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MUSIQUE ET THEORIE DU CHAOS PAR MARTIN NEUKOM

Perspectives musicales des modéles mathématiques

Ces deux dernieres décennies, d’innombrables publica-
tions, souvent illustrées d’images fascinantes, sur ce qu’on
appelle la «théorie du chaos», ont enthousiasmé a la fois
les professionnels et les amateurs. La fascination provient
sans doute principalement du fait qu’avec des formules et
des algorithmes tres simples, donc des regles du jeu faciles,
on peut obtenir des figures d’'une complexité inattendue.
Mais si I'on peut déja discuter de la valeur esthétique des
graphiques, d’autres problemes surgissent dans les applica-
tions musicales, des qu’on cherche a traduire les structures
mathématiques en notes ou en compositions entieres.

Dans le présent article, on expliquera pour commencer
quelques notions de la «théorie du chaos» — un amas tres
hétérogene —, que I'on illustrera par des exemples simples.
On commentera ensuite, de facon critique, les tentatives ac-
tuelles d’exploiter la «théorie du chaos» en composition,
tout en renvoyant occasionnellement a des musiques plus
anciennes, composées a ['aide de techniques analogues ou
qui peuvent étre décrites ou analysées de facon inédite grace
aux notions nouvelles.

INFORMATION ET COMPLEXITE

Le terme de chaos désigne communément le désordre,
I'imprévisibilité, I'arbitraire. Dans la mythologie, le chaos est
aussi l'origine, le matériau initial de toute évolution. Dans
le domaine acoustique, le chaos signifie donc les vibrations
fortuites qui donnent le bruit «blanc». Une oscillation im-
muable, périodique, une note tenue, présentent en revanche
un ordre marqué. Plus le désordre d’un systeme est grand,
plus il faut d’informations pour le décrire.

Cela contredit naturellement notre perception, qui est
incapable de dégager la moindre information d’un bruit
blanc parfaitement régulier, bien que sa description exacte
requi¢re des informations maximales. Dans la musique tradi-
tionnelle, la définition de ce qu’est '«information musicale»
parait simple, au premier abord : ¢’est ce qu’il faut noter
pour pouvoir reproduire la musique, donc les notes. Il faut
en réalité beaucoup de connaissances supplémentaires pour
interpréter «correctement» les notes et, dans la musique an-
cienne comme dans une partie du répertoire contemporain,
la notation ne donne qu’une fraction des informations que
nous communique une interprétation. Il est encore nette-
ment plus difficile de définir le contenu, le message de la
musique, et leur teneur en informations.

La notion de complexité est un essai de décrire la richesse
des structures d’un systeme (ou, plus concrétement, d’un
morceau de musique) (Illustration 1).

On croyait autrefois que la complexité reposait toujours
sur des processus compliqués et enchevétrés, mais la «théorie
du chaos» montre que des processus parfois tres simples

peuvent se comporter de facon complexe. Dans le domaine 1. Heinz-Otto Peit-
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de I'art, la complexité n’est guere définissable de maniere
générale, mais dans plusieurs courants de I'histoire de la mu-
sique, elle compte parmi les criteres principaux de la qualité
d’un ouvrage. En musique, les morceaux complexes sont sou-
vent ceux qui comportent peu d’informations ; ainsi certaines
ceuvres contrapuntiques de Jean Sébastien Bach peuvent
étre ramenées a I'agencement simple de quelques motifs et
décrites en moins de signes que n’en demande la notation.

Le terme théorie du chaos englobe une foule de théories
et de modeles surgis a des époques différentes dans diverses
disciplines. Grace a la possibilité de simuler par ordinateur
les processus généralement non calculables, ces théories ont
connu un développement foudroyant au cours des dernieres
décennies ; a cette occasion, des éléments communs et des
liens sont apparus entre les théories les plus variées.

NON-LINEARITE ET RETROACTIVITE

Dans tous les secteurs, les aspects non linéaires et les dis-
continuités jouent un role important. Cela revient a dire que
certaines modifications des causes entrainent des modifica-
tions non proportionnelles des effets. A la fin des années
1950, le météorologue Edward N. Lorenz a découvert de tels
facteurs non linéaires dans ses modeles du temps : pour des
modifications minimales des valeurs initiales, il constatait des
écarts marqués dans les prévisions, et cela en un bref délai'.
Depuis la publication de son article, intitulé «Kann der Flii-
gelschlag eines Schmetterlings in Brasilien einen Tornado in
Texas hervorrufen ?» (Le battement d’aile d’un papillon au
Brésil peut-il susciter une tornade au Texas ?), on parle de
Ueffet papillon. Un autre élément fondamental de toutes les
théories est la rétroactivité, c’est-a-dire le fait que les proces-
sus sont influencés par leurs résultats mémes. Quand, dans
ces systemes, surgissent des comportements chaotiques, quasi
arbitraires et imprévisibles, méme sans influence fortuite, on
parle de chaos déterministe. Signalons en outre I’existence du
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phénomene inverse, ot 'ordre peut jaillir spontanément au
sein d’un systeme chaotique ; la aussi, la rétroactivité joue un
role central. On parle dans ce cas d’auto-organisation ou de
synergétique®. Nous examinerons de plus pres, ci-dessous, un
exemple concret, ol peuvent se produire les deux comporte-
ments : les vibrations d’une corde frottée.

