
Zeitschrift: Dissonance

Herausgeber: Association suisse des musiciens

Band: - (1999)

Heft: 62

Artikel: Musique et théorie du chaos : perspectives musicales des modèles
mathématiques

Autor: Neukom, Martin

DOI: https://doi.org/10.5169/seals-927890

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-927890
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


MUSIQUE ET THÉORIE DU CHAOS p—Perspectives musicales cles modèles mathématiques

Ces deux dernières décennies, d'innombrables publications,

souvent illustrées d'images fascinantes, sur ce qu'on
appelle la «théorie du chaos», ont enthousiasmé à la fois

les professionnels et les amateurs. La fascination provient
sans doute principalement du fait qu'avec des formules et
des algorithmes très simples, donc des règles du jeu faciles,

on peut obtenir des figures d'une complexité inattendue.

Mais si l'on peut déjà discuter de la valeur esthétique des

graphiques, d'autres problèmes surgissent dans les applications

musicales, dès qu'on cherche à traduire les structures

mathématiques en notes ou en compositions entières.

Dans le présent article, on expliquera pour commencer

quelques notions de la «théorie du chaos» - un amas très

hétérogène -, que l'on illustrera par des exemples simples.
On commentera ensuite, de façon critique, les tentatives
actuelles d'exploiter la «théorie du chaos» en composition,
tout en renvoyant occasionnellement à des musiques plus
anciennes, composées à l'aide de techniques analogues ou

qui peuvent être décrites ou analysées de façon inédite grâce

aux notions nouvelles.

INFORMATION ET COMPLEXITÉ

Le terme de chaos désigne communément le désordre,

l'imprévisibilité, l'arbitraire. Dans la mythologie, le chaos est

aussi l'origine, le matériau initial de toute évolution. Dans

le domaine acoustique, le chaos signifie donc les vibrations
fortuites qui donnent le bruit «blanc». Une oscillation
immuable, périodique, une note tenue, présentent en revanche

un ordre marqué. Plus le désordre d'un système est grand,
plus il faut d'informations pour le décrire.

Cela contredit naturellement notre perception, qui est

incapable de dégager la moindre information d'un bruit
blanc parfaitement régulier, bien que sa description exacte

requière des informations maximales. Dans la musique
traditionnelle, la définition de ce qu'est l'«information musicale»

paraît simple, au premier abord : c'est ce qu'il faut noter

pour pouvoir reproduire la musique, donc les notes. Il faut
en réalité beaucoup de connaissances supplémentaires pour
interpréter «correctement» les notes et, dans la musique
ancienne comme dans une partie du répertoire contemporain,
la notation ne donne qu'une fraction des informations que
nous communique une interprétation. Il est encore nettement

plus difficile de définir le contenu, le message de la

musique, et leur teneur en informations.
La notion de complexité est un essai de décrire la richesse

des structures d'un système (ou, plus concrètement, d'un
morceau de musique) (Illustration 1).

On croyait autrefois que la complexité reposait toujours
sur des processus compliqués et enchevêtrés, mais la «théorie
du chaos» montre que des processus parfois très simples

peuvent se comporter de façon complexe. Dans le domaine

de l'art, la complexité n'est guère définissable de manière

générale, mais dans plusieurs courants de l'histoire de la

musique, elle compte parmi les critères principaux de la qualité
d'un ouvrage. En musique, les morceaux complexes sont
souvent ceux qui comportent peu d'informations ; ainsi certaines

œuvres contrapuntiques de Jean Sébastien Bach peuvent
être ramenées à l'agencement simple de quelques motifs et

décrites en moins de signes que n'en demande la notation.
Le terme théorie du chaos englobe une foule de théories

et de modèles surgis à des époques différentes dans diverses

disciplines. Grâce à la possibilité de simuler par ordinateur
les processus généralement non calculables, ces théories ont

connu un développement foudroyant au cours des dernières

décennies ; à cette occasion, des éléments communs et des

liens sont apparus entre les théories les plus variées.

