Zeitschrift: Beiträge zur Kryptogamenflora der Schweiz = Matériaux pour la flore

cryptogamique suisse = Contributi per lo studio della flora crittogama

svizzera

Herausgeber: Schweizerische Naturforschende Gesellschaft

Band: 5 (1915)

Heft: 2

Artikel: Le coelastrum proboscideum Bohl. : étude de planctologie

expérimentale

Autor: Rayss, Tscharna

Kapitel: Influence du calcium

DOI: https://doi.org/10.5169/seals-821083

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

cette solution de même a été diluée au ½ et additionnée de fer. Tous les milieux ont été étudiés après un mois.

Influence du calcium.

1. Solution Detmer modifiée (sans Ca) au 1/3.

Cénobes de taille normale parfois irréguliers; type *C. sphaericum* prédomine. Cellules isolées presque aussi nombreuses que les cénobes, souvent très grandes, même monstrueuses, à 1, 2, jusqu'à 7 pyrénoïdes. Dissociation des cénobes assez fréquente; quelquefois à l'intérieur des cénobes commence une décoloration et une réduction d'une des cellules constituantes qui finira par mourir; c'est l'endroit par lequel le cénobe commencera par se désagréger. Cellules incolores assez fréquentes.

A. Ca $(NO_3)_2$.

2. Solution Detmer normale au 1/3 plus 0,25 0/00 de Ca.

Cénobes pour la plupart du type *C. sphaericum* et *microporum* de toutes les dimensions, se dissociant plus ou moins, mais assez rarement encore. Agrégats botryoïdes appendiculés. Cellules isolées peu fréquentes et toutes chlorelloïdes.

3. 0,5 de Ca
$$(NO_3)_2$$
 $^{0}/_{00}$.

Petits cénobes du type *C. proboscideum*, *sphaericum* et le plus souvent *microporum*. Amas botryoïdes à cellules arrondies ou appendiculées; assemblages irréguliers de toute espèce de cellules dans le plan ou dans l'espace. Cellules isolées pour la plupart chlorelloïdes.

4.
$$0.75^{\,0}/_{00}$$
 de Ca $(NO_3)_2$.

Cénobes C. proboscideum, sphaericum et microporum aussi nombreux que les cellules isolées, mais semblant avoir des dimensions plus grandes — comme apparence générale — que ceux du milieu précédent. Tous les autres caractères sont les mêmes.

5.
$$1,25^{0}/_{00}$$
 de Ca $(NO_{3})_{2}$.

Cénobes de toutes les formes et de toutes les grandeurs, souvent en dissociation plus ou moins prononcée, de sorte que toutes les cellules deviennent parfois indépendantes les unes des autres tout en gardant leur situation respective dans l'espace (comme dans la planche XIII). Quelques cénobes du type C. astroideum. Beaucoup de cellules isolées du type Chlorella ou Polyedrium.

6.
$$1,75^{\circ}/_{00}$$
 de Ca $(NO_3)_2$.

Cénobes et cellules isolées en nombre égal. Cénobes bien formés, souvent très grands. Développement dans les flacons aussi intense que pour d'autres concentrations.

B. Ca COs.

7. $0.25^{\circ}/_{00}$ de Ca CO_3 .

Cénobes du type *C. proboscideum* nombreux et très variés, rarement en dissociation. Cellules isolées très rares, peut-être résultant uniquement des désagrégations fortuites.

8. $0.5^{\circ}/00$ de Ca CO₃.

Cénobes très grands, pour la plupart réguliers, quelquefois pourtant en dissociation et constitués généralement par des cellules un peu plus arrondies que ce n'est le cas pour le *Coelastrum proboscideum*, tout en s'écartant très peu de ce type. Cellules unies par deux, quatre, mais rarement complètement séparées.

9. 0,75 ⁰/₀₀ Ca CO₃.

Grands cénobes du type *C. proboscideum*, plus rarement *C. sphaericum*, avec tendance au *C. microporum*. Pas de cellules isolées. La réaction du milieu est faiblement alcaline.

10. $1^{0}/_{00}$ Ca CO₃.