Citons nommément une équation tres bien étudiée, qui
est largement commentée dans tous les livres consacrés
a la théorie du chaos, et qui est aussi utilisée dans les pro-
grammes informatiques de production de musique. Elle pa-
rait sur le marché sous plusieurs noms. On I'appelle le plus
souvent équation logistique, mais elle est aussi connue
comme itérateur quadratique, reproduction de parabole ou
équation du comportement prédateur/proie. Cette .équation
permet de calculer couramment de nouvelles valeurs x" a
partir de la valeur précédente x".

Xll =1 i xn-l Ed (1 =1 Xn-l)

Les valeurs x" obtenues se situent entre 0 et 1 quand la
valeur initiale x' se situe entre 0 et 1, et r entre 0 et 4. Si I’on
choisit par exemple 1 = 2.75 et x" = 0.9, respectivement 0.1,
on obtient les séries de chiffres reproduites dans les dia-
grammes ci-contre, qui convergent manifestement vers la
méme limite (Illustration 2).

Si, pendant le calcul des valeurs, on modifie le parametre r,
la valeur limite change aussi. Le diagramme suivant, obtenu
avec r = 2.6 jusqu’a r = 3.569, montre d’abord une augmenta-
tion de la valeur limite, puis une division en deux valeurs
limites, entre lesquelles les valeurs obtenues oscillent. De
nouvelles bifurcations, comme on appelle ces ramifications,
donnent des cycles toujours plus longs, jusqu’a ce qu’ils
atteignent une longueur pratiquement infinie a la valeur
r =3.6268 du paramétre et que le comportement chaotique
survienne (Illustration 3).

On appelle cette constellation attracteur, étant donné
que, quelle que soit la valeur initiale, les valeurs suivantes
sont attirées toujours plus prées de la valeur limite, respecti-
vement du cycle limite. Si I'on choisit par exemple r = 3.5, un
cycle de quatre apparait visiblement apres quelques étapes
(itérations), quelle que soit la valeur initiale.

Le diagramme suivant montre le trajet ultérieur de
l'attracteur quand le parametre passe der =3.5ar=4.Ce
n’est qu’a la toute fin, a r = 4, que régne le chaos total, c’est-
a-dire que les valeurs obtenues se répartissent alors égale-
ment entre 0 et 1 ; entre les deux, il y a toujours des cycles —
de toutes les longueurs qu’on voudra, comme on peut le dé-
montrer — qui se divisent par bifurcation (Illustration 4).

Il est facile d’imaginer que ces comportements et d’autres
qui leur ressemblent représentent une mine de techniques de
composition, dans lesquelles le choix de valeurs quelconques
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concomitante des moyens — une formule simple, pilotée par
un seul paramétre — exerce naturellement une fascination
spéciale sur de nombreux compositeurs.

FRACTALES ET AUTO-SIMILITUDE

Les images fascinantes évoquées au début de I’article,
qu’on appelle des fractales, semblent n’avoir rien de com-
mun avec le chaos, vu que les exemples les plus simples pré-
sentent un ordre parfaitement visible. Une possibilité de pro-
duire des objets fractals consiste a ajouter des structures de
plus en plus petites a un modele, par rapetissement et multi-
plication constants. L’exemple le plus connu est sans doute la
courbe de Koch (dite «flocon de neige»), nommée d’apres le
mathématicien belge Helge von Koch, qui en publia déja la
«recette» en 1904. Elle s’obtient en greffant des copies plus
petites de la figure sur ses cotés (Illustration 5).

Si le processus est répété a I'infini, on obtient une courbe
de longueur infinie, le périmetre croissant de 4/3 a chaque
étape. La courbe ne comporte plus de segments rectilignes
et est si dense qu’elle constitue en quelque sorte un hybride
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lllustration 6

entre une ligne et une surface. Il est alors possible d’attribuer
mathématiquement (de diverses manieres) une dimension a
de telles courbes, dimension qui se situe entre celles de la
ligne et de la surface, soit entre 1 et 2. Pour la courbe de
Koch, on obtient la dimension 1.2691...7 C’est ce résultat
fractionnaire qui a donné naissance au terme de fractale
pour désigner les figures dont le nombre des dimensions
n’est pas un entier. Une propriété importante de beaucoup
de fractales est leur auto-similitude, ¢’est-a-dire que le gros-
sissement d’un segment quelconque de la courbe est sem-
blable a la courbe compléte. La courbe de Koch est auto-
semblable au sens strict, étant donné que sa forme est la
méme, quel que soit le grossissement choisi.