NON-LINÉARITÉ ET RÉTROACTIVITÉ

Dans tous les secteurs, les aspects non linéaires et les

discontinuités jouent un rôle important. Cela revient à dire que
certaines modifications des causes entraînent des modifications

non proportionnelles des effets. A la fin des années

1950, le météorologue Edward N. Lorenz a découvert de tels

facteurs non linéaires dans ses modèles du temps : pour des

modifications minimales des valeurs initiales, il constatait des

écarts marqués dans les prévisions, et cela en un bref délai1.

Depuis la publication de son article, intitulé «Kann der

Flügelschlag eines Schmetterlings in Brasilien einen Tornado in
Texas hervorrufen ?» (Le battement d'aile d'un papillon au

Brésil peut-il susciter une tornade au Texas on parle de

l'effet papillon. Un autre élément fondamental de toutes les

théories est la rétroactivité, c'est-à-dire le fait que les processus

sont influencés par leurs résultats mêmes. Quand, dans

ces systèmes, surgissent des comportements chaotiques, quasi
arbitraires et imprévisibles, même sans influence fortuite, on

parle de chaos déterministe. Signalons en outre l'existence du

Complexité

1. Heinz-Otto Peit-
gen, Hartmut Jürgens
et Dietmar Saupe,
Chaos. Bausteine der
Ordnung, Reinbek bei

Hamburg 1998,
pp. 54-59.

Illustration 1
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phénomène inverse, où l'ordre peut jaillir spontanément au

sein d'un système chaotique ; là aussi, la rétroactivité joue un
rôle central. On parle dans ce cas d'auto-organisation ou de

synergétique2. Nous examinerons de plus près, ci-dessous, un

exemple concret, où peuvent se produire les deux comportements

: les vibrations d'une corde frottée.
Citons nommément une équation très bien étudiée, qui

est largement commentée dans tous les livres consacrés

à la théorie du chaos, et qui est aussi utilisée dans les

programmes informatiques de production de musique. Elle
paraît sur le marché sous plusieurs noms. On l'appelle le plus

souvent équation logistique, mais elle est aussi connue

comme itérateur quadratique, reproduction de parabole ou

équation du comportement prédateur/proie. Cette .équation

permet de calculer couramment de nouvelles valeurs xn à

partir de la valeur précédente xn_1.

xn r * x""1 * (1 - x""1)

Les valeurs xn obtenues se situent entre 0 et 1 quand la

valeur initiale x1 se situe entre 0 et 1, et r entre 0 et 4. Si l'on
choisit par exemple r 2.75 et x" 0.9, respectivement 0.1,

on obtient les séries de chiffres reproduites dans les

diagrammes ci-contre, qui convergent manifestement vers la

même limite (Illustration 2).

Si, pendant le calcul des valeurs, on modifie le paramètre r,
la valeur limite change aussi. Le diagramme suivant, obtenu

avec r 2.6 jusqu'à r 3.569, montre d'abord une augmentation

de la valeur limite, puis une division en deux valeurs

limites, entre lesquelles les valeurs obtenues oscillent. De
nouvelles bifurcations, comme on appelle ces ramifications,
donnent des cycles toujours plus longs, jusqu'à ce qu'ils
atteignent une longueur pratiquement infinie à la valeur

r 3.6268 du paramètre et que le comportement chaotique
survienne (Illustration 3).

On appelle cette constellation attracteur, étant donné

que, quelle que soit la valeur initiale, les valeurs suivantes

sont attirées toujours plus près de la valeur limite, respectivement

du cycle limite. Si l'on choisit par exemple r 3.5, un

cycle de quatre apparaît visiblement après quelques étapes

(itérations), quelle que soit la valeur initiale.
Le diagramme suivant montre le trajet ultérieur de

l'attracteur quand le paramètre passe de r 3.5 à r 4. Ce

n'est qu'à la toute fin, à r 4, que règne le chaos total, c'est-

à-dire que les valeurs obtenues se répartissent alors également

entre 0 et 1 ; entre les deux, il y a toujours des cycles -
de toutes les longueurs qu'on voudra, comme on peut le

démontrer - qui se divisent par bifurcation (Illustration 4).

