Typen 3 und 4 aufzufassen.

Willi Lüssy, Winterthur

Relation entre un theoreme de Darboux
et un theoreme de Poncelet

Afin de faciliter au lecteur la comprehension de ce qui suit, rappelons quelques
definitions et proprietes de geometrie projective plane.

Une involution de rayons est dite absolue lorsque k chaque rayon on fait corres-
pondre le rayon perpendiculaire du meme faisceau. Cette transformation ne possede

pas d'element double reel, mais bien une paire d'elements doubles imaginaires,
appeles rayons isotropes du faisceau ou droites isotropes par le sommet de celui-ci.

Les droites isotropes jouissent de proprietes curieuses et m&me paradoxales: en
coordonnees rectangulaires, leur coefficient angulaire est egal ä l'unite imaginaire
positive ou negative; lors d'un changement de coordonnees rectangulaires, l'equation
d'une droite isotrope garde la meme forme. Menons les deux paircs de droites
isotropes passant par deux points distincts du plan; elles sont paralleles deux k deux;
il existe donc deux points ä l'infini, appeles points cycliques, chacun commun k une
infinite de droites isotropes. L'ensemble de deux droites isotropes passant par un
point reel constitue un cercle de rayon nul ayant ce point pour centre; il en resulte que
deux points distincts d'une droite isotrope sont k distance nulle Tun de lautre, d'oü
le nom de droites de longueur nulle donne parfois k ces droites. Le cercle de rayon
nul ayant pour centre le centre d'un cercle constitue la paire d'asymptotes de ce

cercle; celui-ci est tangent k ses asymptotes en ses points k l'infini, donc aux points
cycliques; autrement dit, tous les cercles passent par les points cycliques. La distance
d'un point du plan non situe sur une droite isotrope k celle-ci est infinie; eile est

indeterminee si le point appartient k la droite isotrope consideree.

Par le sommet d'un angle q>, menons les deux droites isotropes / et k: avec les

deux cötes a et b de l'angle, elles constituent un groupe de quatre droites appartenant
ä un faisceau et qui poss&de un rapport anharmonique (ajbk). Laguerre1) ademontre
la relation suivante entre l'angle <p et le rapport anharmonique (abjk)

(,2t<P- (abjk).

Cette relation est fort importante, car eile permet de ramener toutes les relations

d'egalite ou de rapports d'angles k des relations correspondantes portant sur des

*) Laguerre, Edmond, 1834-1886, geometre et algehriste francais. 11 decouvrit la formule qui porte

son nom ä l'äge de 16 ans.
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