Le lien avec le chaos déterministe réside en ceci que cer-
tains attracteurs, comme celui qui a été décrit plus haut, sont
des fractales et présentent des auto-similitudes. Le terme
d’auto-similitude est donc utilisé fréquemment, désormais,
dans un contexte musical, par exemple pour décrire des
techniques contrapuntiques, des agencements formels ou des
déroulements harmoniques, a différents niveaux ; ce faisant,
on n’établit aucun rapport quelconque avec la théorie du
chaos, mais on habille simplement d’un terme a la mode des
ordonnances bien connues depuis longtemps. Il faut en géné-
ral se méfier de ces transferts de notions extra-musicales
dans la terminologie musicale, car on désigne souvent des
phénomenes qui n’ont que des liens apparents. On pense
trop en termes purement structurels, sans tenir compte des
arriere-plans historiques et stylistiques. Si ’on parle par
exemple d’auto-similitude dans les mouvements dansés
(2 fois 8 mesures, qui se divisent en 2 phrases de 4 mesures,
lesquelles se composent a leur tour de 2 motifs de 2 mesures,
etc., jusqu’a la division binaire des notes), on établit des rap-
ports non seulement entre des niveaux tres variés, mais aussi
entre des caractéristiques fondamentales de I’écriture, des
particularités stylistiques et des propriétés individuelles du
morceat.

La fractale la plus célebre est sans doute ensemble de
Mandelbrot,nommé d’apres la mathématicien Benoit B. Man-
delbrot*. Elle est nettement plus complexe que la courbe de
Koch, mais pourtant tres simple a définir. (Illustration 6).

L'illustration de gauche montre I'ensemble complet, celle
de droite le grossissement d’un petit segment. Les images
les plus fascinantes sont les animations qui plongent de plus
en plus profond dans I’ensemble de Mandelbrot et font ap-
paraitre sans cesse de nouvelles formes. Les structures déli-
cates, aux ramifications presque organiques, qui ne se répé-
tent jamais exactement, méme a un grossissement infini, et
qui présentent pourtant toujours des similitudes, font vibrer.
Ily a cependant de bonnes raisons a ce que presque tout
le monde ait déja vu des images de ces fractales, mais que

presque personne n’ait entendu de musique fractale. La prin-

cipale est que les fractales sont des figures géométriques,
souvent a deux dimensions (comme I’ensemble de Mandel-
brot, qui se définit au niveau des nombres complexes). Or,
dans un certain sens, notre musique aussi est bidimension-
nelle. Comme le montre clairement la notation convention-
nelle, les parametres essentiels sont le temps et la hauteur.
Mais la tentative de traduire des figures géométriques en
musique, en attribuant le temps a une direction et la hauteur
a l'autre, est condamnée a I’échec pour diverses raisons.
D’une part, ces deux dimensions ont des caractéres tout a
fait différents ; de lautre, elles se distinguent absolument des
dimensions géométriques. Pour notre perception, la hauteur
n’arien de linéaire ni d’homogene ; chaque écart a ses
propres qualités. Les intervalles traditionnels ont des pro-
priétés particulieres, dues en partie a leur nature et en partie
a I’'emploi qui en est fait ; les intervalles qui n’existent pas
dans notre systeme tonal sont souvent ressentis comme
simplement faux. S’y ajoute le fait que la faculté de dissocier
des notes jouées simultanément est tres limitée. Quant au
temps, c’est évidemment une dimension linéaire, en un cer-
tain sens, mais a I’écoute, nous ne pouvons avoir la vue d’en-
semble du déroulement temporel, contrairement a la lecture
d’une partition ou a la contemplation d’un tableau ;la suc-
cession des événements est irréversible, la vitesse normale-
ment prescrite.

PERSPECTIVES POUR LA COMPOSITION

Les possibilités de traduire en musique les notions et les
modeles de la théorie du chaos sont tres diverses. On men-
tionnera au passage la démarche intuitive de certains com-
positeurs qui se laissent inspirer par les images et les termes
évoqués, sans appliquer le moindre détail de la théorie dans
leurs ceuvres. Leur représentant le plus illustre, Gyorgy
Ligeti, s’est méme vu dédier le livre Chaos. Bausteine der
Ordnung’. La musique de Ligeti des années 1960 joue effec-
tivement déja avec des structures complexes, bien avant la
vogue de la théorie du chaos, «mais les traces de ce penchant
ne se sont pas traduites par des schémas de composition qui
soient des transpositions facilement repérables de connais-
sances scientifiques»°.