Il est facile d'imaginer que ces comportements et d'autres

qui leur ressemblent représentent une mine de techniques de

composition, dans lesquelles le choix de valeurs quelconques

des paramètres n'est pas laissé à la «fantaisie» ou à ['«arbitraire»

du compositeur, mais peut être calculé en employant
des systèmes (techniques sérielles) ou en recourant au
hasard (techniques aléatoires ou stochastiques). L'économie
concomitante des moyens - une formule simple, pilotée par
un seul paramètre - exerce naturellement une fascination

spéciale sur de nombreux compositeurs.

2. Hermann Haken,
Erfolgsgeheimnisse
der Natur. Synergetik:
die Lehre vom
Zusammenwirken, Stuttgart
1986.

FRACTALES ET AUTO-SIMILITUDE

Les images fascinantes évoquées au début de l'article,
qu'on appelle des fractales, semblent n'avoir rien de commun

avec le chaos, vu que les exemples les plus simples
présentent un ordre parfaitement visible. Une possibilité de
produire des objets fractals consiste à ajouter des structures de

plus en plus petites à un modèle, par rapetissement et
multiplication constants. L'exemple le plus connu est sans doute la

courbe de Koch (dite «flocon de neige»), nommée d'après le

mathématicien belge Helge von Koch, qui en publia déjà la

«recette» en 1904. Elle s'obtient en greffant des copies plus

petites de la figure sur ses côtés (Illustration 5).

Si le processus est répété à l'infini, on obtient une courbe

de longueur infinie, le périmètre croissant de 4/3 à chaque

étape. La courbe ne comporte plus de segments rectilignes
et est si dense qu'elle constitue en quelque sorte un hybride

Illustration 3

Illustration 4

Illustration 5
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Illustration 6

entre une ligne et une surface. Il est alors possible d'attribuer

mathématiquement (de diverses manières) une dimension à

de telles courbes, dimension qui se situe entre celles de la

ligne et de la surface, soit entre 1 et 2. Pour la courbe de

Koch, on obtient la dimension 1.2691...3 C'est ce résultat
fractionnaire qui a donné naissance au terme de fractale

pour désigner les figures dont le nombre des dimensions

n'est pas un entier. Une propriété importante de beaucoup
de fractales est leur auto-similitude, c'est-à-dire que le
grossissement d'un segment quelconque de la courbe est

semblable à la courbe complète. La courbe de Koch est

autosemblable au sens strict, étant donné que sa forme est la

même, quel que soit le grossissement choisi.

Le lien avec le chaos déterministe réside en ceci que
certains attracteurs, comme celui qui a été décrit plus haut, sont
des fractales et présentent des auto-similitudes. Le terme
d'auto-similitude est donc utilisé fréquemment, désormais,
dans un contexte musical, par exemple pour décrire des

techniques contrapuntiques, des agencements formels ou des

déroulements harmoniques, à différents niveaux ; ce faisant,

on n'établit aucun rapport quelconque avec la théorie du

chaos, mais on habille simplement d'un terme à la mode des

ordonnances bien connues depuis longtemps. Il faut en général

se méfier de ces transferts de notions extra-musicales

dans la terminologie musicale, car on désigne souvent des

phénomènes qui n'ont que des liens apparents. On pense

trop en termes purement structurels, sans tenir compte des

arrière-plans historiques et stylistiques. Si l'on parle par
exemple d'auto-similitude dans les mouvements dansés

(2 fois 8 mesures, qui se divisent en 2 phrases de 4 mesures,

lesquelles se composent à leur tour de 2 motifs de 2 mesures,

etc., jusqu'à la division binaire des notes), on établit des

rapports non seulement entre des niveaux très variés, mais aussi

entre des caractéristiques fondamentales de l'écriture, des

particularités stylistiques et des propriétés individuelles du

morceau.
La fractale la plus célèbre est sans doute l'ensemble de

Mandelbrot, nommé d'après la mathématicien Benoît B.
Mandelbrot4. Elle est nettement plus complexe que la courbe de

Koch, mais pourtant très simple à définir. (Illustration 6).