Encore de grands cénobes du type *C. sphaericum*, *proboscideum* et *micro- porum* à beaucoup de cellules constitutives, mais tendant à devenir irréguliers et souvent en dissociation. Très peu de cellules isolées du type *Chlorella* ou *Polyedrium*; réaction alcaline faible.

11. 1,5 °/00 Ca CO3.

Développement dans le flacon encore intense, mais déjà moindre que précédemment. Réaction alcaline un peu plus forte. Cénobes nombreux de toutes les formes, avec prédominance des *C. proboscideum*, souvent très grands et à beaucoup de cellules. Cellules isolées très rares, toutefois plus fréquentes que dans les milieux précédents.

Nous n'avons pas essayé d'expérimenter avec des concentrations plus fortes.

Résultats.

- 1. Les sels de Ca dans les proportions données favorisent le développement des *Coelastrum*.
- 2. Dans les milieux contenant les sels de nitrate de calcium il y a une grande quantité de cellules isolées, mais avec les concentrations croissantes de ce sel augmentent aussi le nombre et les dimensions des cénobes.
- 3. Le carbonate de calcium incite à la production de très grands cénobes surtout du type *C. proboscideum*. Les cellules isolées deviennent de plus en plus rares avec les concentrations croissantes de ce sel.
- 4. L'absence de Ca favorise la dissociation des cénobes, la formation des cellules monstres et la décoloration des cellules.

Nous voyons que les sels de Ca favorisent avant tout la formation des cénobes. Contrairement à ce qui arrive avec des concentrations croissantes de tout autre sel, le nombre de cénobes augmente

avec la teneur des milieux en Ca (NO₃)₂ ou en Ca CO₃. Ce fait curieux pourrait trouver son explication dans le rôle que le Ca semble jouer dans la formation et la consistance des membranes végétales: la présence de ses sels dans le milieu nutritif rend le décollement des cellules des Coelastrum plus difficile. Quant à la valeur nutritive des sels de Ca, rappelons à ce propos que, d'après les expériences d'Adjaroff, faites dans les éprouvettes parafinées, le Ca est nécessaire au développement de Stichococcus et de Chlorella, mais pour ces dernières, à partir d'une certaine concentration, il devient un poison. Artari (3) de même indique que les sels de Calcium accélèrent la croissance des Chlamydomonadinées, surtout si ces algues ont à leur disposition du sucre. Dans le cas de Coelastrum, nous avons pu voir aussi cet effet accélérateur soit pour le développement en général. soit sur les dimensions des cellules; si, en absence de calcium, le développement se fait tout de même, il n'est ni si intense, ni si régulier qu'en présence de sels de calcium; aussi n'avons-nous pas pris toutes les précautions nécessaires pour éliminer les ions de Ca sans en laisser trace aucune. Cette influence des sels de Ca est d'autant plus curieuse que notre Coelastrum vient d'un marécage tourbeux. Encore ici nous sommes d'accord avec Chodat (3) lorsqu'il dit: « L'indépendance complète de certaines algues vis-à-vis des concentrations calciques me paraît peu probable. Ce qui l'est plus, c'est le danger que fait courir à beaucoup d'entre elles une trop forte proportion de ces sels. Les algues des tourbières à Sphagnum craignent les eaux calcaires et ne s'y laissent le plus souvent pas cultiver (Coelastrum microporum, Desmidiées, etc.) »

Signalons encore que la décoloration de plusieurs cellules dans la solution privée des sels de Ca peut être due, comme le suggère Bokorny (cité d'après Chodat 3) « à une rétrogradation des chromatophores qui, selon Loew, contiendraient des combinaisons nucléino-calciques. »

Passons maintenant aux expériences sur l'influence des sels de K.

Influence du potassium.

1. Solution Detmer modifiée (sans K) au 1/3.

Cénobes réguliers du type *C. proboscideum* parfois beaucoup plus pâles qu'à l'ordinaire ou à contenu très divisé. Pas de cellules isolées.

2. Solution Detmer normale au $^{1}/_{3}$ + 0,25 $^{0}/_{00}$ de KCl.

Cénobes de toutes les formes: C. proboscideum, C. sphaericum et C. microporum, souvent des associations irrégulières des cellules ou encore des agrégats botryoïdes. Assez grand nombre de cellules isolées et de cénobes en train de se dissocier. Quelques cellules monstres.