Sil’on cherche des transpositions musicales concretes de
processus chaotiques, on en trouvera naturellement la ot la
théorie a pu se développer completement, c’est-a-dire dans
le domaine de la musique générée par ordinateur. On ne
sera donc pas surpris d’apprendre que la plus grande partie
de la bibliographie, mais aussi des compositions et des
programmes, se trouve sur Internet’. Les programmes per-
mettent en général de faire le choix de certaines valeurs de

3. Chaos. Bausteine
der Ordnung (note 1),
p. 249.
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brot, Die fraktale Geo-
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1987.
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préface.
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/strohbeen/fml.html .



parametres — limité€s souvent a la hauteur et au rythme — a
l'aide d’algorithmes issus de la théorie du chaos. Ce procédé
rappelle certes les techniques de la musique sérielle, mais le
matériau sonore et son traitement sont la plupart du temps
plus simples et plus conventionnels, car ils proviennent plutot
de la tradition de la musique 1égere, naive et répétitive. Tous
les programmes travaillent en outre avec MIDI (Musical Ins-
trument Digital Interface), systeme qui permet les échanges
de données entre instruments électroniques et ordinateurs.
Bien que le MIDI offre des possibilités bien supérieures, la
plupart des programmes se bornent aux systemes tonals, au
diapason et aux rythmes traditionnels ; le matériau sonore
s’en tient aux notes isolées, si bien que le traitement de
bruits, de timbres ou de phénomenes composites est exclu.
Prenons comme exemple le programme «A Musical Gene-
rator». Il permet de fixer 'instrument, le systeme tonal et la
note fondamentale, jusqu’a seize voix ; pour déterminer les
hauteurs, les durées et le tempo, on choisit dans différents
systemes — fractales unidimensionnelles, systemes dyna-
miques, etc. — des objets a I’aide desquels calculer les valeurs
des parametres. On produit alors des morceaux polypho-
niques, qu’on peut écouter aussitot, ce qui permet de vérifier
leffet des réglages choisis. Gréace a des programmes idoines,
on pourra transformer les données en notes et les imprimer.
(’exemple de D.C. Little prouve d’ailleurs qu’on peut com-
poser de la musique différenciée avec des programmes qui
operent essentiellement sur des paramétres traditionnels®.)
A un tout autre niveau, celui de la production méme des
sons, on découvre des possibilités intéressantes. Réaliser des
sons synthétiques qui soient a peu pres aussi riches et vivants
que les sons naturels reste une opération tres dispendieuse.
Cela tient au fait que la hauteur, le timbre et la nuance des
sons naturels varient légerement et continuellement, surtout
dans la phase d’attaque. Si I’'on essaie d’ajouter délibérément
ces variations a des sons synthétiques, le résultat sonne géné-
ralement de fagon peu naturelle. En simulant des processus
physiques, comme la rétroaction non linéaire de I’archet sur
la corde, on arrive toutefois a reproduire des séquences so-
nores plausibles du point de vue physique et qui sonnent na-
turellement. Les vibrations d’une corde peuvent étre décrites
approximativement par des €équations linéaires, alors que les
interactions de la corde et de I'archet ne sont pas linéaires ; le
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passage abrupt d’une phase ou les crins accrochent la corde
et celle ot ils glissent est en effet une discontinuité typique.
SiI’on applique trop de pression a I’archet, on produit des
vibrations chaotiques, c’est-a-dire des bruits, méme si la
pression reste constante. Quand la pression est correcte, il
s’établit en revanche tres vite une rétroaction régulicre de
la vibration de la corde et de I'interaction archet/corde.

Les possibilités les plus nombreuses d’exploiter la théorie
du chaos se trouvent cependant dans la musique générée a
I'aide de 'ordinateur au sens étroit, dans la lignée de la
musique électronique et de la musique concrete. On peut
utiliser ici, de fagon tres personnelle, des techniques de la
théorie du chaos, soit pour produire des sons, soit pour les
traiter et pour piloter les parametres. Les ceuvres ainsi pro-
duites ne suscitent hélas guere de commentaires ; les parti-
tions (graphiques) faisant défaut, il est rarement possible
de les analyser. (Sur I'emploi de I’équation logistique, voir
Iarticle du compositeur américain Gary Lee Nelson? ; sur
I’auto-similitude, les commentaires de Gerald Bennett sur
sa composition Rainstick.'’) Etant donné que les vibrations
chaotiques (les bruits), les générateurs aléatoires, mais aussi
les processus déterministes complexes, jouent depuis long-
temps un role primordial dans la musique par ordinateur,
I'influence de la théorie du chaos n’en a pas bouleversé radi-
calement I’esthétique, mais lui a procuré plutdt des moyens
rationnels et surtout adéquats, techniquement parlant, de
réaliser toutes ses conceptions sonores.
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