L'illustration de gauche montre l'ensemble complet, celle
de droite le grossissement d'un petit segment. Les images
les plus fascinantes sont les animations qui plongent de plus

en plus profond dans l'ensemble de Mandelbrot et font
apparaître sans cesse de nouvelles formes. Les structures
délicates, aux ramifications presque organiques, qui ne se répètent

jamais exactement, même à un grossissement infini, et

qui présentent pourtant toujours des similitudes, font vibrer.
Il y a cependant de bonnes raisons à ce que presque tout
le monde ait déjà vu des images de ces fractales, mais que

presque personne n'ait entendu de musique fractale. La
principale est que les fractales sont des figures géométriques,
souvent à deux dimensions (comme l'ensemble de Mandelbrot,

qui se définit au niveau des nombres complexes). Or,
dans un certain sens, notre musique aussi est bidimension-
nelle. Comme le montre clairement la notation conventionnelle,

les paramètres essentiels sont le temps et la hauteur.

Mais la tentative de traduire des figures géométriques en

musique, en attribuant le temps à une direction et la hauteur
à l'autre, est condamnée à l'échec pour diverses raisons.

D'une part, ces deux dimensions ont des caractères tout à

fait différents ; de l'autre, elles se distinguent absolument des

dimensions géométriques. Pour notre perception, la hauteur
n'a rien de linéaire ni d'homogène ; chaque écart a ses

propres qualités. Les intervalles traditionnels ont des

propriétés particulières, dues en partie à leur nature et en partie
à l'emploi qui en est fait ; les intervalles qui n'existent pas
dans notre système tonal sont souvent ressentis comme

simplement faux. S'y ajoute le fait que la faculté de dissocier

des notes jouées simultanément est très limitée. Quant au

temps, c'est évidemment une dimension linéaire, en un
certain sens, mais à l'écoute, nous ne pouvons avoir la vue
d'ensemble du déroulement temporel, contrairement à la lecture

d'une partition ou à la contemplation d'un tableau ; la
succession des événements est irréversible, la vitesse normalement

prescrite.

PERSPECTIVES POUR LA COMPOSITION

Les possibilités de traduire en musique les notions et les

modèles de la théorie du chaos sont très diverses. On
mentionnera au passage la démarche intuitive de certains

compositeurs qui se laissent inspirer par les images et les termes

évoqués, sans appliquer le moindre détail de la théorie dans

leurs œuvres. Leur représentant le plus illustre, György
Ligeti, s'est même vu dédier le livre Chaos. Bausteine der

Ordnung5. La musique de Ligeti des années 1960 joue
effectivement déjà avec des structures complexes, bien avant la

vogue de la théorie du chaos, «mais les traces de ce penchant

ne se sont pas traduites par des schémas de composition qui
soient des transpositions facilement repérables de connaissances

scientifiques»6.

Si l'on cherche des transpositions musicales concrètes de

processus chaotiques, on en trouvera naturellement là où la

théorie a pu se développer complètement, c'est-à-dire dans

le domaine de la musique générée par ordinateur. On ne

sera donc pas surpris d'apprendre que la plus grande partie
de la bibliographie, mais aussi des compositions et des

programmes, se trouve sur Internet7. Les programmes
permettent en général de faire le choix de certaines valeurs de

3. Chaos. Bausteine
der Ordnung (note 1),

p. 249.

4. Benoît B. Mandelbrot,

Die fraktaie
Geometrie der Natur, Bâle
1987.

5. Chaos. Bausteine
der Ordnung (note 1),

préface.

6. Chaos. Bausteine
der Ordnung (note 1),

p. VIII.

7. «Fractals, Chaos
and Music» :

http://thinks.eom/ads/l
ink.pl?url=http://www.
geoclties.com/SoHo/
Square/7921 /fmusic.ht
ml ; «Fractal Music
Lab» :

http://member.aol.com
/strohbeen/fml.html.



paramètres - limités souvent à la hauteur et au rythme - à

l'aide d'algorithmes issus de la théorie du chaos. Ce procédé

rappelle certes les techniques de la musique sérielle, mais le

matériau sonore et son traitement sont la plupart du temps

plus simples et plus conventionnels, car ils proviennent plutôt
de la tradition de la musique légère, naïve et répétitive. Tous

les programmes travaillent en outre avec MIDI (Musical
Instrument Digital Interface), système qui permet les échanges

de données entre instruments électroniques et ordinateurs.

Bien que le MIDI offre des possibilités bien supérieures, la

plupart des programmes se bornent aux systèmes tonals, au

diapason et aux rythmes traditionnels ; le matériau sonore

s'en tient aux notes isolées, si bien que le traitement de

bruits, de timbres ou de phénomènes composites est exclu.

Prenons comme exemple le programme «A Musical
Generator». Il permet de fixer l'instrument, le système tonal et la

note fondamentale, jusqu'à seize voix ; pour déterminer les

hauteurs, les durées et le tempo, on choisit dans différents

systèmes - fractales unidimensionnelles, systèmes

dynamiques, etc. - des objets à l'aide desquels calculer les valeurs

des paramètres. On produit alors des morceaux polyphoniques,

qu'on peut écouter aussitôt, ce qui permet de vérifier
l'effet des réglages choisis. Grâce à des programmes idoines,

on pourra transformer les données en notes et les imprimer.

(L'exemple de D.C. Little prouve d'ailleurs qu'on peut

composer de la musique différenciée avec des programmes qui

opèrent essentiellement sur des paramètres traditionnels8.)

A un tout autre niveau, celui de la production même des

sons, on découvre des possibilités intéressantes. Réaliser des

sons synthétiques qui soient à peu près aussi riches et vivants

que les sons naturels reste une opération très dispendieuse.

Cela tient au fait que la hauteur, le timbre et la nuance des

sons naturels varient légèrement et continuellement, surtout
dans la phase d'attaque. Si l'on essaie d'ajouter délibérément

ces variations à des sons synthétiques, le résultat sonne
généralement de façon peu naturelle. En simulant des processus

physiques, comme la rétroaction non linéaire de l'archet sur
la corde, on arrive toutefois à reproduire des séquences

sonores plausibles du point de vue physique et qui sonnent

naturellement. Les vibrations d'une corde peuvent être décrites

approximativement par des équations linéaires, alors que les

interactions de la corde et de l'archet ne sont pas linéaires ; le

passage abrupt d'une phase où les crins accrochent la corde

et celle où ils glissent est en effet une discontinuité typique.
Si l'on applique trop de pression à l'archet, on produit des

vibrations chaotiques, c'est-à-dire des bruits, même si la

pression reste constante. Quand la pression est correcte, il
s'établit en revanche très vite une rétroaction régulière de

la vibration de la corde et de l'interaction archet/corde.

Les possibilités les plus nombreuses d'exploiter la théorie
du chaos se trouvent cependant dans la musique générée à

l'aide de l'ordinateur au sens étroit, dans la lignée de la

musique électronique et de la musique concrète. On peut
utiliser ici, de façon très personnelle, des techniques de la

théorie du chaos, soit pour produire des sons, soit pour les

traiter et pour piloter les paramètres. Les œuvres ainsi
produites ne suscitent hélas guère de commentaires ; les partitions

(graphiques) faisant défaut, il est rarement possible
de les analyser. (Sur l'emploi de l'équation logistique, voir
l'article du compositeur américain Gary Lee Nelson9 ; sur

l'auto-similitude, les commentaires de Gerald Bennett sur
sa composition Rainstick}0) Etant donné que les vibrations

chaotiques (les bruits), les générateurs aléatoires, mais aussi

les processus déterministes complexes, jouent depuis

longtemps un rôle primordial dans la musique par ordinateur,
l'influence de la théorie du chaos n'en a pas bouleversé
radicalement l'esthétique, mais lui a procuré plutôt des moyens
rationnels et surtout adéquats, techniquement parlant, de

réaliser toutes ses conceptions sonores.

8. David C. Little,
«Composing with
chaos»:
http://vbs.ahk.nl/david
/COMPwCHAOp.html.

9. «Wind, Sand, and
Sea Voyages : An
Application of Granular
Synthesis and Chaos
to Musical Composition»,:

http://www.ti-
mara.oberlin.edu/peop
le/%7Egnelson/pa-
pers/Gola/gola.htm

10. Proceedings II of
the International
Academy of Electroacous-
tic Music 1996,
Bourges/Paris.
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